
C H A P T E R 6

Text, Documents, and DNA

So, here’s what I can say: the Library of Congress has more than 3 petabytes of digital
collections. What else I can say with all certainty is that by the time you read this, all the
numbers—counts and amount of storage—will have changed.

Leslie Johnston, former Chief of Repository Development, Library of Congress
Blog post (2012)

The roughly 2000 sequencing instruments in labs and hospitals around the world can
collectively sequence 15 quadrillion nucleotides per year, which equals about 15 petabytes
of compressed genetic data. A petabyte is 250 bytes, or in round numbers, 1000 terabytes.
To put this into perspective, if you were to write this data onto standard DVDs, the resulting
stack would be more than 2 miles tall. And with sequencing capacity increasing at a rate of
around three- to fivefold per year, next year the stack would be around 6 to 10 miles tall. At
this rate, within the next five years the stack of DVDs could reach higher than the orbit of
the International Space Station.

Michael C. Schatz and Ben Langmead
The DNA Data Deluge (2013)

Data has become a disruptive force not only in business but also in a broad swath
of academic inquiry. Some literary scholars have embraced a new research mode

known as “distant reading” in which they seek new insights through computational
analyses of entire corpora from growing digital libraries. Similarly, many historians
and political scientists are now conducting research in vast digital archives maintained
by governments, universities, and nonprofits. In the biological and medical sciences,
major advances are being driven by computational analyses of genomic data. The
list could go on and on. Despite the variety of application areas however, much of
this data shares a common underlying format. In this chapter, we will look at how
this textual data are represented in a computer, how to access them from both files

221

Copyright Taylor and Francis, 2021

222 � 6 Text, Documents, and DNA

and the web, and how to algorithmically process and analyze them to extract useful
information.

6.1 FIRST STEPS
In this section, we will finish the reading level problem that we started in Chapter 1
and, in the process, introduce some first steps in text analyses. You may recall that,
in Figure 1.4, we decomposed the reading level problem into three main subproblems,
and then decomposed those subproblems further until we arrived at four unique
leaves: computing the Flesch-Kincaid formula, computing the number of syllables in
a word, and counting the number of words and sentences in a text. We were able
to write a function pretty easily for the first of these subproblems and we wrote an
algorithm in pseudocode for the second. We will focus in this section on the last two
subproblems.

Counting words and sentences are special cases of a problem called tokenization .
A token is defined to be the basic unit of interest in a text, and tokenization is the
problem of producing a list of all of the tokens in the text. Usually tokens are words
or sentences, but they could also be numbers in a data file or individual characters
in a DNA sequence; it depends on the context. Tokenization is also the first step
in interpreting or compiling a program. In Python, tokens are names, keywords,
literals, operators, delimiters, the newline character, and indentation characters.

Defining what words and sentences are is thornier than it seems. Normally, we can
identify words in an English language text because they are separated by spaces
or punctuation. But there are always exceptions. For example, what are the rules
delimiting words and sentences in the following?

“It’s-a me—Mario!”

It’s 8:43 a.m. and I am typing from 140.141.132.1.

To keep things manageable, we will get words by simply splitting the text at runs of
one or more whitespace characters (spaces, tabs, and newlines). When we tokenize
sentences, we will split at runs of end punctuation marks (., ?, !).

Before text is analyzed, it is often simplified by removing superficial differences
between words that should be considered equivalent (e.g., The and the, 10a.m. and
10AM), a process called normalization . Before we perform word tokenization,
we will normalize the text by making it all lowercase and removing punctuation.
(When we tokenize sentences, we will not want to remove end punctuation marks.)
Normalization can also involve spelling correction, removing plurals and other suffixes
(called stemming), standardizing verb tense (called lemmatization), and removing
common words (called stop words).

The texts that we analyze will be stored as strings. You’ll recall that a string is a
sequence of characters, and a string constant (also called a string literal) is enclosed

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 223

WORD COUNT

TOKENIZE

REMOVE PUNCTUATION

SPLIT INTO WORDS

LOWER CASE

NORMALIZE

Figure 6.1 Functional decomposition tree for the Word Count problem.

in either single quotes (') or double quotes ("). For example, consider the following
string, with spaces () shown explicitly:

>>> shortText = "This isn't long. But it'll do. \nJust a few sentences..."

Reflection 6.1 Why must this string be enclosed in double quotes rather than single
quotes?

According to our rules, the lists of word and sentence tokens in this text, after
normalization, should be:

['this', 'isnt', 'long', 'but', 'itll', 'do', 'just', 'a', 'few', 'sentences']

and

["This isn't long.", "But it'll do.", 'Just a few sentences.']

Recall that lists are delimited by square brackets ([]) and items are separated by
commas. So these lists contain ten and three string items, respectively. Once we
have lists of tokens like these, the lengths of the lists will give us the outputs for the
word count and sentence count algorithms.

This discussion suggests the functional decomposition of the Word Count problem
shown in Figure 6.1. As usual, we will start at the bottom of the decomposition tree
and work our way up.

Normalization
Strings, like turtles, are objects. So the string class, called str, is another example
of an abstract data type. Recall that an abstract data type hides the details of
how its data is stored, allowing a programmer to interact with it at a higher level
through methods. (As we will discuss in Section 6.3, strings are actually stored as
sequences of bytes.) One of many methods available for the str class1 will solve the

1For a list, see Appendix A.6.

Copyright Taylor and Francis, 2021

224 � 6 Text, Documents, and DNA

Tangent 6.1: Natural language processing

Researchers in the field of natural language processing seek to not only search and
organize text, but to develop algorithms that can “understand” and respond to it, in
both written and spoken forms. For example, Google Translate (http://translate.
google.com) performs automatic translation from one language to another in real time.
The “virtual assistants” that are becoming more prevalent on commercial websites seek
to understand your questions and provide useful answers. Cutting edge systems seek
to derive an understanding of immense amounts of unstructured data available on the
web and elsewhere to answer open-ended questions. If these problems interest you, you
might want to look at http://www.nltk.org to learn about the Natural Language
Toolkit (NLTK), a Python module that provides tools for natural language processing.
An associated book is available at http://nltk.org/book .

subproblem in the leftmost leaf in our decomposition tree. As we did with Turtle

methods, we preface the name of the method with the name of the object to which
we want the method to apply:

>>> shortText.lower()
"this isn't long. but it'll do. \njust a few sentences..."

The lower method returns a new string in which all characters in a string are made
lowercase.

To remove punctuation characters, we could use the replace method. The following
example removes all periods from shortText.

>>> shortText.replace('.', '')
"This isn't long But it'll do \nJust a few sentences"

The replace method returns a new string in which all instances of its first argument
are replaced with its second argument. In this case, we passed in the empty string
'', consisting of zero characters, for the second argument, which in effect deletes all
instances of the first argument.

Notice that neither of these methods changed the value of shortText. Indeed, none
of the string methods do because strings are immutable , meaning that they cannot
be changed. Instead, string methods always create a new string with the desired
changes, leaving the original untouched.

To remove multiple punctuation characters from a text, we could call the replace

method repeatedly, each time overwriting the previous string:

>>> newText = shortText
>>> newText = newText.replace('.', '')
>>> newText = newText.replace("'", '')
>>> newText
'This isnt long But itll do \nJust a few sentences'

Copyright Taylor and Francis, 2021

http://translate.google.com
http://translate.google.com
http://www.nltk.org
http://nltk.org/book

6.1 FIRST STEPS � 225

In a function to remove all punctuation, we would need to repeatedly call the replace
method for every punctuation character, which is both tedious and inefficient.

Reflection 6.2 Why is this inefficient? Think about how the replace method must work
and how many times each character in the text must be examined.

The replace method must examine each character in the string, compare it to the
first argument, and then replace it with the second argument. So each time we
call replace we are performing another pass across the characters in the string.
Instead, we would like to make only one pass through the string and remove every
punctuation character during that one pass.

To do this, we iterate over the characters in a string with a for loop, just like we
iterated over integers in a range. For example, the following for loop iterates over
the characters in the string shortText and prints each one.

>>> for character in shortText:
print(character)

In each iteration of this loop, the next character in the string is assigned to the
index variable character. If we wanted to omit characters from being printed, we
would put the call to print inside an if statement:

>>> for character in shortText:
if character != '.' and character != "'":

print(character)

To adapt this technique to remove punctuation, we need to create a new, modified
string in the body of the loop. In general, to create a modified string (remember that
we cannot modify the original string), we need to iterate over each character of the
original string and, in each iteration, create a new string that is the concatenation of
the growing string from the previous iteration and the current character or something
else based on the current character. The following function implements the simplest
example of this idea, in which every character is concatenated to the end of the new
string, creating an exact duplicate of the original.

def copy(text):
"""Return a copy of text.

Parameter:
text: a string object

Return value: a copy of text
"""

1 newText = ''
2 for character in text:
3 newText = newText + character
4 return newText

This technique is really just another version of an accumulator, called a string
accumulator , conceptually similar to the list accumulators that we have been using

Copyright Taylor and Francis, 2021

226 � 6 Text, Documents, and DNA

for plotting. The trace table below illustrates how this works when text is 'abcd'.
Changes in values are highlighted in red.

Trace arguments: text = ’abcd’

Step Line newText character Notes
1 1 '' — newText is initialized to the empty string
2 2 '' 'a' character ← 'a'
3 3 'a' 'a' newText ← '' + 'a'

4 2 'a' 'b' character ← 'b'
5 3 'ab' 'b' newText ← 'a' + 'b'

6 2 'ab' 'c' character ← 'c'
7 3 'abc' 'c' newText ← 'ab' + 'c'

8 2 'abc' 'd' character ← 'd'
9 3 'abcd' 'd' newText ← 'abc' + 'd'

Return value: 'abcd'

In the first iteration, the first character in text, which is 'a', is assigned to
character. Then newText is assigned the concatenation of the current value
of newText and character, which is '' + 'a', or 'a'. In the second iteration,
character is assigned 'b', and newText is assigned the concatenation of newText
and character, which is 'a' + 'b', or 'ab'. This continues for two more iterations,
resulting in a value of newText that is identical to the original text.

To apply this technique to remove punctuation from a string, we simply prevent the
concatenation from taking place if character is a punctuation mark:

for character in text:
if character != '.' and character != "'": # and ... etc.

newText = newText + character

Reflection 6.3 What happens if we replace the and operator with or?

Adding in another test for every remaining punctuation character would be tedious
at best, but we can simplify if conditions like this using the in operator, which
evaluates to True if one string is contained inside another string. There is also a
not in operator that has the opposite effect. For example:

>>> 'b' in 'abcd'
True
>>> 'bg' in 'abcd'
False
>>> 'b' not in 'abcd'
False

To make this even more convenient, there are string literals in the string module
that contain all of the punctuation and whitespace characters:

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 227

>>> import string

>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
>>> string.whitespace

' \t\n\r\x0b\x0c'

Notice that two of the characters in string.punctuation—\' and \\—are preceded
by a backslash. The backslash (\) character, called the escape character , causes
the following character to be interpreted literally by the interpreter rather than as a
meaningful character in the Python language. Escaping the single quote character
allows it to be contained inside a string delimited by single quotes. The backslash
character is also escaped because of its special meaning as the escape character!
In string.whitespace, the first three characters are space, tab, and newline; the
others are less common forms of whitespace that will likely not concern us.

Combining these two simplifications, we have the following function:

import string

def removePunctuation(text):
"""Remove punctuation from a text.

Parameter:
text: a string object

Return value: a copy of text with punctuation removed
"""

newText = ''
for character in text:

if character not in string.punctuation:
newText = newText + character

return newText

Now we can use this function and the lower method to write normalize:

def normalize(text):
"""Normalize a text by making it lowercase and removing punctuation.

Parameter:
text: a string object

Return value: a normalized copy of text
"""

newText = text.lower()
newText = removePunctuation(newText)
return newText

Copyright Taylor and Francis, 2021

228 � 6 Text, Documents, and DNA

>>> normalize(shortText)
'this isnt long but itll do \njust a few sentences'

Tokenization
The next step, as we work our way up the decomposition tree in Figure 6.1, is to
write an algorithm to split a string into words at runs of whitespace characters.
There is actually a string method named split that can do this for us. When split

is given a string argument, it returns a list of strings that are separated by that
argument. But with no arguments, split returns a list of strings that are separated
by runs of whitespace:

>>> drSeuss = 'one fish two fish red fish blue fish'
>>> drSeuss.split('fish')
['one ', ' two ', ' red ', ' blue ', '']
>>> drSeuss.split()
['one', 'fish', 'two', 'fish', 'red', 'fish', 'blue', 'fish']

Although we could use this existing method, we are going to implement the function
from scratch instead. There are two reasons for this. First, the general technique will
be useful in similar situations that the split method cannot handle (e.g., splitting
sentences at runs of end punctuation). Second, it will be another good example
of how to use string accumulators, and of how to use string and list accumulators
together.

The idea in the algorithm is to use a string accumulator to build up a string containing
a word, as long as the character we are looking at is not whitespace. When we
encounter whitespace, marking the end of the word, we want to append the word to
a list of words and then reset the word to be an empty string to capture the next
word. In pseudocode, a first draft of this algorithm can be expressed as follows.

Algorithm Split into words – Draft

Input: text
1 word list ← an empty list
2 word ← an empty string
3 repeat for each character in text:
4 if character is not whitespace:
5 word ← word + character
6 else:
7 append word to the end of word list
8 word ← an empty string

Output: word list

Notice how, in each iteration of the loop, we are either adding a character to the
word or adding a word to the list. The equivalent Python function is very similar:

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 229

0 def splitIntoWords_Draft(text):
1 wordList = []
2 word = ''
3 for character in text:
4 if character not in string.whitespace:
5 word = word + character
6 else:
7 wordList.append(word)
8 word = ''
9 return wordList

Let’s test our function by tracing its execution on the simple string 'i am'.

Trace arguments: text = ’i am’

Step Line wordList word character Notes
1 1 [] — — wordList ← an empty list
2 2 [] '' — word ← an empty string
3 3 [] '' 'i' character ← 'i'
4 4 [] '' 'i' condition is true; execute line 5
5 5 [] 'i' 'i' word ← '' + 'i'

6 3 [] 'i' ' ' character ← ' '
7 4 [] 'i' ' ' condition is false; execute line 7
8 7 ['i'] 'i' ' ' append 'i' to wordList
9 8 ['i'] '' ' ' word ← an empty string
10 3 ['i'] '' 'a' character ← 'a'
11 4 ['i'] '' 'a' condition is true; execute line 5
12 5 ['i'] 'a' 'a' word ← '' + 'a'

13 3 ['i'] 'a' 'm' character ← 'm'
14 4 ['i'] 'a' 'm' condition is true; execute line 5
15 5 ['i'] 'am' 'm' word ← 'a' + 'm'

Return value: ['i']

Reflection 6.4 Why wasn’t the last word appended to the list? How do we fix the
algorithm so that it is?

If there had happened to be another space at the end of text, this would have
prompted the algorithm to append 'am'. But there wasn’t, so it didn’t. To fix this,
we need to check after the loop if there is a final word remaining to be appended
and, if so, append it:

if word != '':
wordList.append(word)

There is also a more subtle issue with our algorithm. If there happen to be consecu-
tive whitespace characters in text, then lines 7–8 will be executed in consecutive
iterations, causing empty strings to be appended to wordList. For example, calling
the function with

splitIntoWords_Draft('i am it ')

Copyright Taylor and Francis, 2021

230 � 6 Text, Documents, and DNA

will return the list ['i', '', 'am', '', '', 'it']. To prevent this, we only want
to execute the else clause for the first whitespace character in a run of whitespace.

Reflection 6.5 If the value of character is whitespace, how can we tell if it is the first
in a sequence of whitespace characters? (Hint: if it is the first whitespace, what must the
previous character not be?)

If the value of character is a whitespace character, we know it is the first in a
sequence if the previous character was not whitespace. So we need to replace the
else with an elif statement that allows lines 7–8 to execute only if the previous
character was not whitespace.

These two fixes are reflected in our updated algorithm below.

Algorithm Split into words

Input: text
1 word list ← an empty list
2 word ← an empty string
3 repeat for each character in text:
4 if character is not whitespace:
5 word ← word + character
6 else if the previous character was not also whitespace:
7 append word to the end of word list
8 word ← an empty string
9 if word is not an empty string:

10 append word to the end of word list
Output: word list

In our Python function, there isn’t a way to refer to the “previous character” without
explicitly keeping track of it. So we need to save the current value of character in
a new variable prevCharacter at the end of each iteration so it is available when
character is updated in the next iteration. The final function, with new parts
highlighted, looks like this:

def splitIntoWords(text):
"""Split a text into words.

Parameter:
text: a string object

Return value: the list of words in the text
"""

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 231

wordList = []
prevCharacter = ' '
word = ''
for character in text:

if character not in string.whitespace:
word = word + character

elif prevCharacter not in string.whitespace:
wordList.append(word)
word = ''

prevCharacter = character

if word != '':
wordList.append(word)

return wordList

Reflection 6.6 What happens if we do not initialize prevCharacter before the loop?
Why did we initialize prevCharacter to a space? Does its initial value matter?

To answer this question, let’s consider two possibilities for the value assigned to
character in the first iteration of the loop. First, suppose character is not a
whitespace character. Then the if condition will be true and the elif condition will
not be tested, so the initial value of prevCharacter does not matter. On the other
hand, if the first value assigned to character is a whitespace character, then the if

condition will be false and the elif condition will be checked. But we want to make
sure that the elif condition is false so that an empty string is not inappropriately
appended to the list of words. Setting prevCharacter to a space initially will prevent
this from happening.

Now that we have both the normalize and splitIntoWords functions, we can easily
write a tokenization function:

def wordTokens(text):
"""Break a text into words with punctuation removed.

Parameter:
text: a string object

Return value: a list of word tokens
"""

newText = normalize(text)
tokens = splitIntoWords(newText)

return tokens

And now the wordCount function is even easier. The only new thing we need is
the len function, which returns the length of its argument. When applied to lists,
it returns the number of items in the list. When applied to strings, it returns the
number of characters in the string:

Copyright Taylor and Francis, 2021

232 � 6 Text, Documents, and DNA

>>> len('i am it')
7
>>> len(['i', 'am', 'it'])
3

So the wordCount function simply gets a list of words from wordTokens and then
returns the length of that list.

def wordCount(text):
"""Count the number of words in a string.

Parameter:
text: a string object

Return value: the number of words in text
"""

words = wordTokens(text)
return len(words)

Creating your own module
The five functions that we wrote in this section will be very useful in the future, so
let’s package them into our own module that we can import. A module is just a
Python program that is ready to be imported. First, if you haven’t already, create a
new file that contains the five functions that we wrote in this section and name it
textlib.py.2 It should look like this (with the function bodies present, of course):

import string

def removePunctuation(text):
body omitted

def normalize(text):
body omitted

def splitIntoWords(text):
body omitted

def wordTokens(text):
body omitted

def wordCount(text):
body omitted

def main():
body omitted

if __name__ == '__main__':
main()

2lib is short for “library.” This is a common naming convention for modules (e.g., matplotlib).

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 233

When a module is imported, all of the code in the module is executed, so we generally
only want a module to contain function definitions, and perhaps some assignments
of values to constants, but no function calls. To make a module dual-purpose—
to be able to be executed on its own and be imported—we need to be able to
differentiate between the two situations and only call main if the module is not
being imported. This is accomplished by checking the value of __name__ in the if

statement before calling main. As we saw back in Section 2.6, __name__ is assigned
the value '__main__' if the module is executed directly by the Python interpreter.
(If our module textlib.py is imported instead, then __name__ will be assigned
the value 'textlib'.) So now if we run our module directly in IDLE, main will be
executed, but if we import it instead, it won’t.

Testing your module
Finally, let’s test the module more completely using the techniques from the previous
chapter. We will implement our tests in a new file named test_textlib.py with
the following structure:

from textlib import *

def test_removePunctuation():
tests of removePunctuation here

print('Passed all tests of removePunctuation!')

def test_normalize():
tests of normalize here

print('Passed all tests of normalize!')

def test_splitIntoWords():
tests of splitIntoWords here

print('Passed all tests of splitIntoWords!')

def test_wordTokens():
tests of wordTokens here

print('Passed all tests of wordTokens!')

def test_wordCount():
tests of wordCount here

print('Passed all tests of wordCount!')

def test():
test_removePunctuation()
test_normalize()
test_splitIntoWords()
test_wordTokens()
test_wordCount()

test()

Copyright Taylor and Francis, 2021

234 � 6 Text, Documents, and DNA

Save this program in the same folder as textlib.py so that the import statement
can find the module.

The first line of the test program imports all of the functions from textlib.py into
the global namespace of the test program. Recall from Section 2.6 that a normal
import statement creates a new namespace containing all of the functions from an
imported module. Instead, this form of the import statement imports functions
into the current namespace. The advantage is that we do not have to preface every
function call with the name of the module. If we wanted to only import some
functions, we could replace the * with a list of those to import.

Notice that the test program calls test() instead of individual unit test functions.
Besides being convenient, this technique has the advantage that, when we test new
functions, we also re-test previously tested functions. If we make changes to any one
function in a program, we want to both make sure that this change worked and make
sure that we have not inadvertently broken something that was working earlier. This
idea is called regression testing because we are making sure that our program
has not regressed to an earlier error state.

Exercise 6.1.19 below asks you to complete these unit tests. Then exercises 6.1.20–
6.1.26 challenge you to write functions for the remaining subproblems in Figure 1.4
and add them to your textlib.py module. With this complete module, you will be
able to compute the Flesch-Kincaid reading level of any text!

In the next section, we will see how to read an entire text file or web page into
a string so that you can use your module to compute the reading levels of actual
books. In the next chapter, we will use your module to, among other things, analyze
the relative frequencies of all the words and word bigrams in a text.

Exercises
Write a function for each of the following problems. Test each function with both common
and boundary case arguments, and document your test cases.

6.1.1* The string method count returns the number of occurrences of a string in
another string. For example, shortText.count('is') would return 2. Write a
function

vowels(word)

that uses the count method to return the number of vowels in the string word.
(Note that word may contain upper and lowercase letters.)

6.1.2. Write a function

whitespace(text)

that uses the count method to return the number of whitespace characters
(spaces, tabs, and newlines) in the string text.

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 235

6.1.3* Write a function

underscore(sentence)

that uses the replace string method to return a version of the string sentence

in which all the spaces have been replaced by the underscore (_) character.

6.1.4. Write a function

nospaces(sentence)

that uses the replace string method to return a version of the string sentence

in which all the spaces have been removed.

6.1.5. Write a function

txtHelp(txt)

that returns an expanded version of the string txt, which may contain texting
abbreviations like “brb” and “lol.” Your function should expand at least four dif-
ferent texting abbreviations. For example, txtHelp('imo u r lol brb') might
return the string 'in my opinion you are laugh out loud be right back'.

6.1.6* Write a function

letters(text)

that prints the characters of the string text, one per line. For example
letters('abc') should print

a
b
c

6.1.7* Write a function

countCharacter(text, letter)

that returns the number of occurrences of the one-character string named letter

in the string text, without using the count method. (Use a for loop and an
accumulator instead.)

6.1.8. Write a function

vowels(word)

that returns the same result as Exercise 6.1.1 without using the count method.
(Use a for loop instead.)

6.1.9. Write a function

replacePunctuation(text)

that uses a for loop to return a modified version of the string text in which all
punctuation characters are replaced by spaces.

6.1.10* Write a function

underscore(sentence)

that returns the same result as Exercise 6.1.3 without using the replace method.

6.1.11. Write a function

nospaces(sentence)

that returns the same result as Exercise 6.1.4 without using the replace method.

Copyright Taylor and Francis, 2021

236 � 6 Text, Documents, and DNA

6.1.12. Write a function

noVowels(text)

that returns a version of the string text with all the vowels removed.
For example, noVowels('this is an example.') should return the string
'ths s n xmpl.'.

6.1.13. Write a function

daffy(word)

that returns a string that has Daffy Duck’s lisp added to it (Daffy
would pronounce the ’s’ sound as though there was a ’th’ after it).
For example, daffy("That's despicable!") should return the string
"That'sth desthpicable!".

6.1.14. Write a function

reverse(text)

that returns a copy of the string text in reverse order.

6.1.15. Create a modified version of the splitIntoWords function that just counts the
words instead of appending them to a list. Your function should return the word
count and should not use a list variable.

6.1.16. Write a function

split(text, splitCharacters)

that generalizes the splitIntoWords function so that it splits text at any of
the characters, or runs of any of the characters, in the string splitCharacters.
For example, split('the best of times', 'sei') should return the list
['th', ' b', 't of t', 'm'].

6.1.17* Show how the wordCount function can be shortened to a single line by composing
functions.

6.1.18. Show how the wordTokens function can be shortened to a single line by com-
posing functions.

6.1.19. Test the five functions we developed in this section by completing the
test_textlib.py program.

The following seven exercises ask you to write the remaining functions in the reading
level problem. To guide you, Figure 6.2 shows how data flows between algorithms for the
subproblems in Figure 1.4. Consistent with prior diagrams, problem inputs are shown entering
on the left and outputs are shown exiting on the right. Values exiting nodes from the bottom
are being sent to subproblems a level below as inputs, and the outputs of subproblems are
shown returning to the caller. Add each function that you write to your textlib module,
and design a unit test for the function in test_textlib.py.

6.1.20. Write a function that implements the final Syllable Count algorithm from page 16.
Lines 1–3 of the algorithm can together be implemented in a manner very similar
to the splitIntoWords function. The idea is to only increment the count if a
vowel is the first in a run of vowels. Here is a modified algorithm showing this
idea.

Copyright Taylor and Francis, 2021

6.1 FIRST STEPS � 237

AVERAGE WORDS PER SENTENCE AVERAGE SYLLABLES PER WORD

WORD COUNT SENTENCE COUNT TOTAL SYLLABLE COUNT WORD COUNT

SYLLABLE COUNT

READING LEVELtext reading level

text text

text
text

text

text

word

FLESCH KINCAID

average words, average syllables

Figure 6.2 Flows of inputs and outputs in the reading level problem from Figure 1.4.

Algorithm Syllable Count (Version 3)

Input: a word
1 count ← 0
2 repeat for each letter in word:
3 if letter is a vowel and the previous letter is not a vowel, then:
4 count ← count + 1
5 if word ends in e, then:
6 count ← count − 1

Output: count

The last character in the word can be examined with the string method
endswith:

if word.endswith('e'):
count = count - 1

Once you have written the syllableCount function, you can get the total
number of syllables in a text with the following function.

def totalSyllableCount(text):
wordList = wordTokens(text)
count = 0
for word in wordList: # iterate over each word in wordList

count = count + syllableCount(word)
return count

Add these two functions to textlib.py and test them thoroughly in
test_textlib.py.

6.1.21. Add the function

splitIntoSentences(text)

to your textlib module. The function should return the number of sentences
in the string text. This is very similar to the splitIntoWords function except

Copyright Taylor and Francis, 2021

238 � 6 Text, Documents, and DNA

that it splits at runs of end punctuation marks instead of whitespace. The
function should also omit all whitespace between sentences. (If it were not for this
requirement, you could use the generalized split function from Exercise 6.1.16.)

6.1.22. Add the function

sentenceTokens(text)

to your textlib module. The function should make the text lowercase and
then use your splitIntoSentences function from Exercise 6.1.21 to return the
list of sentence tokens in the text.

6.1.23. Add the function

sentenceCount(text)

to your textlib module. The function should use your sentenceTokens function
from Exercise 6.1.22 to return the number of sentences in the string text.

6.1.24. Add the function

averageWords(text)

to your textlib module. The function should use the wordCount function and
your sentenceCount function from Exercise 6.1.23 to return the average number
of words per sentence in the string text.

6.1.25. Add the function

averageSyllables(text)

to your textlib module. The function should use your totalSyllableCount

function from Exercise 6.1.20 and the wordCount function to return the average
number of syllables per word in the string text.

6.1.26. Finally, add the function

readingLevel(text)

to your textlib module. The function should use your averageWords and
averageSyllables functions from Exercises 6.1.24 and 6.1.25, and the
fleschKincaid function from page 90 to return the Flesch-Kincaid reading
level of the string text.

6.2 TEXT DOCUMENTS
To apply our text analysis functions to full-size texts, we need to be able to read
them from files stored on a hard drive or flash drive. Like everything else in a
computer system, files are stored as sequences of bits. But we interact with files as
electronic documents containing information such as text, spreadsheets, or images.
These abstractions are mediated by a part of the operating system called the file
system. The file system organizes files in folders in a hierarchical tree, such as in the
simplified view of a macOS file system in Figure 6.3.

The root of the tree is denoted by a forward slash / symbol. Below the root in
this figure is a folder named Users where every user of the computer has a home
folder labeled with his or her name, say george. This home folder contains several
subfolders, one of which is Documents. The two subfolders in Documents are named

Copyright Taylor and Francis, 2021

6.2 TEXT DOCUMENTS � 239

CS 111

rw.py

Documents

HIST 216

george Shared

UsersSystemLibraryApplications

Python 3.8

/

dna.py reading.py

Desktop Downloads

Figure 6.3 A Finder window in macOS and its partial tree representation.

CS 111 and HIST 216. We can represent the location of a file with the path one must
follow to get there from the root. For example, the path to reading.py, colored blue,
is /Users/george/Documents/CS\ 111/reading.py. Notice the backslash before
the space in CS\ 111; this is because spaces usually need to be escaped in pathnames.
Any path without the first forward slash is considered to be a relative path, relative
to the current working directory set by the operating system. For example, if the
current working directory were /Users/george/Documents, then reading.py could
be specified with the relative path CS\ 111/reading.py.

Reading from text files
In Python, we access files through an abstraction called a file object , which we
associate with a file with the open function. For example, the following statement

Copyright Taylor and Francis, 2021

240 � 6 Text, Documents, and DNA

associates the file object named textFile with the file named mobydick.txt in the
current working directory.3

textFile = open('mobydick.txt', 'r')

The second argument to open is the mode to use when working with the file; 'r'
means that we want to read from the file. If a file with that filename does not exist,
a FileNotFoundError exception will be raised. If necessary, you can proactively
determine in advance whether a file exists and can be read by using a couple of
functions from the os and os.path modules:

import os
import os.path

assert os.path.isfile(fileName), fileName + ' does not exist'
assert os.access(fileName, os.R_OK), fileName + ' cannot be read'

The value os.R_OK is telling the function to check whether Reading the file is OK.

The read method of a file object reads the entire contents of a file into a string. For
example, the following statement reads the entirety of mobydick.txt into a string
assigned to the variable text.

text = textFile.read()

When you are finished with a file, it is important to close it. This signals to the
operating system that you are done using it, and ensures that any memory allocated
to the file is released. To close a file, simply use the file object’s close method:

textFile.close()

Let’s look at an example that puts all of this together. The following function reads
a file with the given file name and returns the number of words in the file using our
wordCount function from the previous section. (Remember that you will have to
save the program containing this function in the same folder as textlib.py.)

import textlib

def wordCountFile(fileName):
"""Return the number of words in the file with the given name.

Parameter:
fileName: the name of a text file

Return value: the number of words in the file
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
text = textFile.read()
textFile.close()

return textlib.wordCount(text)

3Download from the book website or http://www.gutenberg.org/files/2701/2701-0.txt.

Copyright Taylor and Francis, 2021

http://www.gutenberg.org/files/2701/2701-0.txt

6.2 TEXT DOCUMENTS � 241

The optional encoding parameter to the open function indicates how the bits in the
file should be interpreted (we will discuss what UTF-8 is in Section 6.3).

Reflection 6.7 How many words are there in the file mobydick.txt?

Now suppose we want to print a text file, formatted with line numbers to the left of
each line. A “line” is defined to be a sequence of characters that end with a newline
character. To make this easier, rather than read the whole file in at once, we can read
it one line at a time. In the same way that we can iterate over a range of integers
or the characters of a string, we can iterate over the lines in a file. When we use
a file object as the sequence in a for loop, the index variable is assigned a string
containing each line in the file, one line per iteration. For example, the following
loop prints each line in the file object named textFile:

for line in textFile:
print(line)

In each iteration of this loop, line is assigned the next line in the file, which is then
printed in the body of the loop. We can easily extend this idea to a line-numbering
function:

def lineNumbers(fileName):
"""Print the contents of a file with line numbers added.

Parameter:
fileName: the name of a text file

Return value: None
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
count = 1
for line in textFile:

print('{0:<5} {1}'.format(count, line.rstrip()))
count = count + 1

textFile.close()

The lineNumbers function combines an accumulator with a for loop that reads
the text file line by line. After the file is opened, the accumulator variable count

is initialized to one. Inside the loop, each line is printed using a format string that
precedes the line with the current value of count. The rstrip() method removes
whitespace from the right end of the string. (There are also lstrip() and strip()

methods. See Appendix A.6.) At the end of the loop, the accumulator is incremented
and the loop repeats.

Reflection 6.8 What effect does the rstrip method have? What happens if you replace
line.rstrip() with just line?

Reflection 6.9 How would the output change if count was incremented before calling
print instead?

Copyright Taylor and Francis, 2021

242 � 6 Text, Documents, and DNA

Reflection 6.10 How many lines are there in the file mobydick.txt?

Writing to text files
We can also create new files or write to existing ones. To write text to a new file, we
first have to open it using 'w' (“write”) mode:

newTextFile = open('newfile.txt', 'w')

Opening a file in this way will create a new file named newfile.txt, if a file by
that name does not exist, or overwrite the file by that name if it does exist. (So
be careful!) To append to the end of an existing file, use the 'a' (“append”) mode
instead. Once the file is open, we can write text to it using the write method:

newTextFile.write('Hello.\n')

The write method does not write a newline character at the end of the string by
default, so we have to include one explicitly, as desired.

Remember to always close the new file when you are done.

newTextFile.close()

Closing a file to which we have written ensures that the changes have actually been
written to the drive. To improve efficiency, an operating system does not necessarily
write text out to the drive immediately. Instead, it usually waits until a sufficient
amount builds up, and then writes it all at once. Therefore, if you forget to close a
file and your computer crashes, your program’s last writes may not have actually
been written. (This is one reason why we sometimes have trouble with corrupted
files after a computer crash.)

The following function highlights how to modify the lineNumbers function so that
it writes the file with line numbers directly to another file instead of printing it.

def lineNumbersFile(fileName, newFileName):
"""Write the contents of a file to a new file with line numbers added.

Parameters:
fileName: the name of a text file
newFileName: the name of the output text file

Return value: None
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
newTextFile = open(newFileName, 'w')
count = 1
for line in textFile:

newTextFile.write('{0:<5} {1}\n'.format(count, line.rstrip()))
count = count + 1

textFile.close()
newTextFile.close()

Copyright Taylor and Francis, 2021

6.2 TEXT DOCUMENTS � 243

Reading from the web
We can also read text directly from the web using the urllib.request module. The
function urlopen returns a file object abstraction for a web page that is similar to
the one returned by open. The urlopen function takes a web page address, formally
known as a URL, or uniform resource locator , as a parameter. URLs normally begin
with the prefix http:// (http is short for hypertext transfer protocol).

Let’s download a book from Project Gutenberg (www.gutenberg.org), a vast repos-
itory of free classic literature. Mary Shelley’s Frankenstein, for example, can be
downloaded like this:

>>> import urllib.request as web

>>> webPage = web.urlopen('http://www.gutenberg.org/files/84/84-0.txt')
>>> rawBytes = webPage.read()

>>> webPage.close()

Behind the scenes, the Python interpreter communicates with a web server over
the Internet to read this web page. But thanks to the magic of abstraction, we did
not have to worry about any of those details. To find the URL for a different book,
search for it on Project Gutenberg’s web page and then find the link for the “Plain
Text UTF-8” version. After you click on the link, copy the URL and use it as the
argument to the urlopen function.

Because the urlopen function does not accept an encoding parameter, the read

function cannot tell how the text of the web page is encoded. Therefore, read returns
a bytes object instead of a string. A bytes object contains a sequence of raw bytes
that are not interpreted in any particular way. To convert the bytes object to a
string before we print it, we can use the decode method, as follows:

>>> text = rawBytes.decode('utf-8')

(Again, we will see what UTF-8 is in Section 6.3.) Now text refers to the entire
440 KB text of Frankenstein and can be used like any other string.

Reflection 6.11 Write a short program with these statements that uses your wordCount

function to find the number of words in Frankenstein. (You should get about 78,000.)

It’s worth noting that the vast majority of content on the web is not plain text like
this. Rather it is written in HTML (short for hypertext markup language), which is
the language that web browsers “understand.” To see what HTML looks like, try
this:

>>> webPage = web.urlopen('http://stibitz.denison.edu')
>>> rawBytes = webPage.read()

>>> rawBytes.decode('utf-8')

What you see printed is the HTML code for the main web page at this address.

Copyright Taylor and Francis, 2021

www.gutenberg.org

244 � 6 Text, Documents, and DNA

Exercises
6.2.1. If you implemented the readingLevel function in Exercise 6.1.26, write a

function

readingLevelFile(fileName)

that returns the Flesch-Kincaid reading level of the file with the given fileName.

6.2.2. Modify the lineNumbers function so that it only prints a line number on every
tenth line (for lines 1,11,21, . . .).

6.2.3* Write a function

lowerCaseFile(fileName)

that prints the contents of a file with every character converted to lowercase.
Read the file one line at a time in a loop.

6.2.4. Write a function

wordCountLines(fileName)

that uses the wordCount function from your textlib module to print the
number of words in each line of the file with the given fileName.

6.2.5. Write a function

paragraphCount(fileName)

that returns the number of paragraphs in the file with the given fileName.
Assume that paragraphs are separated by one or more blank lines.

6.2.6* Write a function

plotWordsPerParagraph(fileName)

that uses matplotlib.pyplot and the wordCount function from your textlib
module to plot the number of words in the paragraphs of the file with the given
fileName. Assume that paragraphs are separated by one or more blank lines.

6.2.7. Write a function

plotIsPerParagraph(fileName)

that plots the fraction of words that are the word “I” in the paragraphs
of fileName. You may find the string method count helpful. Assume that
paragraphs are separated by one or more blank lines. Use matplotlib.pyplot

and the wordCount function from your textlib module.

6.2.8. Write a function

plotWordsPerChapter(fileName, chapterOneStart)

that uses matplotlib.pyplot and the wordCount function from your textlib
module to plot the number of words in the chapters of the book with the given
fileName. Assume that new chapters begin when the word “chapter” is the first
non-whitespace word on a line and the previous line is blank. (See the string
method startswith in Appendix A.6.) The parameter chapterOneStart is the
line number of the first chapter in the book. Your function should begin by
skipping this many lines to get past the table of contents and any other front
matter in the text. Remember to include the last chapter (marked by the end
of the file) in your plot. You can test your function with the files mobydick.txt
and frankenstein.txt on the book website. The first chapters in these books
start on lines 489 and 684, respectively.

Copyright Taylor and Francis, 2021

6.2 TEXT DOCUMENTS � 245

6.2.9. Write a function

strip(fileName, newFileName)

that creates a new version of the file with the given fileName in which all
whitespace has been removed. The second parameter is the name of the new file.

6.2.10* Write a function

writeLineLengths(fileName, outputFile)

that writes the lengths of all the lines in fileName (not counting newline
characters) to a new file named outputFile. Each line in the output file should
simply be the length of one line.

6.2.11. Write a function

writeWordsPerParagraph(fileName, outputFile)

that writes the number of words in each paragraph in fileName to a new file
named outputFile. Each line in the output file should contain a paragraph
number and the number of words in that paragraph, like this:

1: 9

2: 44

3: 6

⋮

6.2.12. Write a function that makes a new copy of a file in which every sentence begins on
a new line. You may assume that every period, question mark, and exclamation
point in the file end a sentence. Before you process each line, use the string
method strip to remove whitespace (including the newline) from both ends
of the line. Then add a space at the end of the line (after the last word). For
an extra challenge, also prevent whitespace from appearing at the beginning
of each line before a sentence. Your function should take two parameters: the
name of the original file and the name of the new file.

6.2.13* Write a function

wordCountWeb(url)

that reads the text file from the given URL and returns the number of words
in the file using the wordCount function from your textlib module. Test
your function on books from Project Gutenberg. Alternatively, you can access
mirrored copies of books from the book website.

6.2.14. According to the HTML standard specification, every HTML web page should
begin with the declaration

<!DOCTYPE html>

This declaration is not case sensitive and may contain additional elements such
as

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

Write a function

isHTML(url)

that uses this information to detect whether a web page is an HTML document
or not. The function should return True if it is HTML and False otherwise.

Copyright Taylor and Francis, 2021

246 � 6 Text, Documents, and DNA

6.3 ENCODING STRINGS
As web pages travel across the Internet to your browser, the transmissions can be
corrupted by faulty equipment or electromagnetic interference. Errors can be as
small as a single bit being “flipped” or as large as an entire chunk of data being lost.
In this section, we will discuss how knowing something about how text is stored at a
lower level enables us to detect these kinds of errors. This knowledge will also prove
essential for some of the more interesting text analysis we will do in the following
sections.

Computing checksums
Network protocols detect errors by sending additional information, called a check-
sum , along with the data.

data checksum

In a nutshell, a checksum is used to tell whether what is received is the same as
what was sent. When the transmission is received at the destination, a checksum is
computed for the data and compared to the transmitted checksum. If they match,
all is well. If they don’t match, then the receiver asks the sender to retransmit.

The following algorithm represents the simplest way to compute a checksum for a raw
sequence of bytes. It just adds the bytes together, each time taking the remainder
mod 256 so that the checksum value will fit in one byte. (Recall that one byte is 8
bits, so a byte can store values between 0 and 28 − 1 = 255.)

Algorithm Simple checksum

Input: a byte sequence
1 checksum ← 0
2 repeat for each byte in the byte sequence:
3 checksum ← (checksum + byte) mod 256

Output: checksum

For example, suppose we wanted to send the following byte sequence:

42 207 111 199

The algorithm will compute a checksum like this:

Copyright Taylor and Francis, 2021

6.3 ENCODING STRINGS � 247

0 32 33 4847 57 58 64 65 90 91 96 97 122 123 126 127

DigitsControl
characters

Lower case
letters

Upper case
letters

Punctuation
characters

Punctuation
characters

Punctuation
characters

Punctuation
characters

Space

D
elete

31

Figure 6.4 A not-to-scale overview of the organization of the ASCII character set (and

the Basic Latin segment of Unicode) with decimal code ranges.

Trace input: byte sequence = [42, 207, 111, 199]
Step Line byte checksum Notes

1 1 — 0 checksum ← 0
2 2 42 ” byte ← 42
3 3 ” 42 checksum ← (0 + 42) mod 256 = 42
4 2 207 ” byte ← 207
5 3 ” 249 checksum ← (42 + 207) mod 256 = 249
6 2 111 ” byte ← 111
7 3 ” 104 checksum ← (249 + 111) mod 256 = 104
8 2 199 ” byte ← 199
9 3 ” 47 checksum ← (104 + 199) mod 256 = 47

Return value: 47
The computed checksum is 47, so we append this to the transmitted message:

42 207 111 199 47

data checksum

Unicode
To apply this algorithm to text, we need to look more closely at how strings are
encoded in binary in a computer’s memory. English language text has historically
been encoded in a format known as ASCII (pronounced “ASS-key”).4 ASCII assigns
each character a 7-bit binary code. In memory, each ASCII character is stored in one
byte, with the leftmost bit of the byte being a 0. So a string is stored as a sequence
of bytes. For example, the first six letters of the quote

If you don’t like something, change it. If you can’t change it, change your attitude.

—Maya Angelou

are encoded in ASCII as

I f y o u

01001001 01100110 00100000 01111001 01101111 01110101

73 102 32 121 111 117

4ASCII is an acronym for American Standard Code for Information Interchange.

Copyright Taylor and Francis, 2021

248 � 6 Text, Documents, and DNA

The values underneath are the decimal equivalents of the binary codes. Figure 6.4
uses these decimal values to illustrate the organization of the ASCII character set.
Notice that different types of characters are grouped together. Digits are in the range
48–57, uppercase letters are in 65–90, lowercase letters are in 97–122, etc. Python
uses this encoding to define “alphabetical order” when comparing strings.

Reflection 6.12 Consult Figure 6.4 to explain each of the following results.

>>> '3.14159' < 'pi'
True
>>> 'pi' == 'Pi'
False
>>> 'Zebra' < 'antelope'
True
>>> '314159' < '32'
True

The ASCII character set has been largely supplanted, including in Python, by an
international standard known as Unicode . Whereas ASCII only provides codes
for Latin characters, Unicode encodes over 100,000 different characters from more
than 100 languages, using up to 4 bytes per character. A Unicode string can be
encoded in one of three ways, but is most commonly encoded using a variable-length
system called UTF-8 (that we used in the previous section). Conveniently, UTF-8 is
backwards-compatible with ASCII, so each character in the ASCII character set is
encoded in the same 1-byte format in UTF-8.

In Python, we can view the Unicode (in decimal) for any character using the ord

function (short for “ordinal”). For example,

>>> ord('I')
73

The chr function is the inverse of ord; given a Unicode value, chr returns the
corresponding character.

>>> chr(73)
'I'

Reflection 6.13 Use ord on the first characters of the strings in Reflection 6.12 to explain
the results of the comparisons.

The following Python function uses ord to apply our Simple checksum algorithm to
strings. Once the one-byte checksum is computed, we convert it to a character using
chr so that we can concatenate it to the string before sending it.

def simpleChecksum(text):
"""Compute a simple one-character checksum for a string.

Parameter:
text: a string

Return value: a character representing the one-byte checksum
"""

Copyright Taylor and Francis, 2021

6.3 ENCODING STRINGS � 249

checksum = 0
for character in text:

checksum = (checksum + ord(character)) % 256

return chr(checksum)

Let’s use this function to create a checksum for our Maya Angelou quote.

>>> quote = "If you don't like something, change it. If you can't
change it, change your attitude."

>>> checksum = simpleChecksum(quote)
>>> checksum
'ç'

The computed checksum value was 231, which corresponds to a lowercase c with
a cedilla in Unicode. (The character representation of the checksum doesn’t really
matter since it is not really part of the text.) To create a message to send across a
network, we would next concatenate the string and the checksum.

>>> message = quote + checksum
>>> message
"If you don't like something, change it. If you can't change it,
change your attitude.ç"

This simple checksum algorithm is actually too weak to be used in practice. Most
notably, it cannot detect when two bytes are sent out of order.

Reflection 6.14 Why does the simple checksum algorithm have this problem?

Fletcher’s checksum algorithm fixes this by adding a second checksum that incre-
mentally sums the values of the first checksum.

def fletcherChecksum(text):
"""Compute a two character checksum for a string using the

Fletcher-16 algorithm.

Parameter:
text: a string

Return value: a two-character string representing the checksum
"""

checksum1 = 0
checksum2 = 0
for character in text:

checksum1 = (checksum1 + ord(character)) % 255
checksum2 = (checksum2 + checksum1) % 255

return chr(checksum2) + chr(checksum1)

Note that this algorithm also differs in that it mods by 255 instead of 256. The return
value is a two-character string created by concatenating the characters corresponding
to the two checksum values.

Copyright Taylor and Francis, 2021

250 � 6 Text, Documents, and DNA

Tangent 6.2: Compressing text files

If a text file is stored in UTF-8 format, then each character is represented by an eight-bit
code, requiring one byte of storage per character. For example, the file mobydick.txt

contains about 1.2 million characters, so it requires about 1.2 MB of disk space. But
text files can usually be modified to use far less space, without losing any information.
Suppose that a text file contains upper and lowercase letters, plus whitespace and
punctuation, for a total of sixty unique characters. Since 26 = 64, we can adopt an
alternative encoding scheme in which each of these sixty unique characters is represented
by a six-bit code instead. By doing so, the text file will use only 6/8 = 75% of the space.

The Huffman coding algorithm can do even better by using variable-length codes that
are shorter for more frequent characters. As a simple example, suppose a 23,000-character
text file contains only five unique characters: A, C, G, N, and T with frequencies of 5,
6, 4, 3, and 5 thousand, respectively. Using the previous fixed-length scheme, we could
devise a three-bit code for these characters and use only 3 ⋅ 23,000 = 69,000 bits instead
of the original 8 ⋅ 23,000 = 184,000 bits. But, by using a prefix code that assigns the
more frequent characters A, C, and T to shorter two-bit codes (A = 10, C = 00, and T
= 11) and the less frequent characters G and N to three-bit codes (G = 010 and N =
011), we can store the file in

2 ⋅ 5,000 + 2 ⋅ 6,000 + 3 ⋅ 4,000 + 3 ⋅ 3,000 + 2 ⋅ 5,000 = 53,000

bits instead. This is called a prefix code because no code is a prefix of another code,
which is essential for decoding the file.

An alternative compression technique, used by the Lempel-Ziv-Welch algorithm ,
replaces repeated strings of characters with fixed-length codes. For example, in the
string CANTNAGATANCANCANNAGANT, the repeated sequences CAN and NAG might each be
represented with its own code.

Reflection 6.15 Show how to compute the Fletcher checksums by hand for the string
'abc'. (You should get 39 and 76 for checksum1 and checksum2, respectively, correspond-
ing to the string "L'".)

We can now apply the Fletcher checksum algorithm to our quote like this:

>>> checksum = fletcherChecksum(quote)
>>> checksum
'\r\x05'
>>> message2 = quote + checksum
>>> message2
"If you don't like something, change it. If you can't
change it, change your attitude.\r\x05"

(The character '\r' is the “carriage return” character and '\x05' represents the
symbol with ASCII code 5, which is an antiquated non-printable control character
that was once used to request a response from computer terminals and teletype
machines. But their meanings are irrelevant here.)

Copyright Taylor and Francis, 2021

6.3 ENCODING STRINGS � 251

Indexing and slicing
To confirm that a message is error-free, the receiver needs to remove the two-
character checksum and compare it to a checksum that it computes itself on the
remaining text. To implement this, we need to be able to directly access those
last few characters. Conceptually, we already know that a string is stored as a
sequence of bytes, where each byte represents one character. These bytes are stored
in contiguous memory cells. So the first sentence of the Maya Angelou quote,
"If you don't like something, change it.", can be represented like this:

0
o u d o n ' t l i k e s o m e t h i n g , c h a n g e i .tI f y

1 2 43 5 6 7 98 10 3837... ...

-1-2-3-4-5-6-7-8...

Each character in the string is identified by an index that indicates its position.
Indices always start from the left at 0, as shown below the characters above. We
can also use negative indexing , which starts from the right end of the string, as
shown above the characters. We can use these indices to access a character directly
by referring to the index in square brackets following the name of the string. For
example,

>>> shortQuote = "If you don't like something, change it."
>>> shortQuote[0]
'I'
>>> shortQuote[9]
'n'
>>> shortQuote[-30]
'n'
>>> shortQuote[-1]
'.'

Notice that each character is itself represented as a single-character string in quotes,
and that quote[9] and quote[-30] refer to the same character. The last character
in a string can always be accessed with index -1, regardless of the string’s length.
We can use this to access the checksum character in the first message.

>>> message[-1]
'ç'

To get a string’s length, we use the len function:

>>> len(shortQuote)
39
>>> shortQuote[38]
'.'
>>> shortQuote[39]
IndexError: string index out of range

Reflection 6.16 Why does the last statement above result in an error?

Notice that len returns the number of characters in the string, not the index of
the last character. The positive index of the last character in a string is always the

Copyright Taylor and Francis, 2021

252 � 6 Text, Documents, and DNA

length of the string minus one. As shown above, referring to an index that does not
exist will give an index error exception.

To access a substring consisting of multiple characters, like the two-character Fletcher
checksum, we use slicing . Slice notation uses two indices separated by a colon. The
first index is the position of the first character in the slice and the second is the
index of the character just past the last character in the slice (analogous to how
range stops just shy of its argument). So we can get the Fletcher checksum from
message2 like this:

>>> message2[len(message2)-2:len(message2)]
'\r\x05'

or, much more simply,

>>> message2[-2:]
'\r\x05'

Here we used a negative index for the beginning of the slice and omitted the
second index, which means that we want the slice to go to the end of the string.
Similarly, if we want a slice from the beginning of a string, we can omit the first
index. So message[:-1] will give us the “data” portion of the first message and
message2[:-2] will give us the “data” portion of the second message.

>>> message[:-1]
"If you don't like something, change it. If you can't change it, ..."
>>> message2[:-2]
"If you don't like something, change it. If you can't change it, ..."

The following function uses slicing to verify whether a message with a Fletcher
checksum was “received” correctly. If the checksum is correct, it returns the data
portion of the message. Otherwise, it returns an empty string.

def verifyMessage(message):
"""Verify a message with a Fletcher-16 checksum.

Parameter:
message: a string containing data + checksum

Return value: the data if verified or '' if not
"""

data = message[:-2]
checksum = message[-2:]
if fletcher(data) == checksum:

return data
else:

return ''

We will continue to use indexing and slicing in the next sections, as we explore more
sophisticated techniques to analyze large texts.

Copyright Taylor and Francis, 2021

6.3 ENCODING STRINGS � 253

Exercises
When an exercise asks you to write a function, test it with both common and boundary case
arguments, and document your test cases.

6.3.1. Suppose you have a string stored in a variable named word. Show how you
would print

(a)* the string’s length

(b)* the first character in the string

(c)* the third character in the string

(d)* the last character in the string

(e) the last three characters in the string

(f) the string consisting of the second, third, and fourth characters

(g) the string consisting of the fifth, fourth, and third to last characters

(h) the string consisting of all but the last character

6.3.2. The following string is a quote by Benjamin Franklin.

quote = 'Well done is better than well said.'

Use slicing notation to answer each of the following questions.

(a)* What slice of quote is equal to 'done'?

(b)* What slice of quote is equal to 'well said.'?

(c) What slice of quote is equal to 'one is bet'?

(d) What slice of quote is equal to 'Well do'?

6.3.3. What are the values of each of the following expressions? Explain why in each
case.

(a)* 'cat' < 'dog'

(b)* 'cat' < 'catastrophe'

(c)* 'cat' == 'Cat'

(d) '1' > 'one'

(e) '8188' < '82'

(f) 'many' > 'One'

6.3.4* When we print a numeric value using the print function, each digit in the
number must be converted to its corresponding character to be displayed. In
other words, the value 0 must be converted to the character '0', the value 1

must be converted to the character '1', etc. The Unicode codes for the digit
characters are conveniently sequential, so the code for any digit character is
equal to ord('0') plus the value of the digit. For example, ord('2') is the
same as ord('0') + 2 and chr(ord('0') + 2) is '2'. Write a function

digit2String(digit)

Copyright Taylor and Francis, 2021

254 � 6 Text, Documents, and DNA

that generalizes this example to return the string equivalent of the number
digit. For example, digit2String(4) should return '4'. If digit is not the
value of a decimal digit, return None.

6.3.5. Suppose we want to convert a letter to an integer representing its position in
the alphabet. In other words, we want to convert 'A' or 'a' to 1, 'B' or 'b'
to 2, etc. Like the characters for the digits, the codes for the uppercase and
lowercase letters are in consecutive order. Therefore, for an uppercase letter, we
can subtract the code for 'A' from the code for the letter to get the letter’s
offset relative to 'A'. Similarly, we can subtract the code for 'a' from the code
for a lowercase letter. For example, ord('D') - ord('A') is 3. Write a function

letter2Position(letter)

that uses this idea to return the position in the alphabet (1–26) of the upper or
lowercase letter. If letter is not a letter, return None.

6.3.6. Write a function

position2Letter(n)

that returns the nth uppercase letter in the alphabet, using the chr and ord

functions.

6.3.7. Write a function

string2Digit(digitString)

that returns the integer value corresponding to the string digitString. The
parameter will contain a single character '0', '1', . . . , '9'. Use the ord function.
For example, string2Digit('5') should return the integer value 5.

6.3.8. Any exam score between 60 and 99 can be converted to a letter grade with a
single expression using chr and ord. Demonstrate this by replacing SOMETHING

in the function below.

def letterGrade(score):

if grade >= 100:

return 'A'
if grade > 59:

return SOMETHING

return 'F'

6.3.9. Write a function

capitalize(word)

that uses ord and chr to return a version of the string word with the first letter
capitalized. (Note that the word may already be capitalized!)

6.3.10. Write a function

int2String(number)

that converts any positive integer value number to its string equivalent, without
using the str function. For example, int2String(1234) should return the
string '1234'. (Use the digit2String function from Exercise 6.3.4.)

6.3.11. Suppose you work for a state in which all vehicle license plates consist of a
string of letters followed by a string of numbers, such as 'ABC 123'. Write a
function

Copyright Taylor and Francis, 2021

6.3 ENCODING STRINGS � 255

randomPlate(length)

that returns a string representing a randomly generated license plate consisting
of length uppercase letters followed by a space followed by length digits. Use
the random.randrange function.

6.3.12. Write a function

username(first, last)

that constructs and returns a username, specified as the last name followed by an
underscore and the first initial. For example, username('martin', 'freeman')
should return the string 'freeman_m'.

6.3.13. Write a function

piglatin(word)

that returns the Pig Latin equivalent of the string word. If the first character
is a consonant, Pig Latin moves it to the end, and follows it with 'ay'. If the
first character is a vowel, nothing is moved and 'way' is added to the end. For
example, Pig Latin translations of 'python' and 'asp' are 'ythonpay' and
'aspway'.

6.3.14. Write a function

pigLatinDict(fileName)

that prints the Pig Latin equivalent of every word in the dictionary file with
the given file name. (See Exercise 6.3.13.) Assume there is exactly one word
on each line of the file. Start by testing your function on small files that you
create. An actual dictionary file can be found on most Mac OS X and Linux
computers at /usr/share/dict/words. There is also a dictionary file available
on the book website.

6.3.15. Repeat the previous exercise, but have your function write the results to a new
file instead, one Pig Latin word per line. Add a second parameter for the name
of the new file.

6.3.16* When some people get married, they choose to take the last name of their
spouse or hyphenate their last name with the last name of their spouse. Write a
function

marriedName(fullName, spouseLastName, hyphenate)

that returns the person’s new full name with hyphenated last name if hyphenate
is True or the person’s new full name with the spouse’s last name if hyphenate
is False. The parameter fullName is the person’s current full name in the form
'Firstname Lastname' and the parameter spouseLastName is the spouse’s last
name. For example, marriedName('Jane Doe', 'Deer', True) should return
the string 'Jane Doe-Deer' and marriedName('Jane Doe', 'Deer', False)

should return the string 'Jane Deer'.

6.3.17. Parity checking is an even simpler error detection algorithm that is used directly
on sequences of bits (often called bit strings). A bit string has even parity if it
has an even number of ones, and odd parity otherwise. In an even parity scheme,
the sender adds a single bit to the end of the bit string so that the final bit
string has an even number of ones. For example, if we wished to send the data
1101011, we would actually send 11010111 instead so that the bit string has an

Copyright Taylor and Francis, 2021

256 � 6 Text, Documents, and DNA

even number of ones. If we wished to send 1101001 instead, we would actually
send 11010010. The receiver checks whether the received bit string has even
parity; if it does not, the receiver requests a retransmission.

(a) Parity can only detect very simple errors. Give an example of an error
that cannot be detected by an even parity scheme.

(b) Propose a solution that would detect the example error you gave above.

(c) In the next two problems, we will pretend that bits are sent as strings
(they are not; this would be terribly inefficient). Write a function

evenParity(bits)

that uses the count method to return True if the string bits has
even parity and False otherwise. For example, evenParity('110101')
should return True and evenParity('110001') should return False.

(d) Now write the evenParity function without using the count method.

(e) Write a function

makeEvenParity(bits)

that returns a string consisting of bits with one additional
bit concatenated so that the returned string has even parity.
Your function should call your evenParity function. For ex-
ample, makeEvenParity('110101') should return '1101010' and
makeEvenParity('110001') should return '1100011'.

6.3.18. Julius Caesar is said to have sent secret correspondence using a simple encryption
scheme that is now known as the Caesar cipher. In the Caesar cipher, each letter
in a text is replaced by the letter some fixed distance, called the shift, away. For
example, with a shift of 3, A is replaced by D, B is replaced by E, etc. At the
end of the alphabet, the encoding wraps around so that X is replaced by A, Y
is replaced by B, and Z is replaced by C. Write a function

encipher(text, shift)

that returns the result of encrypting text with a Caesar cypher with the given
shift. Assume that text contains only uppercase letters.

6.3.19. Modify the encipher function from the previous problem so that it either en-
crypts or decrypts text, based on the value of an additional Boolean parameter.

6.4 A CONCORDANCE
A concordance is an alphabetical listing of all the words in a text, with their contexts.
The context is usually one or more lines in which the target word appears. Suppose
we want to know where “lash” appears in the text of Moby Dick. If we searched, we
would find matches on 60 lines, the first 6 of which are:

things not properly belonging to the room, there was a hammock lashed

ship was gliding by, like a flash he darted out; gained her side; with

which to manage the barrow--Queequeg puts his chest upon it; lashes it

blow her homeward; seeks all the lashed sea's landlessness again;

sailed with. How he flashed at me!--his eyes like powder-pans! is he

I was so taken all aback with his brow, somehow. It flashed like a

Copyright Taylor and Francis, 2021

6.4 A CONCORDANCE � 257

Note that we are not necessarily looking for complete words. When we search for
the root of a word like “lash,” we might also be interested in derivatives like “lashes”
and “lashed.” But we might also get other words that contain “lash,” like “flash”
and ”flashed.” (We will leave finding only complete words as an exercise.)

To make viewing this information easier, we will line up the words and note the line
on which each appears in the text:

1188 ... properly belonging to the room, there was a hammock lashed

2458 ship was gliding by, like a flash he ...

2551 ... manage the barrow--Queequeg puts his chest upon it; lashes it

4396 blow her homeward; seeks all the lashed ...

5103 sailed with. How he flashed at ...

5127 I was so taken all aback with his brow, somehow. It flashed like a

We will focus here on creating a concordance entry for just one word. Once we
have written a function to do this, it will actually be quite easy to create an entire
concordance, but the result could be quite large (e.g., Moby Dick contains over
20,000 unique words) and we have not yet discussed how we could quickly search
through such a large file for a desired entry.

To create a concordance entry, we will iterate over the lines of the text file, and
search for the target word in each line. For each line in which the target word is
found, we will print the line, prefaced by a line number, lining up the words in a
column for easy reading. Here is the algorithm in pseudocode:

Algorithm Concordance entry

Input: a text file, a target word
1 line number ← 1
2 repeat for each line in the text file:
3 index ← Find (line, target word)
4 if the target word was found in line, then:
5 print the line number and the line, using index to line up the target words
6 line number ← line number + 1

Output: none

Finding a word
The Find algorithm, which we will write next, will search through a line and return
the index of the first occurrence of the target word in that line, if it exists. There is
an existing string method to do just this.5

>>> benFranklin = 'Diligence is the mother of good luck.'
>>> benFranklin.find('good')
27

5This quote is from The Way to Wealth (1758) by Benjamin Franklin.

Copyright Taylor and Francis, 2021

258 � 6 Text, Documents, and DNA

But we will implement a find function from scratch because, as with
splitIntoWords, the technique involved is important and useful for other problems
down the road. The idea is to make a pass across the text, comparing the target
string to slices of the text with the same length as the target. When a matching
slice is found, we want to return the index in the text where that slice begins. In
pseudocode, the algorithm looks like this:

Algorithm Find

Input: text, target
1 target index ← −1

2 repeat for each slice of text with the same length as target:
3 if slice = target, then:
4 target index ← starting position of the slice in text
5 break out of the loop

Output: target index

The variable target index will store the index of the matching slice when it is found.
It is initialized to −1 at the beginning of the algorithm to signify that a match has
not been found yet. We chose the value −1 because this is not a value that could
possibly be returned by the algorithm if the target is found. Notice that the value of
target index remains −1 if a matching slice is never found in the loop. If a matching
slice is found, then target index is assigned to the index of that slice and we exit the
loop immediately so that a possible later match does not overwrite this value.

To see how to implement this in Python, let’s first consider the simpler problem
of searching for a single character in a string. If we iterate over the characters in
the string to search for the target character, as we have done in all of our string
algorithms to this point, it would look like this:

for character in text:
if character == targetCharacter: # target character is found

targetIndex = ??? # get the index where it was found?

But when we find the target character, we are left without a satisfactory return
value because we do not know the index of character!

Instead, we need to iterate over the indices of text so that, when we find the target
character, we know where it is located in the string. In other words, for all values
of index equal to 0, 1, 2, . . . , we need to test whether text[index] is equal to
targetCharacter. If this condition is true, then we know that targetCharacter

exists at position index!

Reflection 6.17 How can we get a list of every index in a string to use in a for loop?

The list of indices in a string named text is 0, 1, 2, . . . , len(text) - 1. This
is precisely the list of integers given by range(len(text)). So our desired for loop
looks like the following:

Copyright Taylor and Francis, 2021

6.4 A CONCORDANCE � 259

for index in range(len(text)):
if text[index] == targetCharacter: # target character is found

targetIndex = index # get the index where it was found

Now when we find that text[index] == targetCharacter, we know that the
desired character is at position index.

Reflection 6.18 Although it isn’t always necessary, we can use this kind of loop any time
we need to iterate over a string. Use the examples above to show how to accomplish exactly
the same thing as the following for loop by iterating over the indices of text instead:

for character in text:
print(character)

The following function uses the new loop above to find a target character in a string.

1 def findCharacter(text, targetCharacter):
2 """Find the index of first occurrence of a target character in text.

3 Parameters:
4 text: a string object to search in
5 targetCharacter: a character to search for

6 Return value: index of the first occurrence of targetCharacter in text
7 """

8 targetIndex = -1 # assume it won't be found
9 for index in range(len(text)):

10 if text[index] == targetCharacter: # if found, then
11 targetIndex = index # remember where
12 break # and exit the loop early
13 return targetIndex

The break statement on line 12 exits the loop immediately, even if it is not yet done.

Reflection 6.19 What do you get when you call this function with
findCharacter('Diligence is the mother of good luck.', 'g')? If you remove
the break statement from the loop, what do you get? Why?

We need to exit the loop when the first occurrence of targetCharacter is found
because, if we don’t and targetCharacter occurs again later in text, then
targetIndex will be overwritten, and the index of the last occurrence will be re-
turned instead. The following trace table shows this more explicitly, along with how
the changing value of index affects the value of text[index] in the if condition.

Copyright Taylor and Francis, 2021

260 � 6 Text, Documents, and DNA

Trace arguments: text = 'Diligence is the mother of good luck.',
targetCharacter = 'g'

Step Line targetIndex index text[index] Notes
1 8 -1 — — targetCharacter ← −1

2 9 ” 0 'D' index ← 0
3 10 ” ” ” 'D' != 'g'; skip lines 11-12
4 9 ” 1 'i' index ← 1
5 10 ” ” ” 'i' != 'g'; skip lines 11-12
6 9 ” 2 'l' index ← 2
7 10 ” ” ” 'l' != 'g'; skip lines 11-12
8 9 ” 3 'i' index ← 3
9 10 ” ” ” 'i' != 'g'; skip lines 11-12
10 9 ” 4 'g' index ← 4
11 10 ” ” ” 'g' == 'g'; do lines 11-12
12 11 4 ” ” targetIndex ← index
13 12 ” ” ” break from loop; go to line 13
14 13 ” ” ” return 4

Return value: 4

To generalize this function to find a target string of any length, we need to compare
the target string to all slices with the same length as the target in text. For example,
suppose we want to search for the target string 'good' in text. We would need to
check whether text[0:4] is equal to 'good', then whether text[1:5] is equal to
'good', then whether text[2:6] is equal to 'good', etc. More concisely, for all values
of index equal to 0, 1, 2, . . . , we need to test whether text[index:index + 4]

is equal to 'good'. In general, to find a target string named target, we need to test
whether text[index:index + len(target)] is equal to target, as in the following
function.

1 def find(text, target):
2 """Find the index of the first occurrence of a target string in text.

3 Parameters:
4 text: a string object to search in
5 target: a string object to search for

6 Return value: the index of the first occurrence of target in text
7 """

8 targetIndex = -1
9 for index in range(len(text) - len(target) + 1):

10 if text[index:index + len(target)] == target:
11 targetIndex = index
12 break
13 return targetIndex

Copyright Taylor and Francis, 2021

6.4 A CONCORDANCE � 261

Notice how similar this is to findCharacter and that, if len(target) equals 1, the
find function does exactly the same thing as findCharacter.

Reflection 6.20 Why is the last index in the for loop equal to
len(text) - len(target) instead of len(text) - 1?

Suppose text is 'Diligence is the mother of good luck.' and target is
'good'. Then len(text) is 37 and len(target) is 4. If we had the loop iter-
ate until index was len(text) - 1 = 36, then the last three slices to be ex-
amined would be the strings corresponding to text[34:38], text[35:39], and
text[36:40], which are 'ck.', 'k.', and '.', respectively. But these strings
are too short to possibly be equal to this target. In general, we never need
to look at a slice that starts after len(text) - len(target), hence we use
range(len(text) - len(target) + 1).

Reflection 6.21 Is what we just said really true? What is returned by a slice that extends
beyond the last character (e.g., 'good'[2:10])? What is returned by a slice that starts
beyond the last character in the string (e.g., 'good'[4:8])?

Let’s look more closely at how find works when we call it with these arguments.
We will omit targetIndex from the trace table this time to save space and instead
show text[index:index+len(target)].

Trace arguments: text = 'Diligence is the mother of good luck.',
target = 'good'

Step Line index text[index:index+4] Notes
1 8 — — initialize targetIndex ← −1

2 9 0 'Dili' index ← 0
3 10 ” ” 'Dili' != 'good'; skip lines 11-12
4 9 1 'ilig' index ← 1
5 10 ” ” 'ilig' != 'good'; skip lines 11-12
6 9 2 'lige' index ← 2
7 10 ” ” 'lige' != 'good'; skip lines 11-12
⋮

54 9 26 ' goo' index ← 26
55 10 ” ” ' goo' != 'good'; skip lines 11-12
56 9 27 'good' index ← 27
57 10 ” ” 'good' == 'good'; do lines 11-12
58 11 ” ” targetIndex ← index

59 12 ” ” break out of the loop; go to line 13
60 13 ” ” return 27

Return value: 27

Copyright Taylor and Francis, 2021

262 � 6 Text, Documents, and DNA

A concordance entry
We are finally ready to use our find function to print a concordance entry. Here is
an outline of a function that follows our pseudocode algorithm.

def concordanceEntry_Draft(textFile, targetWord):
"""Print all lines in a text file containing the target word.

Parameters:
textFile: a file object
targetWord: the word to search for

Return value: None
"""

lineNumber = 1
for line in textFile:

index = find(line.lower(), targetWord)
if targetWord is found in line (using the find function):

print(lineNumber, line) # not formatted nicely yet
lineNumber = lineNumber + 1

Reflection 6.22 When we call the find function to search for targetWord, how do we
know if it was found?

Because find returns -1 if the target string is not found, any nonnegative value of
index means that it was found. So the comment above will be replaced with

index = find(line.lower(), targetWord)
if index >= 0:

To line up the printed lines nicely, we will use a format string to ensure that the
line number always takes up the same amount of space and the rightmost ends of
the target words line up. We can do this by splitting the line at the end of the
targetWord, right justifying the first half, and left justifying the second half.

align = index + len(targetWord) # index of the end of targetWord in line
print('{0:<6}{1:>80}{2}'.format(lineNumber, line[:align], line[align:-1]))

Incorporating these changes, here is the complete function to print a single concor-
dance entry:

def concordanceEntry(textFile, targetWord):
""" (docstring omitted) """

lineNumber = 1
for line in textFile:

index = find(line.lower(), targetWord)
if index >= 0: # targetWord is found in line

align = index + len(targetWord)
print('{0:<6}{1:>80}{2}'.format(lineNumber, line[:align],

line[align:-1]))
lineNumber = lineNumber + 1

Copyright Taylor and Francis, 2021

6.4 A CONCORDANCE � 263

There are many more enhancements we can make to this function, some of which
we leave as exercises.

A complete concordance
Now we could, if we wanted to, print an entire concordance for a book! The
concordance function below does just that. Because a full concordance can be
very long indeed, we have added a parameter numEntries to limit the number of
entries to print. There are also a couple of new things in this function that we
encourage you to explore more on your own.

import textlib
import string

def concordance(fileName, numEntries):
"""Print entries in the concordance for a text file.

Parameters:
fileName: name of the text file
targetWord: number of entries to print

Return value: None
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
text = textFile.read()
words = textlib.wordTokens(text) # get all the words in textFile
vocabulary = list(set(words)) # get the set of unique words
vocabulary.sort() # sort the words

count = 0
for word in vocabulary: # iterate over the sorted words

if word[0] not in string.digits: # omit if starts with a digit
textFile.seek(0) # reset file pointer
print('\n' + word.upper() + '\n')
concordanceEntry(textFile, word)
count = count + 1

if count >= numEntries: # break when enough entries
break

textFile.close()

def main():
concordance('mobydick.txt', 10)

main()

Copyright Taylor and Francis, 2021

264 � 6 Text, Documents, and DNA

Exercises
6.4.1. For each of the following for loops, write an equivalent loop that iterates over

the indices of the string text instead of the characters.

(a)* for character in text:
print(character)

(b)* newText = ''
for character in text:

if character != ' ':
newText = newText + character

(c) for character in text[2:10]:
if character >= 'a' and character <= 'z':

print(character)

(d) for character in text[1:-1]:
print(text.count(character))

6.4.2* Show how to rewrite each of the for loops in the previous exercise as while

loops that increment an index variable in each iteration.

6.4.3. Describe what is wrong with each the following blocks of code, and show how
to fix it.

(a)* veggie = 'carrots'
for character in veggie:

bigVeggie = bigVeggie + character.upper()

(b)* while answer != 'q':
answer = input('Word? ')
print(len(answer))

(c)* veggie = 'peas'
for index in range(veggie):

if veggie[index] != ' ':
print(index)

(d) veggie = 'sweet potatoes'
for index in len(veggie):

if veggie[index] != ' ':
print(veggie[index])

(e) for index in range(len(okra)):
print(okra[len(okra) - index - 1])

(f) text = 'I love veggies!'
for character in range(len(text)):

if character != ' ':
print(character) # print a character in text?

(g) text = 'Veggies rule!'
for index in text:

print(text[index])

Copyright Taylor and Francis, 2021

6.4 A CONCORDANCE � 265

(h) veggies = 'pepperoni' # not
for index in range(len(veggies)):

if index == len(veggies) - 1:
realVeggies = realVeggies + 'cin'

realVeggies = realVeggies + index
print(realVeggies)

6.4.4. Write a function

prefixes(word)

that prints all of the prefixes of the given word. For example, prefixes('cart')
should print

c
ca
car
cart

6.4.5. Write a function

replace(text, target, replacement)

that returns a new version of text in which all occurrences of the
substring target are replaced with the string replacement. For exam-
ple, replace('I am cool, very cool.', 'cool', 'very vain')) should
return 'I am very vain, very very vain.'. Use a while loop; do not use
the string method replace.

6.4.6. An annoying trick used by some simple chatbots is to reply to a statement by
reframing it as a question. For some statements, like those starting with “This is”
and “There are,” this is very easy: just reverse the first two words. For example,
“This is a cool sentence.” becomes “Is this a cool sentence?” Write a function

makeQuestion(sentence)

that carries out this transformation on a sentence by finding and swapping the
first two words, correcting the capitalization, and ending the sentence with a
question mark.

6.4.7* Suppose you develop a secret code that replaces a string with a new string that
consists of all the even indexed characters of the original followed by all the odd
indexed characters. For example, the string 'computers' would be encoded as
'cmuesoptr'. Write a function

encode(word)

that returns the encoded version of the string named word.

6.4.8. Write a function

decode(codeword)

that reverses the process from the encode function in the previous exercise.

6.4.9* Write a function

palindrome(text)

that returns True if text is a palindrome and False otherwise. Your function
should ignore spaces and capitalization. For example,

palindrome('Lisa Bonet ate no basil')

Copyright Taylor and Francis, 2021

266 � 6 Text, Documents, and DNA

should return True.

6.4.10. Write an interactive program that uses the find function from this section to
find the first occurrence of any desired word in Moby Dick .

6.4.11. The find function from this section can also be written like this:

def find(text, target):
for index in range(len(text) - len(target) + 1):

if text[index:index + len(target)] == target:
return index

return -1

(a) Explain why this version is also correct.

(b) Why is the following version of the for loop incorrect?

for index in range(len(text) - len(target) + 1):
if text[index:index + len(target)] == target:

return index
else:

return -1

6.4.12. Write a modified version of the find function named findWord that only finds
an instance of target that is a whole word.

6.4.13. Write a modified version of the find function named findAll that returns a
list containing the indices of all matches for the target.

6.4.14. Enhance the concordanceEntry function in each of the following ways:

(a) In the line that is printed for each match, display targetWord in all
caps. For example:

... any whale could so SMITE his stout sloop-of-war

... vessel, so as to SMITE down some of the spars and

(b) Use the modified findWord function from Exercise 6.4.12 so that each
target word is matched only if it is a complete word.

(c) The current version of concordanceEntry will only identify the first
instance of a word on each line. Modify it so that it will display a new
context line for every instance of the target word in every line of the
text. For example, “ship” appears twice on line 14673 of Moby Dick :

upon the ship, than to rejoice that the ship had so victoriously gained

In this case, the function should print:

14673 upon the SHIP, than...

upon the ship, than to rejoice that the SHIP had so...

The findAll function from Exercise 6.4.13 will be useful here.

6.5 WORD FREQUENCY TRENDS
One common way to gain a little insight into the arc of a particular theme in a text
is to visualize the relative frequencies of related terms over the course of the text.
Figure 6.5 shows an example that visualizes the usage of masculine and feminine

Copyright Taylor and Francis, 2021

6.5 WORD FREQUENCY TRENDS � 267

2 4 6 8 10
Slice number

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Fr
eq

ue
nc

y

he
she

Figure 6.5 A sample plot of word frequencies across ten slices of Frankenstein.

pronouns over the course of Frankenstein. In this plot, the frequencies of the two
words are shown as fractions of the total number of words in each of ten equal-sized
slices of the text.

Since writing a program for this problem is a bit more involved, let’s explicitly
decompose it into subproblems first.

get the frequencies of a
word across the text

word frequency
trends

get the frequency of a word
in one slice of the text

plot the word
frequencies

In the first subproblem, we need to compute the frequencies of a word over all of
the slices of the text. As a part of this subproblem we will need a function that
computes the frequency of a word in just one slice. In the second subproblem, we
actually plot the frequencies computed in the first subproblem.

The first subproblem will take three inputs—the text, the desired number of slices,
and one of the words—and return a list of the frequencies of the word in the slices of
the text. (The main program will need to call this function twice, once for each word.)

Copyright Taylor and Francis, 2021

268 � 6 Text, Documents, and DNA

To solve this subproblem, we will start at the bottom leaf in the decomposition tree:
finding the frequency of a word in a single slice.

Finding the frequency of a word
Computing the frequency of a word in a slice of the text requires three steps. First,
we get a list of all of the words in the slice using the wordTokens function from our
textlib module. Second, we iterate over these words and count how many times
the target word shows up. Third, we return that count divided by the number of
words in the slice. Here is the algorithm in pseudocode.

Algorithm Word frequency

Input: a text and a target word
1 word list ←Word tokens (text)
2 count ← 0
3 repeat for each word in word list:
4 if word = target word, then:
5 count ← count + 1
6 frequency ← count / length of word list

Output: frequency

We already know how to perform all of these steps in Python. Iterating over a list of
items looks and works just like iterating over a string, except the index variable is
assigned consecutive list items instead of characters.

1 import textlib

2 def wordFrequency(text, targetWord):
3 """Get the frequency of the target word as a fraction of all
4 words in the text.

5 Parameters:
6 text: a string object
7 targetWord: a word to count

8 Return value: frequency of the target word
9 """

10 wordList = textlib.wordTokens(text)
11 count = 0
12 for word in wordList:
13 if word == targetWord:
14 count = count + 1
15 return count / len(wordList)

Copyright Taylor and Francis, 2021

6.5 WORD FREQUENCY TRENDS � 269

In each iteration of this loop, word is a assigned a word in wordList, and then word

is compared to the target word. If they are the same, count is incremented. We
return the final value of count divided by the length of wordList, which is the
total number of words in text. The following trace table illustrates this loop more
concretely with a fun input.

Trace arguments: text = 'one fish two fish', targetWord = 'fish'

Step Line wordList count word Notes
1 10 ['one', 'fish',

'two', 'fish']
— — get words from wordTokens

2 11 ” 0 — initialize count ← 0

3 12 ” ” 'one' word ← first item in wordList

4 13 ” ” ” 'one' != 'fish'; skip line 14
5 12 ” ” 'fish' word ← second item in wordList

6 13 ” ” ” 'fish' == 'fish'; do line 14
7 14 ” 1 ” increment count
8 12 ” ” 'two' word ← third item in wordList

9 13 ” ” ” 'two' != 'fish'; skip line 14
10 12 ” ” 'fish' word ← fourth item in wordList

11 13 ” ” ” 'fish' == 'fish'; do line 14
12 14 ” 2 ” increment count
13 15 ” ” ” return 2/4 = 0.5

Return value: 0.5

Getting the frequencies in slices
Now, to get the frequencies of a word across the entire text, we need to divide the
text into slices and call wordFrequency with each slice. The algorithm will return a
list of these slice frequencies.

Algorithm Slice frequencies

Input: a text, a word, and a number of slices
1 slice length ← length of text / number of slices
2 word frequencies ← empty list
3 repeat for each slice of slice length characters in the text:
4 frequency ←Word frequency (slice, word)
5 append frequency to word frequencies

Output: word frequencies

Implementing this in Python is not quite as straightforward as the pseudocode.

Copyright Taylor and Francis, 2021

270 � 6 Text, Documents, and DNA

def sliceFrequencies(text, word, numSlices):
"""Find the frequency of the word in each slice of the text.

Parameters:
text: a string containing a text
word: a word to analyze
numSlices: the integer number of text slices

Return values: list of slice frequencies
"""

sliceLength = (len(text) // numSlices) + 1 # round up
wordFreqs = []
for index in range(0, len(text), sliceLength): # for each slice...

textSlice = text[index:index + sliceLength]
frequency = wordFrequency(textSlice, word)
wordFreqs.append(frequency)

return wordFreqs

To get the slices of the text, we iterate over the indices of text, skipping the length
of a slice each time. So, in each iteration, the value of index is the beginning of a
slice. Each slice is located between indices index and index + sliceLength. This
slice of text is passed into our wordFrequency function along with the word, and
the returned frequency is appended to the list of frequencies.

Plotting the frequencies
Finally, we combine this function with a simple function to plot the frequencies (our
second subproblem) to tie it all together.

def plotWordFreqs(word1, word2, wordFreqs1, wordFreqs2):
"""Plot 2 lists of word frequencies.

Parameters:
word1, word2: 2 words being analyzed
wordFreqs1, wordFreqs2: lists of 2 words' frequencies

Return value: None
"""

numSlices = len(wordFreqs1)
pyplot.plot(range(1, numSlices + 1), wordFreqs1, label = word1)
pyplot.plot(range(1, numSlices + 1), wordFreqs2, label = word2)
pyplot.legend()
pyplot.xlabel('Slice number')
pyplot.ylabel('Frequency')
pyplot.show()

Copyright Taylor and Francis, 2021

6.5 WORD FREQUENCY TRENDS � 271

def wordTrends(fileName, word1, word2, numSlices):
"""Plot frequencies of 2 words across a text.

Parameters:
fileName: name of a text file
word1, word2: 2 words being analyzed
numSlices: the integer number of text slices

Return value: None
"""

open and read the file
textFile = open(fileName, 'r', encoding = 'utf-8')
text = textFile.read()
textFile.close()

wordFreqs1 = sliceFrequencies(text, word1, numSlices)
wordFreqs2 = sliceFrequencies(text, word2, numSlices)

plotWordFreqs(word1, word2, wordFreqs1, wordFreqs2)

Exercise 6.5.5 asks you to combine the four functions from this section into a program
that you can use to experiment with plotting frequencies of different words in books
from Project Gutenberg or the book website.

Exercises
6.5.1* Repeat Exercise 6.1.7 but use a for loop that iterates over the indices of the

string instead of the characters.

6.5.2* Write a function

count(text, target)

that returns the number of occurrences of the string target in the string text.
Use a for loop; do not use the string method count.

6.5.3. Write a function

countAll(text, targets)

that returns the number of occurrences in the string text of any of the strings
in the list of strings named targets. You can use the in operator to determine
whether an item is in a list.

6.5.4. Draw a diagram like the one in Figure 6.2 on page 237 that shows how the
inputs and outputs flow among the four functions from this section. Use the
functional decomposition tree on page 267 as a starting point.

6.5.5. Combine the four functions from this section into a program that prompts
for a filename, two words to analyze, and a number of slices, and then calls
wordTrends. Experiment with plotting frequencies of different words in books
from http://www.gutenberg.org or the book website.

6.5.6. Modify the sliceFrequencies function so that the slices overlap by a
given amount. Substitute the numSlices parameter with two parameters:

Copyright Taylor and Francis, 2021

http://www.gutenberg.org

272 � 6 Text, Documents, and DNA

sliceLength and sliceStep, the length of each slice and the amount that
each slice should shift right in each step, respectively. In the words, the first slice
will be from index 0 to sliceLength, the second slice will be from sliceStep

to sliceStep + sliceLength, the third slice will be from 2 * sliceStep to
2 * sliceStep + sliceLength, etc.

6.5.7. Modify the word frequency trends program you wrote for Exercise 6.5.5 so that
it prompts for two lists of words instead. Each list might represent a particular
theme; an example from Frankenstein is shown below. The wordFrequency

function will need some minor modifications. You can use the in operator to
determine whether an item is in a list.

2 4 6 8 10
Slice number

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Fr
eq

ue
nc

y

['day', 'morning', 'light', 'sun']
['night', 'dark', 'moon', 'sleep']

6.6 COMPARING TEXTS
There have been many methods developed to measure similarity between texts, most
of which are beyond the scope of this book. But one particular method, called a dot
plot is both accessible and quite powerful. In a dot plot, we associate one text with
the x-axis of a plot and another text with the y-axis. We place a dot at position
(x,y) if the character or slice of text at index x in the first text is the same as the
character or slice at index y in the second text. In this way, a dot plot visually
illustrates the similarity between the two texts.

Let’s begin by writing an algorithm that only compares individual characters at the
same indices in the two texts. Consider the following two sentences:

Text 1: Peter Piper picked a peck of pickled peppers.

Text 2: Peter Pepper picked a peck of pickled capers.

We will compare the first character in text 1 to the first character in text 2, then
the second character in text 1 to the second character in text 2, etc. Although
this algorithm, shown below, must iterate over both strings at the same time, and

Copyright Taylor and Francis, 2021

6.6 COMPARING TEXTS � 273

compare the two strings at each position, it requires only one loop because we always
compare the strings at the same index.

import matplotlib.pyplot as pyplot

def dotplot1(text1, text2):
"""Display a simplified dot plot comparing two equal-length strings.

Parameters:
text1: a string object
text2: a string object

Return value: None
"""

text1 = text1.lower()
text2 = text2.lower()
x = []
y = []
for index in range(len(text1)):

if text1[index] == text2[index]:
x.append(index)
y.append(index)

pyplot.scatter(x, y) # scatter plot
pyplot.xlim(0, len(text1)) # x axis covers entire text1
pyplot.ylim(0, len(text2)) # y axis covers entire text2
pyplot.xlabel(text1)
pyplot.ylabel(text2)
pyplot.show()

Reflection 6.23 What is the purpose of the calls to the lower method?

Reflection 6.24 Why must we iterate over the indices of the strings rather than the
characters in the strings?

Every time two characters are found to be equal in the loop, the index of the matching
characters is added to both a list of x-coordinates and a list of y-coordinates. These
lists are then plotted with the scatter function from matplotlib.pyplot, which
plots points without lines attaching them. Figure 6.6 shows the result for the two
strings above.

Reflection 6.25 Look at Figure 6.6. Which dots correspond to which characters? Why
are there only dots on the diagonal?

We can see that, because this function only recognizes matches at the same index
and most of the identical characters in the two sentences do not line up perfectly,
this function does not reveal their true degree of similarity. If we were to insert
two gaps into the strings, the character-by-character comparison would be quite
different:

Copyright Taylor and Francis, 2021

274 � 6 Text, Documents, and DNA

0 5 10 15 20 25 30 35 40 45
Peter Piper picked a peck of pickled peppers.

0

5

10

15

20

25

30

35

40

45

P
e
te

r
P
e
p
p
e
r

p
ic

ke
d
 a

 p
e
ck

 o
f

p
ic

kl
e
d
 c

a
p
e
rs

.

Figure 6.6 Output from the dotplot1 function.

Text 1: Peter Pip er picked a peck of pickled peppers.

Text 2: Peter Pepper picked a peck of pickled ca pers.

Dot plots
A real dot plot compares every character in one sequence to every character in the
other sequence. This means that we want to compare text1[0] to text2[0], then
text1[0] to text2[1], then text1[0] to text2[2], etc., as illustrated below:

Peter Pepper picked a peck of pickled capers.

Peter Piper picked a peck of pickled peppers.
0 1 2 3 4 5 6 7 8 9

...

...
text1:

text2:
0 1 2 3 4 5 6 7 8 9 ...

After we have compared text1[0] to all of the characters in text2, we need to repeat
this process with text1[1], comparing text1[1] to text2[0], then text1[1] to
text2[1], then text1[1] to text2[2], etc., as illustrated below:

Peter Pepper picked a peck of pickled capers.

Peter Piper picked a peck of pickled peppers.
0 1 2 3 4 5 6 7 8 9

...

...
text1:

text2:
0 1 2 3 4 5 6 7 8 9 ...

In other words, for each value of index, we want to compare text1[index] to

Copyright Taylor and Francis, 2021

6.6 COMPARING TEXTS � 275

every character in text2, not just to text2[index]. To accomplish this, we need to
replace the if statement in dotplot1 with another for loop:

1 import matplotlib.pyplot as pyplot

2 def dotplot(text1, text2):
3 """Display a dot plot comparing two strings.

4 Parameters:
5 text1: a string object
6 text2: a string object

7 Return value: None
8 """

9 text1 = text1.lower()
10 text2 = text2.lower()
11 x = []
12 y = []
13 for index1 in range(len(text1)):
14 for index2 in range(len(text2)):
15 if text1[index1] == text2[index2]:
16 x.append(index1)
17 y.append(index2)
18 pyplot.scatter(x, y)
19 pyplot.xlim(0, len(text1))
20 pyplot.ylim(0, len(text2))
21 pyplot.xlabel(text1)
22 pyplot.ylabel(text2)
23 pyplot.show()

With this change inside the first for loop (we also renamed index to index1), each
character text1[index1] is compared to every character in text2, indexed by the
index variable index2, just like the illustrations above. If a match is found, we
append index1 to the x list and index2 to the y list because we want to draw a dot
at coordinates (index1, index2).

The following trace table shows how this works in more detail, with much smaller
inputs. The iterations of the outer for loop are separated by thicker black lines and
set apart with the curly braces on the left side, annotated with values of index1.
The iterations of the inner for loop are separated by thinner red lines.

Copyright Taylor and Francis, 2021

276 � 6 Text, Documents, and DNA

Trace arguments: text1 = 'spam', text2 = 'pea'

Step Line x y index1 index2 Notes
1–4 9–12 [] [] — — initialize variables

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 13 ” ” 0 — index1 ← 0

6 14 ” ” ” 0 index2 ← 0

7 15 ” ” ” ” 's' != 'p'; skip lines 16–17
8 14 ” ” ” 1 index2 ← 1

9 15 ” ” ” ” 's' != 'e'; skip lines 16–17
10 14 ” ” ” 2 index2 ← 2

11 15 ” ” ” ” 's' != 'a'; skip lines 16–17

1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 13 ” ” 1 ” index1 ← 1

13 14 ” ” ” 0 index2 ← 0

14 15 ” ” ” ” 'p' == 'p'; do lines 16–17
15–16 16–17 [1] [0] ” ” we want a dot at (1,0)

17 14 ” ” ” 1 index2 ← 1

18 15 ” ” ” ” 'p' != 'e'; skip lines 16–17
19 14 ” ” ” 2 index2 ← 2

20 15 ” ” ” ” 'p' != 'a'; skip lines 16–17

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21 13 ” ” 2 ” index1 ← 2

22 14 ” ” ” 0 index2 ← 0

23 15 ” ” ” ” 'a' != 'p'; skip lines 16–17
24 14 ” ” ” 1 index2 ← 1

25 15 ” ” ” ” 'a' != 'e'; skip lines 16–17
26 14 ” ” ” 2 index2 ← 2

27 15 ” ” ” ” 'a' == 'a'; do lines 16–17
28–29 16–17 [1, 2] [0, 2] ” ” we want a dot at (2,2)

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

30 13 ” ” 3 ” index1 ← 3

31 14 ” ” ” 0 index2 ← 0

⋮ ⋮

37–42 18–23 [1, 2] [0, 2] 3 2 draw the plot
Notice that when index1 is 0, the inner for loop runs through all the values of
index2. The inner loop finishes in step 11, also finishing the body of the outer
for loop. Therefore, in step 12, the outer loop begins its second iteration, with
index1 = 1. The inner loop then runs through all of its values again, and so on.
There are len(text1) ⋅ len(text2) = 4 ⋅ 3 = 12 total comparisons because each of
the four characters in 'spam' is compared to each of the three characters in 'pea'.
These kinds of loops are called nested loops. They will become very important in
the next few chapters.

Copyright Taylor and Francis, 2021

6.6 COMPARING TEXTS � 277

0 5 10 15 20 25 30 35 40 45
Peter Piper picked a peck of pickled peppers.

0

5

10

15

20

25

30

35

40

45

P
e
te

r
P
e
p
p
e
r

p
ic

ke
d
 a

 p
e
ck

 o
f

p
ic

kl
e
d
 c

a
p
e
rs

.

Figure 6.7 Output from the revised dotplot function.

Figure 6.7 shows the dot plot from the revised version of the function with the
longer strings. Because the two strings share many characters, there are quite a few
matches, contributing to a “noisy” plot. But the plot now does pick up the similarity
in the strings, illustrated by the dots along the main diagonal.

We can reduce the “noise” in a dot plot by comparing substrings instead of individual
characters. In textual analysis applications and computational linguistics, substrings
with length n are known as n-grams.6 When n = 2 and n = 3, they are also called
bigrams and trigrams, respectively. When n > 1, there are many more possible
substrings, so fewer matches tend to exist. Exercise 6.6.14 asks you to generalize this
dot plot function so that it compares n-grams instead of single characters. Figure 6.8
shows the result of this function with n = 3.

Dot plots can be helpful in detecting potential plagiarism. Consider the controversy
that erupted at the 2016 Republican National Convention, when portions of Melania
Trump’s speech seemed to closely resemble portions of Michelle Obama’s convention
speech from eight years prior. The offending portions of these two speeches are
compared with a dot plot in Figure 6.9.

Reflection 6.26 Just by looking at Figure 6.9, would you conclude that portions had
been plagiarized? (Think about what a dot plot comparing two random passages would
look like.)

6n-grams can also refer to sequences of n words, as we will see in the next chapter.

Copyright Taylor and Francis, 2021

278 � 6 Text, Documents, and DNA

0 5 10 15 20 25 30 35 40 45
Peter Piper picked a peck of pickled peppers.

0

5

10

15

20

25

30

35

40

45

P
e
te

r
P
e
p
p
e
r

p
ic

ke
d
 a

 p
e
ck

 o
f

p
ic

kl
e
d
 c

a
p
e
rs

.

Figure 6.8 Output from the dotplot function from Exercise 6.6.14 (trigrams).

0 500 1000 1500 2000
Michelle Obama's speech (2008)

0

200

400

600

800

1000

M
el

an
ia

 T
ru

m
p'

s s
pe

ec
h

(2
01

6)

Figure 6.9 A dot plot comparing 6-grams from segments of Michelle Obama’s and

Melania Trump’s convention speeches in 2008 and 2016.

Copyright Taylor and Francis, 2021

6.6 COMPARING TEXTS � 279

Exercises
6.6.1. What is printed by the following loop? Explain why.

text1 = 'tbontb'
text2 = 'oerooe'
for index in range(len(text1)):

print(text1[index] + text2[index])

6.6.2* Consider the following nested loop.

text1 = 'abcd'
text2 = 'xyz'
for index1 in range(len(text1)):

for index2 in range(len(text2)):
if text1[index1] == text2[index2]:

print(index1, index2)

List the pairs of characters that are compared by the if statement, in the order
they are compared. How many comparisons are there in total?

6.6.3. Repeat the previous exercise, but with the for statements swapped, as shown
below.

text1 = 'abcd'
text2 = 'xyz'
for index2 in range(len(text2)):

for index1 in range(len(text1)):
if text1[index1] == text2[index2]:

print(index1, index2)

6.6.4. What is printed by the following nested loop? Explain why.

text = 'imho'
for index1 in range(len(text)):

for index2 in range(index1, len(text)):
print(text[index1:index2 + 1])

6.6.5. Write a function

difference(word1, word2)

that returns the first index at which the strings word1 and word2 differ. If the
words have different lengths, and the shorter word is a prefix of the longer word,
the function should return the length of the shorter word. If the two words
are the same, the function should return −1. Do this without directly testing
whether word1 and word2 are equal.

6.6.6* Hamming distance, defined to be the number of bit positions that are different
between two bit strings, is used to measure the error that is introduced when
data is sent over a network. For example, suppose we sent the bit sequence
011100110001 over a network, but the destination received 011000110101 in-
stead. To measure the transmission error, we can find the Hamming distance
between the two sequences by lining them up as follows:

Sent: 011100110001

Received: 011000110101

Since the bit sequences are different in two positions, the Hamming distance is
2. Write a function

Copyright Taylor and Francis, 2021

280 � 6 Text, Documents, and DNA

hamming(bits1, bits2)

that returns the Hamming distance between the two given bit strings. Assume
that the two strings have the same length.

6.6.7. Repeat Exercise 6.6.6, but make it work correctly even if the two strings
have different lengths. In this case, each “missing” bit at the end of the
shorter string counts as one toward the Hamming distance. For example,
hamming('000', '10011') should return 3.

6.6.8* The following nested for loop is intended to print information about characters
that are repeated in the string text.

text = 'two words'
for index1 in range(len(text)):

for index2 in range(len(text)):
if text[index1] == text[index2]:

print(text[index1], index1, index2)

There are only two repeated characters in this short string—'w' at indices 1
and 4 and 'o' at indices 2 and 5—but this loop prints more than that. Fix the
nested loop so that it correctly prints only two lines. Explain why your solution
is correct.

6.6.9. Write a function

longestRun(text)

that returns the length of the longest run of the same character in the string
text. For example, longestRun('aabbbbcccd') should return 4.

6.6.10. Write a function

uniqueCharacters(text)

that returns the number of characters that only appear once in the string text.

6.6.11* Write a function

findRepeats(text, length)

that locates all words with the given length that are repeated consecutively
in the string text. For each found repeat, your function should print the word
and the index of the first occurrence of the word. Assume that words do not
start with a space and that there will be a space between repeats. For example,
findRepeats('the the repeats are are repeating', 3) should print

0 the

16 are

6.6.12. Write a function

findRepeats(text)

that locates words with any length from 2–10 that are repeated consecutively in
the string text. See the previous problem for assumptions and what to print.

6.6.13. Write a function

findDuplicates(text, length)

that locates all pairs of identical substrings with the given length any-
where in the string text. The function should print the substring and a
pair of indices representing the first index in each match. For example,
findDuplicates('the the repeats are are repeating', 4) should print

Copyright Taylor and Francis, 2021

6.9 SUMMARY AND FURTHER DISCOVERY � 281

the 0 4

e re 6 22

rep 7 23

repe 8 24

epea 9 25

peat 10 26

are 15 19

are 16 20

6.6.14. Generalize the dotplot function so that it compares n-grams instead of indi-
vidual characters. The third parameter of the function should be n.

*6.7 TIME COMPLEXITY
This section is available on the book website.

*6.8 COMPUTATIONAL GENOMICS
This section is available on the book website.

6.9 SUMMARY AND FURTHER DISCOVERY
Text is stored as a sequence of bytes, which we can read into one or more strings.
The most fundamental string algorithms have one of the following structures:

for character in text:
process character

for index in range(len(text)):
process text[index]

In the first case, consecutive characters in the string are assigned to the for loop
index variable character. In the body of the loop, each character can then be
examined individually. In the second case, consecutive integers from the list [0, 1,

2, ..., len(text) - 1], which are precisely the indices of the characters in text,
are assigned to the for loop index variable index. In this case, the algorithm has
more information because, not only can it access the character at text[index], it
also knows where that character resides in the string. The first choice tends to be
more elegant, but the second choice is necessary when the algorithm needs to know
the index of each character, or if it needs to process slices of the string, which can
only be accessed with indices.

We called one special case of these loops a string accumulator :

newText = ''
for character in text:

newText = newText +

Like an integer accumulator and a list accumulator, a string accumulator builds its
result cumulatively in each iteration of the loop. Because strings are immutable, a

Copyright Taylor and Francis, 2021

282 � 6 Text, Documents, and DNA

string accumulator must create a new string in each iteration that is composed of
the old string with a new character concatenated.

Algorithms like these that perform one pass over their string parameters and execute
a constant number of elementary steps per character are called linear-time algorithms
because their number of elementary steps is proportional to the length of the input
string.

In some cases, we need to compare every character in one string to every character
in a second string, so we need a nested loop like the following:

for index1 in range(len(text1)):
for index2 in range(len(text2)):

process text1[index1] and text2[index2]

If both strings have length n, then a nested loop like this constitutes a quadratic-
time algorithm with time complexity O(n2) (as long as the body of the loop is
constant-time) because every one of n characters in the first string is compared to
every one of n characters in the second string. We will see more loops like this in
later chapters.

Notes for further discovery
The first of the two epigraphs at the beginning of this chapter is from the following
blog post by Leslie Johnston, the former Chief of the Repository Development Center
at the Library of Congress. She is currently Director of Digital Preservation at The
National Archives.

http://blogs.loc.gov/digitalpreservation/2012/04/

a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/

The second epigraph is from an article titled “The DNA Data Deluge” by Michael
C. Schatz and Ben Langmead [55], which can be found at

http://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge .

To learn more about how tokenization is performed in the Python interpreter, look
here: https://docs.python.org/3/reference/lexical_analysis.html.

For the complete Unicode character set, refer to http://unicode.org.

The Fletcher checksum algorithm was invented by John Fletcher at the Lawrence
Livermore National Laboratory and published in 1982 [18].

A concordance for the works of William Shakespeare can be found at

http://www.opensourceshakespeare.org/concordance/.

The Keyword in Context (KWIC) indexing system, also known as a permuted index,
is similar to a concordance. In a KWIC index, every word in the title of an article
appears in the index in the context in which it appears.

To learn more about text analysis in the digital humanities, we recommend Macro-

Copyright Taylor and Francis, 2021

http://blogs.loc.gov/digitalpreservation/2012/04/a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/
http://blogs.loc.gov/digitalpreservation/2012/04/a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/
http://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge
https://docs.python.org/3/reference/lexical_analysis.html
http://unicode.org
http://www.opensourceshakespeare.org/concordance/

6.9 SUMMARY AND FURTHER DISCOVERY � 283

analysis [26] by Matthew Jockers and Exploring Big Historical Data [20] by Shawn
Graham, Ian Milligan, and Scott Weingart.

If you are interested in learning more about computational biology, two good places
to start are The Mathematics of Life [62] by Ian Stewart and Natural Computing
[60] by Dennis Shasha and Cathy Lazere. The latter book has a wider focus than
just computational biology.

*6.10 PROJECTS
This section is available on the book website.

Copyright Taylor and Francis, 2021

Copyright Taylor and Francis, 2021

