
C H A P T E R 8

Flatland

Suffice it that I am the completion of your incomplete self. You are a Line, but I am a Line of
Lines, called in my country a Square: and even I, infinitely superior though I am to you, am
of little account among the great nobles of Flatland, whence I have come to visit you, in the
hope of enlightening your ignorance.

Edwin A. Abbott
Flatland: A Romance of Many Dimensions (1884)

In Edwin Abbott’s eponymous novel, a square who lives in the two-dimensional
world of Flatland grapples with comprehending the three-dimensional world of

Spaceland, while simultaneously recognizing the profound advantages he enjoys over
those living in the zero- and one-dimensional worlds of Pointland and Lineland.

Analogously, we have discovered the advantages of one-dimensional data (strings
and lists) over zero-dimensional numbers and characters. In this chapter, we will
discover the further possibilities afforded us by understanding how to work with two-
dimensional data. We will begin by looking at how we can create a two-dimensional
table of data read in from a file. Then we will explore a powerful two-dimensional
simulation technique called cellular automata. At the end of the chapter are several
projects that illustrate how simulations similar to cellular automata can be used to
model a variety of problems. We will also explore how digital photos are stored, and
write some image filters to enhance them.

8.1 TABULAR DATA
There are a few different ways to store two-dimensional data as a table. To illustrate
the most straightforward technique, let’s revisit the simple tabular data set from
Exercise 7.4.6. This CSV file (madison_temp.csv, available on the book website)
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contains over forty years worth of monthly extreme temperature readings from
Madison, Wisconsin. The first few rows look like this:

STATION,STATION_NAME,DATE,EMXT,EMNT

GHCND:USW00014837,MADISON DANE CO REGIONAL AIRPORT WI US,19700101,33,-294

GHCND:USW00014837,MADISON DANE CO REGIONAL AIRPORT WI US,19700201,83,-261

GHCND:USW00014837,MADISON DANE CO REGIONAL AIRPORT WI US,19700301,122,-139

⋮

Because all of the data in this file is based on conditions at the same site, the first
two columns are identical in every data row. The third column contains the dates, in
YYYYMMDD format, on which data was collected. The fourth and fifth columns contain
the maximum and minimum monthly temperatures, respectively, which are in tenths
of a degree Celsius (i.e., 33 represents 3.3○ C). Previously, we would have extracted
these data into three parallel lists containing dates, maximum temperatures, and
minimum temperatures, like this:

def readDataLists():
"""Read monthly extreme temperature data into 3 parallel lists.

Parameters: none

Return value: 3 lists containing dates, and min and max temperatures
"""

dataFile = open('madison_temp.csv', 'r')
header = dataFile.readline()

dates = []
maxTemps = []
minTemps = []
for line in dataFile:

row = line.split(',')
dates.append(row[2])
maxTemps.append(int(row[3]))
minTemps.append(int(row[4]))

dataFile.close()

return dates, maxTemps, minTemps

Reading a table of temperatures
Alternatively, we may wish to extract the data into a single table. For example, the
last three columns could be stored in a unified tabular structure like the following:
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DATE EMXT EMNT

19700101 33 -294

19700201 83 -261

19700301 122 -139

⋮ ⋮ ⋮

We can represent this structure in Python as a list of rows, where each row is a list
of values in that row. In other words, the table above can be stored like this:

[['19700101', 33, -294], ['19700201', 83, -261], ['19700301', 122, -139], ...]

To better visualize this list as a table, we can reformat its presentation a bit:

[

[ '19700101', 33, -294 ], # row 0

[ '19700201', 83, -261 ], # row 1

[ '19700301', 122, -139 ], # row 2

⋮
]

In the readDataLists function, row is already assigned to each of these row lists
in the for loop. Therefore, to create this structure, we can simply append each
value of row, with the temperature values converted to integers and the first two
redundant columns removed, to a growing list of rows named table. These changes
are highlighted below.

def readDataTable():
"""Read monthly extreme temperature data into a table.

Parameters: none

Return value: list of lists containing dates and extreme temperatures
"""

dataFile = open('madison_temp.csv', 'r')
header = dataFile.readline()

table = []
for line in dataFile:

row = line.split(',')
row[3] = int(row[3])
row[4] = int(row[4])
table.append(row[2:]) # add a new row to the table

dataFile.close()

return table

Since each element of table is a list containing one row, the first row is assigned to
table[0], the second row is assigned to table[1], and the third row is assigned to
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table[2], as illustrated below.

[['19700101', 33, -294]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

table[0]

,['19700201', 83,

table[1][2]

−261]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
table[1]

,['19700301',

table[2][1]
«
122, -139]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
table[2]

,...]

Reflection 8.1 How would you access the minimum temperature in February, 1970
('19700201') from this list?

The minimum temperature in February, 1970 is the third value in table[1]. Since
table[1] is a list, we can use indexing to access individual items contained in it.
Therefore, the third value in table[1] is table[1][2], which equals -261 (−26.1○ C),
as indicated above. Likewise, table[2][1] is the maximum temperature in March,
1970: 122 (12.2○ C).

Reflection 8.2 In general, how can you access the value in row r and column c?

Notice that, for a particular value table[r][c], r is the index of the row and c is
the index of the column. So if we know the row and column of any desired value, it
is easy to retrieve that value with this convenient notation.

Now suppose we want to search this table for the minimum temperature in a
particular month. To access this value in the table, we will need both its row
and column indices. We already know that the column index must be 2, since the
minimum temperatures are in the third column. To find the correct row index, we
need to search all of the values in the first column until we find the row that contains
the desired string. Once we have the correct row index r, we can simply return the
value of table[r][2]. The following function does exactly this.

def getMinTemp(table, date):
"""Return the minimum temperature for the given date string.

Parameters:
table: a table containing extreme temperature data
date: a date string

Return value: the minimum temperature for the given date
or None if the date does not exist

"""

numRows = len(table)
for r in range(numRows):

if table[r][0] == date:
return table[r][2]

return None

The for loop iterates over the the indices of the rows in the table. For each row
with index r, we check if the first value in that row, table[r][0], is equal to the
date we are looking for. If it is, we return the value in column 2 of that row. If we
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Tangent 8.1: Pandas

The Python module pandas is used by many data scientists to analyze tabular data. It
allows one to easily read a CSV file into a tabular object called a data frame, and then
perform a variety of analyses on it. Here’s how you could read the Madison temperature
data using pandas:

>>> import pandas as pd
>>> temps = pd.read_csv('madison_temp.csv',

usecols = ['DATE', 'EMXT', 'EMNT'],
index_col = 'DATE')

The variable temps is now a data frame containing the data from the file
madison_temp.csv. Since we noticed that the first two columns in this file are re-
dundant, we elected to create the data frame with only the last three columns, and
we selected the DATE column as the index, allowing us to use the dates as unique row
identifiers. The first few rows of the data frame look like this:

>>> temps.head(3) # display first 3 rows
EMXT EMNT

DATE
19700101 33 -294
19700201 83 -261
19700301 122 -139

Now if we want the minimum temperature in February, 1970, we can select the desired
row and column:

>>> temps.at[19700201, 'EMNT']
-261

This just barely scratches the surface of what pandas can do. If you find yourself
working with a lot of CSV data in the future, you might want to learn more by visiting
https://pandas.pydata.org.

get all the way through the loop without returning a value, the desired date must
not exist, so we return None.

Reflection 8.3 We see in the getMinTemp function that the number of rows in the table
can be found with len(table). How could we get the number of columns in the table?

The number of columns in a table is the length of any row, for example
len(table[0]).

If a tabular data set contains a unique key that is frequently searched, we can
alternatively store it as a dictionary. We leave an exploration of this alternative as
an exercise.
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Exercises
From this point on, we will generally not specify what the name and parameters of a function
should be. Instead, we would like you to design the function(s).

8.1.1* Show how the following table can be stored in a list named scores.

Student SAT SAT

ID MATH EBRW

10305 700 610

11304 680 590

10254 710 730

12007 650 690

10089 780 760

8.1.2. In the list you created above, how do you refer to each of the following?

(a)* the SAT M value for student 10089

(b)* the SAT EBRW value for student 11304

(c) the SAT M value for student 10305

(d) the SAT EBRW value for student 12007

8.1.3. Alternatively, a table could be stored as a list of columns.

(a) Show how to store the table in Exercise 8.1.1 in this way.

(b) Redo Exercise 8.1.2 using this new list.

(c) Why is this method less convenient when reading data in from a file?

(d) Why might this method be more convenient if you are plotting the data
in the table?

8.1.4. Write a program that calls the readDataTable function to read the Madison
temperatures into a table, and then repeatedly asks for a date string to search
for in the table. For each date string entered, your function should call the
getMinTemp function to get the corresponding minimum temperature. For
example, your function should print something like the following:

Minimum temperature for which date (q to quit)? 20050501

The minimum temperature for 20050501 was -2.2 degrees Celsius.

Minimum temperature for which date (q to quit)? 20050801

The minimum temperature for 20050801 was 8.3 degrees Celsius.

Minimum temperature for which date (q to quit)? q

8.1.5. Write a function that does the same thing as the getMinTemp function above,
but returns the maximum temperature for a particular date instead.

8.1.6* As mentioned previously, a table can alternatively be stored as a dictionary. In
this representation, one column acts as the key and the remaining columns are
stored in a list as the corresponding value. For example, the temperature table
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[

[ '19700101', 33, -294 ],

[ '19700201', 83, -261 ],

[ '19700301', 122, -139 ]

]

could be stored in a dictionary as

{

'19700101': [33, -294],

'19700201': [83, -261],

'19700301': [122, -139]

}

This implementation makes searching for a particular row very efficient.

Rewrite the readDataTable and getMinTemp functions so that the temperature
data is stored in this way instead. Then incorporate these new functions into
your program from Exercise 8.1.4.

8.1.7. Write a function that reads the earthquake data from the CSV file at http://
earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.csv into
a table with four columns containing the latitude, longitude, depth, and mag-
nitude of each earthquake. All four values should be stored as floating point
numbers.

8.1.8. Write a function that takes the table returned by Exercise 8.1.7 as its parameter
and plots the earthquake locations in that table.

8.1.9. Write a function that takes as a parameter a table returned by your function
from Exercise 8.1.7 and prints a formatted table of the data. Your table should
look similar to this:

Latitude Longitude Depth Magnitude

-------- --------- ----- ---------

33.49 -116.46 19.8 1.1

33.14 -115.65 2.1 1.8

-2.52 146.12 10.0 4.6

⋮

8.1.10. Write a function that takes as a parameter a table returned by your function from
Exercise 8.1.7, and repeatedly prompts for a minimum earthquake magnitude.
With each response, the function should create a new table containing the rows
corresponding to earthquakes with at least that magnitude, and then print this
table using your function from Exercise 8.1.9. The output from your function
should look similar to this:

Minimum magnitude (q to quit)? 6.2

Latitude Longitude Depth Magnitude

-------- --------- ----- ---------

-46.36 33.77 10.0 6.2

-37.68 179.69 22.0 6.7

1.93 126.55 35.0 7.1

-6.04 148.21 43.2 6.6
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Minimum magnitude (q to quit)? 7

Latitude Longitude Depth Magnitude

-------- --------- ----- ---------

1.93 126.55 35.0 7.1

Minimum magnitude (q to quit)? 8

There were no earthquakes with magnitude at least 8.0.

Minimum magnitude (q to quit)? q

8.1.11. On the book website is a CSV file named rents.csv that contains the average
monthly rents for studio through four-bedroom apartments in every state.

(a) Write a function that reads this data into a list of lists.

(b) Write a function that repeatedly prompts for a state and an apartment
type, and uses the list of lists from part (a) to print the corresponding
rent. For example, your program output might look like the following:

State (or quit): Ohio

Apartment type (0-4): 1

The average rent is $667.

State (or quit): Delaware

Apartment type (0-4): 3

The average rent is $1653.

State (or quit): Albuquerque

That is not a state.

State (or quit): quit

(c) Write a function that computes the average rent for each apartment
type using the list of lists from part (a).

8.1.12. Redo Exercise 8.1.11 but read the data into a dictionary like that in Exercise 8.1.6
instead.

8.2 THE GAME OF LIFE
A cellular automaton is a rectangular grid of discrete cells, each of which has
an associated state or value. Each cell represents an individual entity, such as an
organism or a particle. At each time step, every cell can simultaneously change
its state according to some rule that depends only on the states of its neighbors.
Depending upon on the rules used, cellular automata may evolve global, emergent
behaviors based only on these local interactions.

The most famous example of a cellular automaton is the Game of Life, invented by
mathematician John Conway in 1970. In the Game of Life, each cell can be in one
of two states: alive or dead. At each time step, the makeup of a cell’s neighborhood
dictates whether it will pass into the next generation alive (or be reborn if it is dead).
Depending upon the initial configuration of cells (which cells are initially alive and
which are dead), the Game of Life can produce amazing patterns.
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Each cell in the Game of Life has the eight neighbors illustrated below:

In each step, every cell simultaneously observes the states of its neighbors, and
changes its state according to the following rules:

1. If a live cell has fewer than two live neighbors, it dies from loneliness.

2. If a live cell has two or three live neighbors, it remains alive.

3. If a live cell has more than three live neighbors, it dies due to overcrowding.

4. If a dead cell has exactly three live neighbors, it is reborn.

To see how these rules affect the cells in the Game of Life, consider the initial
configuration in the top left of Figure 8.1. Dead cells are represented by white
squares and live cells are represented by black squares. To apply rule 1 to the initial
configuration, we need to check whether there are any live cells with fewer than two
live neighbors. As illustrated below, there are two such cells, each marked with D.

DA
AD

According to rule 1, these two cells will die in the next generation. To apply rule
2, we need to check whether there are any live cells that have two or three live
neighbors. Since this rule applies to the other three live cells, they will remain alive
into the next generation. There are no cells that satisfy rule 3, so we move on to
rule 4. There are two dead cells with exactly three live neighbors, marked with A.
According to rule 4, these two cells will come alive in the next generation.

Reflection 8.4 Show what the second generation looks like, after applying these rules.

The figure in the top center of Figure 8.1 shows the resulting second generation,
followed by generations three, four, and five. After five generations, as illustrated
in the bottom center of Figure 8.1, the grid has returned to its initial state, but
it has moved one cell down and to the right of its initial position. If we continued
computing generations, we would find that it would continue in this way indefinitely,
or until it collides with a border. For this reason, this initial configuration generates
what is known as a “glider.”
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Figure 8.1 The first five generations of a “glider” in the Game of Life.

[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

Figure 8.2 Views of the “empty” cellular automaton as a grid and as a list.

Creating a grid
To implement this cellular automaton, we first need to create an empty grid of cells.
For simplicity, we will keep it relatively small, with 10 rows and 10 columns. We
will represent each live cell with a 1 and each dead cell with a 0. For clarity, it is
best to assign these values to meaningful names:

ALIVE = 1
DEAD = 0

An initially empty grid, like the one on the left side of Figure 8.2, will be represented
by a list of row lists, each of which contains a zero for every column. For example,
the list on the right side of Figure 8.2 represents the grid to its left.

Reflection 8.5 How can we easily create a list of many zeros?

If the number of columns in the grid is assigned to columns, then each of these rows
can be created with the list repetition operator:

row = [DEAD] * columns
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We can then create the entire grid by simply appending copies of row to a list named
grid:

def makeGrid(rows, columns):
"""Create a rows x columns grid of zeros.

Parameters:
rows: the number of rows in the grid
columns: the number of columns in the grid

Return value: a list of ROWS lists of COLUMNS zeros
"""

grid = []
for r in range(rows):

row = [DEAD] * columns
grid.append(row)

return grid

Initial configurations
The cellular automaton will evolve differently depending upon the initial configuration
of alive and dead cells. We will assume that all cells are dead initially, except for
those we explicitly specify. Each cell can be conveniently represented by a (row,
column) tuple. The coordinates of the initially live cells can be stored in a list of
tuples, and passed into the following function to initialize the grid.

def initialize(grid, coordinates):
"""Set a given list of coordinates to be ALIVE in the grid.

Parameters:
grid: a grid of values for a cellular automaton
coordinates: a list of coordinates

Return value: None
"""

for (r, c) in coordinates:
grid[r][c] = ALIVE

The function iterates over the list of tuples and sets the cell at each position to be
alive. For example, to match the initial configuration in the upper left of Figure 8.1,
we would pass in the list

[(1, 3), (2, 3), (3, 3), (3, 2), (2, 1)]

Notice that by using a generic tuple as the index variable, we can conveniently assign
the two values in each tuple to r and c.
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Surveying the neighborhood
To algorithmically carry out the rules in the Game of Life, we will need a function
that returns the number of live neighbors of any particular cell.

Reflection 8.6 Consider a cell at position (r, c). What are the coordinates of the eight
neighbors of this cell?

The coordinates of the eight neighbors are visualized in the following grid with
coordinates (r, c) in the center.

(r − 1, c − 1) (r − 1, c) (r − 1, c + 1)

(r, c − 1) (r, c) (r, c + 1)

(r + 1, c − 1) (r + 1, c) (r + 1, c + 1)

We could use an eight-part if/elif/else statement to check whether each neighbor
is alive. However, an easier approach is illustrated below.

def neighborhood(grid, row, column):
"""Finds the number of live neighbors of the cell at (row, column).

Parameters:
grid: a two-dimensional grid of cells
row: the row index of a cell
column: the column index of a cell

Return value: the number of live neighbors of (row, column)
"""

offsets = [(-1, -1),(-1, 0), (-1, 1), (0, -1),
(0, 1), (1, -1), (1, 0), (1, 1)]

rows = len(grid)
columns = len(grid[0])
count = 0
for offset in offsets:

r = row + offset[0]
c = column + offset[1]
if (r >= 0 and r < rows) and (c >= 0 and c < columns):

if grid[r][c] == ALIVE:
count = count + 1

return count

The list offsets contains tuples with the offsets of all eight neighbors. We iterate
over these offsets, adding each one to the given row and column to get the coordinates
of each neighbor. Then, if the neighbor is on the grid and is alive, we increment a
counter.
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Performing one pass
Once we can count the number of live neighbors, we can simulate one generation of
Life by iterating over all of the cells and updating them appropriately. But before we
look at how to iterate over every cell in the grid, let’s consider how we can iterate
over just the first row.

Reflection 8.7 What is the name of the first row of grid?

The first row of grid is named grid[0]. Since grid[0] is a list, we already know
how to iterate over it, either by value or by index.

Reflection 8.8 Should we iterate over the indices of grid[0] or over its values? Does it
matter?

As we saw above, we need to access a cell’s neighbors by specifying their relative
row and column indices. So we are going to need to know the indices of the row and
column of each cell as we iterate over them. This means that we need to iterate over
the indices of grid[0], which are also its column indices, rather than over its values.
Therefore, the for loop looks like this, assuming the number of columns is assigned
to the variable name columns:

for c in range(columns):
# update grid[0][c] here

Notice that, in this loop, the row number stays the same while the column number
(c) increases. We can generalize this idea to iterate over any row with index r by
simply replacing the row index with r:

for c in range(columns):
# update grid[r][c] here

Now, to iterate over the entire grid, we need to repeat the loop above with values of
r ranging from 0 to rows - 1, where rows is assigned the number of rows in the
grid. We can do this by nesting the loop above in the body of another for loop that
iterates over the rows:

for r in range(rows):
for c in range(columns):

# update grid[r][c] here

Reflection 8.9 In what order will the cells of the grid be visited in this nested loop? In
other words, what sequence of r,c values does the nested loop generate?

The value of r is initially set to 0. While r is 0, the inner for loop iterates over
values of c from 0 to columns - 1. So the first cells that will be visited are

grid[0][0], grid[0][1], grid[0][2], ..., grid[0][9]

Once the inner for loop finishes, we go back up to the top of the outer for loop.
The value of r is incremented to 1, and the inner for loop executes again. So the
next cells that will be visited are

grid[1][0], grid[1][1], grid[1][2], ..., grid[1][9]
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0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

(a)

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

(b)

Figure 8.3 Passing over a grid (a) row by row and (b) column by column.

This process repeats with r assigned to 2, 3, . . . , 9, until finally the cells in the last
row are visited:

grid[9][0], grid[9][1], grid[9][2], ..., grid[9][9]

Therefore, the cells in the grid are being visited row by row, as illustrated in
Figure 8.3(a).

Reflection 8.10 How would we change the nested loop so that the cells in the grid are
visited column by column instead?

To visit the cells column by column, we can simply swap the positions of the loops:

for c in range(columns):
for r in range(rows):

# update grid[r][c] here

In this new nested loop, for each value of c, the inner for loop iterates all of the
values of r, visiting all of the cells in that column. So the first cells that will be
visited are

grid[0][0], grid[1][0], grid[2][0], ..., grid[9][0]

Then the value of c is incremented to 1 in the outer for loop, and the inner for

loop executes again. So the next cells that will be visited are

grid[0][1], grid[1][1], grid[2][1], ..., grid[9][1]

This process repeats with consecutive values of c, until finally the cells in the last
column are visited:

grid[0][9], grid[1][9], grid[2][9], ..., grid[9][9]

This is illustrated in Figure 8.3(b).

In some two-dimensional simulations, the order in which cells are visited is important
but, in the Game of Life, it isn’t. We will choose to update the cells row by row.
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Tangent 8.2: NumPy arrays in two dimensions

Two-dimensional (and higher) data can also be represented with a NumPy array object.
(See Tangent 7.1.) As in one dimension, we can initialize an array by either passing in
a list, or passing a size to one of several functions that fill the array with particular
values. Here are some examples.

>>> import numpy
>>> temps = numpy.array([[3.3, -29.4, 8.3], [-26.1, 12.2, -13.9]])
>>> temps
array([[ 3.3, -29.4, 8.3],

[-26.1, 12.2, -13.9]])
>>> grid = numpy.zeros((2, 4)) # zero-filled with 2 rows, 4 cols
>>> grid
array([[ 0., 0., 0., 0.],

[ 0., 0., 0., 0.]])

In the second case, the tuple (2, 4) specifies the “shape” of the array: two rows and four
columns. We can modify individual array elements with indexing by simply specifying
the comma-separated row and column in a single pair of square brackets:

>>> grid[1, 3] = 1
>>> grid
array([[ 0., 0., 0., 0.],

[ 0., 0., 0., 1.]])

As we saw in Tangent 7.1, the real power of NumPy arrays lies in the ability to change
every element in a single statement. For example, the following statement adds one to
every element of the temps array.

>>> temps = temps + 1
>>> temps
array([[ 4.3, -28.4, 9.3],

[-25.1, 13.2, -12.9]])

For more details, see http://numpy.org .

Updating the grid
Now we are ready to implement one generation of the Game of Life by iterating over
all of the cells and applying the rules to each one. For each cell in position (r,c),
we first need to find the number of neighbors by calling the neighborhood function
that we wrote above. Then we set the cell’s new value, if it changes, according to
the four rules, as follows.

for r in range(rows):
for c in range(columns):

neighbors = neighborhood(grid, r, c)
if grid[r][c] == ALIVE and neighbors < 2: # rule 1

grid[r][c] = DEAD
elif grid[r][c] == ALIVE and neighbors > 3: # rule 3

grid[r][c] = DEAD
elif grid[r][c] == DEAD and neighbors == 3: # rule 4

grid[r][c] = ALIVE
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Reflection 8.11 Why is rule 2 not represented in the code above?

Since rule 2 does not change the state of any cells, there is no reason to check for it.

Reflection 8.12 There is one problem with the algorithm we have developed to update
cells. What is it? (Think about the values referenced by the neighborhood function when
it is applied to neighboring cells. Are the values from the previous generation or the current
one?)

To see the subtle problem, suppose that we change cell (r,c) from alive to dead.
Then, when the live neighbors of the next cell in position (r+ 1,c) are being counted,
the cell at (r,c) will not be counted. But it should have been because it was alive
in the previous generation. To fix this problem, we cannot modify the grid directly
while we are updating it. Instead, we need to make a copy of the grid before each
generation. When we count live neighbors, we will look at the original grid, but
make modifications in the copy. Then, after we have looked at all of the cells, we
can update the grid by assigning the updated copy to the main grid. These changes
are shown below in red.

newGrid = copy.deepcopy(grid)
for r in range(rows):

for c in range(columns):
neighbors = neighborhood(grid, r, c)
if grid[r][c] == ALIVE and neighbors < 2: # rule 1

newGrid[r][c] = DEAD
elif grid[r][c] == ALIVE and neighbors > 3: # rule 3

newGrid[r][c] = DEAD
elif grid[r][c] == DEAD and neighbors == 3: # rule 4

newGrid[r][c] = ALIVE
grid = newGrid

The deepcopy function from the copy module creates a completely independent
copy of the grid.

Now that we can simulate one generation, we can simply repeat this process to
simulate many generations. The complete function is shown below. The grid is
initialized with our makeGrid and initialize functions, then the nested loop that
updates the grid is further nested in a loop that iterates for the number of generations.

def life(rows, columns, generations, initialCells):
"""Simulates the Game of Life for the given number of

generations, starting with the given live cells.

Parameters:
rows: the number of rows in the grid
columns: the number of columns in the grid
generations: the number of generations to simulate
initialCells: a list of (row, column) tuples indicating

the positions of the initially alive cells

Return value: the final configuration of cells in a grid
"""
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grid = makeGrid(rows, columns)
initialize(grid, initialCells)

for g in range(generations):
newGrid = copy.deepcopy(grid)
for r in range(rows):

for c in range(columns):
neighbors = neighborhood(grid, r, c)
if grid[r][c] == ALIVE and neighbors < 2: # rule 1

newGrid[r][c] = DEAD
elif grid[r][c] == ALIVE and neighbors > 3: # rule 3

newGrid[r][c] = DEAD
elif grid[r][c] == DEAD and neighbors == 3: # rule 4

newGrid[r][c] = ALIVE
grid = newGrid

return grid

On the book website, you can find an enhanced version of this function that uses
turtle graphics to display the evolution of the system with a variety of initial
configurations. Two projects at the end of this chapter use similar algorithms to
simulate two very different scenarios: the evolution of segregated urban neighborhoods
and ferromagnetic materials.

Exercises
8.2.1* Download the enhanced Game of Life program from the book website and run

it with each of the following lists of coordinates set to be alive in the initial
configuration. Use at least a 50 × 50 grid. Describe what happens in each case.

(a) [(1, 3), (2, 3), (3, 3), (3, 2), (2, 1)]

(b) [(9, 10), (10, 10), (11, 10)]

(c) [(18, 5), (18, 6), (18, 7), (19, 5), (19, 7), (20, 5),
(20, 7), (21, 6), (22, 3), (22, 5), (22, 6), (22, 7),
(23, 4), (23, 6), (23, 8), (24, 6), (24, 9), (25, 5),
(25, 7), (26, 5), (26, 7)]

(d) [(10, c + 1), (10, c + 4), (11, c), (12, c), (12, c + 4),
(13, c), (13, c + 1), (13, c + 2), (13, c + 3)]

with c = columns - 5

(e) [(r + 1, c + 2), (r + 2, c + 4), (r + 3, c + 1),
(r + 3, c + 2), (r + 3, c + 5), (r + 3, c + 6),
(r + 3, c + 7)]

with r = rows // 2 and c = columns // 2
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8.2.2. Modify the neighborhood function so that
it treats the grid as if all four sides “wrap
around.” For example, in the first 7×7 grid
to the right, the neighbors of (4,6) include
(3,0), (4,0), and (5,0). In the rightmost
grid, the neighbors of the corner cell (6,6)
include (0,0), (0,5), (0,6), (5,0), and (6,0).

8.2.3* Write a function that prints the contents of a parameter named grid, which
is a list of lists. The contents of each row should be printed on one line with
spaces in between. Each row should be printed on a separate line.

8.2.4. Write a function that takes an integer n as a parameter, and returns an n × n
multiplication table as a list of lists. The value in row r and column c should be
the product of r and c.

8.2.5* Write a function that takes an integer n as a parameter, and returns an n × n
grid (list of lists) in which all cells on the main diagonal contain a 1 and the
rest of the cells contain a 0. For example, if n = 5, your function should return
the grid

[[1, 0, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 0, 0, 1]]

8.2.6. Write a function that takes an integer n as a parameter, and returns an n × n
grid (list of lists) in which all cells on and below the main diagonal contain a 1
and the rest of the cells contain a 0. For example, if n = 5, your function should
return

[[1, 0, 0, 0, 0],

[1, 1, 0, 0, 0],

[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],

[1, 1, 1, 1, 1]]

8.2.7. Write a function that takes as a parameter a two-dimensional grid (list of lists)
of numbers, and prints (a) the sum of each row, (b) the sum of each column,
and (c) the sum of all the entries.

8.2.8* Write a function that takes as parameters a two-dimensional grid (list of lists)
and a value to search for, and returns the (row, column) where the value first
appears, if it appears anywhere in the grid, and (−1,−1) otherwise.

8.2.9. Write a function that returns a two-dimensional grid (list of lists) representation
of an 8×8 checkerboard in which the squares in both directions alternate between
the values 'B' and 'R'.

8.2.10. A magic square is a grid of numbers for which the sum of all
the columns and all the rows is the same. For example, in the
magic square to the right, all the rows and columns add up to 15.
The following algorithm generates magic squares with odd-length
sides, using the consecutive numbers 1,2,3, . . .

5 7 3
1 6 8
9 2 4
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(a) Put 1 in a randomly chosen cell in your square.

(b) Look in the cell diagonally to the lower right of the previous cell, wrapping
around if you go off the right or bottom edge.

i. If this cell is unoccupied, put the next number there.

ii. Otherwise, put the next number directly above the previous number
(again wrapping to the bottom if you are on the top row).

(c) Continue step (b) until all the positions are filled.

Write a function that takes an odd integer n as a parameter and returns an
n × n magic square.

8.2.11. A two-dimensional grid can also be stored as a dictionary in which the keys are
tuples representing grid positions. For example, the small grid

[ [0, 1],
[1, 1] ]

would be stored as the following dictionary:

{ (0, 0): 0,
(0, 1): 1,
(1, 0): 1,
(1, 1): 1 }

Rewrite the Game of Life program on the book website so that it stores the grid
in this way instead. The following four functions will need to change: emptyGrid,
initialize, neighborhood, and life.

8.3 DIGITAL IMAGES
Digital photographs and other images are also “flat” two-dimensional objects that
can be manipulated with the same techniques that we discussed in previous sections.
A digital image is a two-dimensional grid (sometimes called a bitmap) in which
each cell, called a pixel (short for “picture element”), contains a value representing
its color.

Colors
In a grayscale image, colors are limited to shades of gray. These shades are more
commonly referred to as levels of brightness or luminance, and in theory are repre-
sented by values between 0 and 1, 0 being black and 1 being white. As we briefly
explained in Tangent 2.1, each pixel in a color image can be represented by a (red,
green, blue), or RGB , tuple. Each component, or channel, of the tuple represents
the brightness of the respective color. The value (0,0,0) is black and (1,1,1) is
white. Values between these can represent any color in the spectrum. For example,
(0,0.5,0) is a medium green and (1,0.5,0) is orange. In practice, each channel is
represented by eight bits (one byte) or, equivalently, a value between 0 and 255. So
black is represented by (0,0,0) or

00000000 00000000 00000000 ,
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Tangent 8.3: Additive vs. subtractive color models

Colors in digital images are usually represented in one of two ways. In the text, we focus
on the RGB color model because it is the most common, especially for digital cameras
and displays. RGB is called an additive color model because the default “no color”
(0,0,0) is black, and adding all of the colors, represented by (255, 255, 255), is white. In
contrast, printers use a subtractive color model that “subtracts” from the brightness
of a white paper background by applying color. The most common subtractive color
model is CMY (short for “Cyan Magenta Yellow”). In CMY, the “no color” (0,0,0)
is white, and (255,255,255) combines cyan, magenta, and yellow at full intensities to
produce black. In practice, a black channel is added to the CMY color model because
black is so common in print, and combining cyan, magenta, and yellow to produce black
tends to be both imperfect and expensive in practice. The resulting four-color model is
called CMYK where K stands for “Key” or “blacK,” depending on who you ask.

Some color models also allow an alpha channel to specify transparency. An alpha value
of 0 means the color is completely transparent (i.e., invisible), 255 means it is opaque,
and values in between correspond to degrees of translucency. Translucency effects are
implemented by combining the translucent color in the foreground with the background
color to an extent specified by the alpha channel. In other words,

displayed color = α ⋅ foreground color + (1 − α) ⋅ background color.

white is (255,255,255) or

11111111 11111111 11111111 ,

and orange is (255,127,0) or

11111111 01111111 00000000.

RGB is generally used for images produced by digital cameras and viewed on a
screen. Another encoding, called CMYK is used for print. See Tangent 8.3 for details.

Reflection 8.13 If we use eight bits to represent the intensity of each channel, can we still
represent any color in the spectrum? If not, how many different colors can we represent?

Using eight bits per channel, we cannot represent the continuous range of values
between 0 and 1 that would be necessary to represent any color in the spectrum. In
effect, we are only able to represent 254 values between 0 and 1: 1/255, 2/255, . . . ,
254/255. This is another example of how some objects represented in a computer
are limited versions of those existing in nature. Looking at it another way, by using
8 bits per channel, or 24 bits total, we can represent 224 = 16,777,216 distinct colors.
The good news is that, while this does not include all the colors in the spectrum, it
is greater than the number of colors distinguishable by the human eye.

Reflection 8.14 Assuming eight bits are used for each channel, what RGB tuple represents
pure blue? What tuple represents purple? What color is (0,128,128)?

Bright blue is (0,0,255) and any tuple with equal parts red and blue, for example
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(128, 0, 128) is a shade of purple. The tuple (0, 128, 128), equal parts medium green
and medium blue, is teal.

The digital images produced by digital cameras can be quite large. For example,
some high end cameras can produce an image that is 6720 pixels wide and 4480
pixels high, and therefore contains a total of 6720 × 4480 = 30,105,600 pixels. At one
byte per pixel, a grayscale image of this size would require about 28.7 MB of storage.
A 6720 by 4480 color image requires 6720 × 4480 × 3 = 90,316,800 bytes, or about
86.1 MB, of storage. In practice, color image files are compressed to take up much
less space. (See Tangent 8.4.)

Image filters
To illustrate some basic image processing techniques, let’s consider how we can
produce a grayscale version of a color image. An operation such as this is known as
an image filter algorithm. Photo-editing software typically includes several different
image filters for enhancing digital photographs.

To change an image to grayscale, we need to convert every color pixel (an RGB tuple)
to a gray pixel with similar brightness. A white pixel (RGB color (255, 255, 255)) is
the brightest, so we would map this to a grayscale brightness of 255 while a black
pixel (RGB color (0,0,0)) is the least bright, so we would map this to a grayscale
brightness of 0.

Reflection 8.15 How can we compute the brightness of a color pixel in general?

Consider the RGB color (250,50,200). The red and blue channels of this color
contribute a lot of brightness to the color while the green channel does not. To
estimate the overall brightness, we can simply average the three values. In this case,
(250 + 50 + 200)/3 ≈ 167. In RGB, any tuple with equal parts red, green, and blue
will be a shade of gray. Therefore, we can encode this shade of gray in RGB with
the tuple (167,167,167). A function to perform this conversion is straightforward:

def color2gray(color):
"""Convert a color to a shade of gray.

Parameter:
color: a tuple representing an RGB color

Return value: a tuple representing an equivalent gray
"""

brightness = (color[0] + color[1] + color[2]) // 3
return (brightness, brightness, brightness)

The parameter color is a three-element tuple of integers between 0 and 255. The
function computes the average of the three channels and returns a tuple representing
a shade of gray with that brightness.
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Tangent 8.4: Image storage and compression

Digital images are stored in a variety of file formats. Three of the most common are
BMP, GIF, and JPEG. The technical details of each format can be quite complex, so
we will just highlight the key differences, advantages, and disadvantages.

All image files begin with a short header that contains information about the dimensions
of the image, the number of bits that are used to encode the color of each pixel (usually
24), and other format-specific characteristics. The header is followed by information
about the actual pixels. In a BMP (short for “BitMaP”) file, the pixels are simply
stored row by row, starting from the bottom left corner (upside down). Assuming 24-bit
color, the size of a BMP file is roughly three bytes per pixel. For example, the 300× 200
pixel color image in Figure 8.4 requires about 300 ⋅ 200 ⋅ 3 = 180,000 bytes ≈ 180 KB in
BMP format.

GIF (short for “Graphics Interchange Format”) files try to cut down on the amount of
memory required to store an image in two ways. First, rather than store the actual color
of each pixel individually, GIF files encode each pixel with an 8-bit index into a table of
28 = 256 image-dependent colors. Second, GIF files compress the resulting pixel data
using the Lempel-Ziv-Welch (LZW) data compression algorithm (see Tangent 6.2). This
compression algorithm is lossless, meaning that the original data can be completely
recovered from the compressed data, resulting in no loss of image quality. So the size
of a GIF file is typically less than one byte per pixel. The color image in Figure 8.4
requires about 46 KB in GIF format.

JPEG (short for “Joint Photographic Experts Group,” the name of the group that
created it) files use a lossy compression algorithm to further cut down on their size.
“Lossy” means that information is lost from the original image. However, the lossy
compression algorithm used in JPEG files selectively removes characteristics that are
less noticeable to the naked eye, resulting in very little noticeable difference in quality.
The color image in Figure 8.4 requires about 36 KB in JPEG format.

To apply this transformation to an entire image, we need to iterate over the positions
of all of the pixels. Since an image is a two-dimensional object, we can process its
pixels row by row as we did in the previous section:

for r in range(rows):
for c in range(columns):

# process the pixel at position (r, c)

To be consistent with the language typically used in image processing, we will use
different names for the variables, however. Rather than referring to the size of an
image in terms of rows and columns, we will use height and width. And we will
use x and y (with (0,0) in the top left corner) to denote the horizontal and vertical
positions of a pixel instead of the row and column numbers. So the following is
equivalent to the nested loop above:

for y in range(height):
for x in range(width):

# process the pixel at coordinates (x, y)
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The standard Python module for displaying images (and creating graphical interface
elements like windows and buttons) is called tkinter (This name is short for “Tk
interface.” Tk is a widely used graphical programming package that predates Python;
tkinter provides an “interface” to Tk.) Because simple image manipulation in
tkinter is slightly more complicated than we would like, we will interact with
tkinter indirectly through a simple class named Image. The Image class is available
in the module image.py on the book website. Download this file and copy it into
the same folder as your programs for this section.

The following program illustrates how to use the Image class to read a digital image
file, iterate over its pixels, and produce a new image that is a grayscale version of
the original. Each of the methods and functions below is described in Appendix A.8.

import image

def grayscale(photo):
"""Convert a color image to grayscale.

Parameter:
photo: an Image object

Return value: a new grayscale Image object
"""

width = photo.width()
height = photo.height()
newPhoto = image.Image(width, height, title = 'Grayscale image')
for y in range(height):

for x in range(width):
color = photo.get(x, y)
newPhoto.set(x, y, color2gray(color))

return newPhoto

def main():
penguin = image.Image(file = 'penguin.gif', title = 'Penguin')
penguinGray = grayscale(penguin)
penguin.show()
penguinGray.show()
image.mainloop()

main()

Let’s look at the grayscale function first. The lone parameter named photo is
the Image object that we want to turn to grayscale. The first two statements
in the function call the width and height methods of photo to get the image’s
dimensions. Then the third statement creates a new, empty Image object with the
same dimensions. This will be our grayscale image. Next, we iterate over all of the
pixels in photo. Inside the nested loop, we call the get method to get the color of
the pixel at each position (x,y) in photo. The color is returned as a three-element
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Figure 8.4 The original image of a penguin and the grayscale version.

tuple of integers between 0 and 255. Next, we set the pixel at the same position in
newPhoto to the color returned by the color2gray function that we wrote above.
Once the nested loop has finished, we return the grayscale photo.

In the main function, we create an Image object named penguin from a GIF file
named penguin.gif that can be found on the book website. (GIF is a common image
file format; see Tangent 8.4 for more about image files.) We then call the grayscale

function with penguin, and assign the resulting grayscale image to penguinGray.
Finally, we display both images in their own windows by calling the show method of
each one. The mainloop function at the end causes the program to wait until all of
the windows have been closed before it quits the program. The results are shown in
Figure 8.4.

This simple filter is just the beginning; we leave several other fun image filters as
exercises. If you would like to save any of your creations, you can do so with the
save method. For example, to save the final penguinGray image above, call

penguinGray.save('gray penguin.gif')

Transforming images
There are, of course, many other ways we might want to transform an image. For
example, we commonly need to rotate landscape images 90 degrees clockwise. This
is illustrated in Figure 8.5. From the figure, we notice that the pixel in the corner at
(0,0) in the original image needs to be in position (h − 1,0) after rotation. Similarly,
the pixel in the corner at (w−1,0) needs to be in position (h−1,w−1) after rotation.
The transformations for all four corners are shown below.

Before After

(0,0) ⇒ (h − 1,0)
(w − 1,0) ⇒ (h − 1,w − 1)
(w − 1,h − 1) ⇒ (0,w − 1)
(0,h − 1) ⇒ (0,0)
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(0,0)
(0,0)

(w−1,0)

(0,h−1) (w−1,h−1)
(h−1,w−1)

(h−1,0)

(0,w−1)

Figure 8.5 Rotating an image 90 degrees clockwise. After rotation, the corners with

the same colors should line up. The width and height of the image are represented

by w and h, respectively.

Reflection 8.16 Do you see a pattern in these transformations? Use this pattern to infer
a general rule about where each pixel at coordinates (x,y) should be in the rotated image.

The first thing to notice is that the width and height of the image are swapped, so
the x and y coordinates in the original image need to be swapped in the rotated
image. However, just swapping the coordinates leads to the mirror image of what
we want. Notice that the y coordinate of each rotated corner is the same as the x
coordinate of the corresponding original corner. But the x coordinate of each rotated
corner is h − 1 minus the y coordinate of the corresponding corner in the original
image. So we want to draw each pixel at (x,y) in the original image at position
(h− 1− y, x) in the rotated image. The following function does this. Notice that it is
identical to the grayscale function, with the exceptions of parts of two statements
in red.

def rotate90(photo):
"""Rotate an image 90 degrees clockwise.

Parameter:
photo: an Image object

Return value: a new rotated Image object
"""

width = photo.width()
height = photo.height()
newPhoto = image.Image(height, width, title = 'Rotated image')
for y in range(height):

for x in range(width):
color = photo.get(x, y)
newPhoto.set(height - y - 1, x, color)

return newPhoto

Let’s look at one more example, and then we will leave several more as exercises.

Copyright Taylor and Francis, 2021



360 � 8 Flatland

Figure 8.6 Reducing an image by one quarter.

Suppose we want to reduce the size of an image to one quarter of its original size. In
other words, we want to reduce both the width and height by half. In the process,
we are obviously going to lose three quarters of the pixels. Which ones do we throw
away? One option would be to group the pixels of the original image into 2×2 blocks
and choose the color of one of these four pixels for the corresponding pixel in the
reduced image, as illustrated in Figure 8.6. This is accomplished by the following
function. Again, it is very similar to the previous functions.

def reduce(photo):
"""Reduce an image to one quarter of its size.

Parameter:
photo: an Image object

Return value: a new reduced Image object
"""

width = photo.width()
height = photo.height()
newPhoto = image.Image(width // 2, height // 2, title = 'Reduced')
for y in range(0, height, 2):

for x in range(0, width, 2):
color = photo.get(x, y)
newPhoto.set(x // 2, y // 2, color)

return newPhoto

Although this works, a better option would be to average the three channels of the
four pixels in the block, and use this average color in the reduced image. This is left
as an exercise.

Once we have filters like this, we can combine them in any way we like. For example,
we can create an image of a small, upside down, grayscale penguin:
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def main():
penguin = image.Image(file = 'penguin.gif', title = 'Penguin')
penguinSmall = reduce(penguin)
penguinGray = grayscale(penguinSmall)
penguinRotate1 = rotate90(penguinGray)
penguinRotate2 = rotate90(penguinRotate1)
penguinRotate2.show()
image.mainloop()

By implementing some of the additional filters in the exercises below, you can devise
many more fun creations.

Exercises
8.3.1. Real grayscale filters take into account how different colors are perceived by

the human eye. Human sight is most sensitive to green and least sensitive to
blue. Therefore, for a grayscale filter to look more realistic, the intensity of the
green channel should contribute the most to the grayscale luminance and the
intensity of the blue channel should contribute the least. The following formula
is a common way to weigh these intensities:

luminance = 0.2126 ⋅ red + 0.7152 ⋅ green + 0.0722 ⋅ blue

Modify the color2gray function in the text so that it uses this formula instead.

8.3.2* The colors in an image can be made “warmer” by increasing the yellow tone. In
the RGB color model, this is accomplished by increasing the intensities of both
the red and green channels. Write a function that returns an Image object that
is warmer than the original by some factor between -1 and 1 that is passed as a
parameter. If the factor is positive, the image should be made warmer; if the
factor is negative, it should be made less warm.

8.3.3. The colors in an image can be made “cooler” by increasing the intensity of the
blue channel. Write a function that returns an Image object that is cooler than
the original by some factor between -1 and 1 that is passed as a parameter. If
the factor is positive, the image should be made cooler; if the factor is negative,
it should be made less cool.

8.3.4. The overall brightness in an image can be adjusted by increasing the intensity
of all three channels. Write a function that returns an Image object that is
brighter than the original by some factor between -1 and 1 that is passed as a
parameter. If the factor is positive, the image should be made brighter; if the
factor is negative, it should be made less bright.

8.3.5. A negative image is one in which the colors are the opposite of the original. In
other words, the intensity of each channel is 255 minus the original intensity.
Write a function that returns an Image object that is the negative of the original.

8.3.6* Write a function that returns an Image object that is a horizontally flipped
version of the original. Put another way, the image should be reflected along an
imaginary vertical line drawn down the center. See the example on the left of
Figure 8.7.
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Figure 8.7 Horizontally flipped and mirrored versions of the original penguin image

from Figure 8.4.

8.3.7. Write a function that returns an Image object with left half the same as the
original but with right half that is a mirror image of the original. (Imagine
placing a mirror along a vertical line down the center of an image, facing the
left side.) See the example on the right of Figure 8.7.

8.3.8* In the text, we wrote a function that reduced the size of an image to one quarter
of its original size by replacing each 2 × 2 block of pixels with the pixel in the
top left corner of the block. Now write a function that reduces an image by the
same amount by instead replacing each 2 × 2 block with a pixel that has the
average color of the pixels in the block.

8.3.9. An image can be blurred by replacing each pixel with the average color of its
eight neighbors. Write a function that returns a blurred version of the original.

8.3.10. An item can be further blurred by repeatedly applying the blur filter you wrote
above. Write a function that returns a version of the original that has been
blurred any number of times.

8.3.11. Write a function that returns an image that is a cropped version of the original.
The portion of the original image to return will be specified by a rectangle, as
illustrated below.

The function should take in four additional parameters that specify the (x,y)
coordinates of the top left and bottom right corners (shown above) of the crop
rectangle.
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8.4 SUMMARY AND FURTHER DISCOVERY
As we saw in the previous chapter, a lot of data is naturally stored in two-dimensional
tables. So it makes sense that we would also want to store this data in a two-
dimensional structure in a program. We discussed two ways to do this. First, we
can store the data in a list of lists in which each inner list contains one row of data.
Second, in Exercises 8.1.6 and 8.2.11, we looked at how two-dimensional data can
be stored in a dictionary. The latter representation has the advantage that it can be
searched efficiently, if the data has an appropriate key.

Aside from storing data, two-dimensional structures have many other applications.
Two-dimensional cellular automata are widely used to model a great variety of
phenomena. The Game of Life is probably the most famous, but cellular automata
can also be used to model actual cellular systems, pigmentation patterns on sea shells,
climate change, racial segregation (Project 8.1), ferromagnetism (Project 8.2), and to
generate pseudorandom numbers. Digital images are also stored as two-dimensional
structures, and image filters are simply algorithms that manipulate these structures.

Notes for further discovery
The chapter epigraph is from Flatland: A Romance of Many Dimensions, written
by Edwin A. Abbott in 1884 [1].

If you are interested in learning more about cellular automata, or emergent systems in
general, we recommend Turtles, Termites, and Traffic Jams by Mitchell Resnick [53]
and Emergence by Steven Johnson [28] as good places to start. Also, we recommend
Agent-Based Models by Nigel Gilbert [19] if you would like to learn more about using
cellular automata in the social sciences. Biological Computation by Ehud Lamm and
Ron Unger [34] is about using biologically-inspired computational techniques, such
as cellular automata, genetic algorithms and artificial neural networks, to solve hard
problems.

*8.5 PROJECTS
This section is available on the book website.
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