
C H A P T E R 5

Forks in the Road

When you come to a fork in the road, take it.

Yogi Berra

So far, our algorithms have been entirely deterministic; they have done the same
thing every time we executed them with the same inputs. However, the natural

world and its inhabitants (including us) are usually not so predictable. Rather, we
consider many natural processes to be, to various degrees, random. For example, the
behaviors of crowds and markets often change in unpredictable ways. The genetic
“mixing” that occurs in sexual reproduction can also be considered a random process
because we cannot predict the characteristics of any particular offspring. And the
unpredictable movements of tiny particles in the air are often modeled as random
processes, with applications to studying airborne pollutants and viruses. To model
these kinds of systems, our programs need to be able to both emulate randomness
and change their behavior in response to stimuli.

More generally, most run-of-the-mill programs must also be able to conditionally
change course, or select from among a variety of options, in response to input.
Indeed, most common desktop applications do nothing unless prompted by a key
press or a mouse click. Computer games like racing simulators react to a controller
several times a second. The protocols that govern data traffic on the Internet adjust
transmission rates continually in response to the perceived level of congestion on the
network. In this chapter, we will discover how to design algorithms that can behave
differently in response to input, both random and deterministic.

165

Copyright Taylor and Francis, 2021

166 � 5 Forks in the Road

5.1 RANDOM WALKS
In 1827, British Botanist Robert Brown, while observing pollen grains suspended
in water under his microscope, witnessed something curious. When the pollen
grains burst, they emitted much smaller particles that proceeded to wiggle around
randomly. This phenomenon, now called Brownian motion , was caused by the
particles’ collisions with the moving water molecules. Brownian motion is now used
to describe the motion of any sufficiently small particle (or molecule) in a fluid.

We can model the essence of Brownian motion with a single randomly moving
particle in two dimensions. This process is known as a random walk . Random
walks are also used to model a wide variety of other phenomena such as markets
and the foraging behavior of animals, and to sample large social networks. In this
section, we will develop a Monte Carlo simulation of a random walk to discover how
far away a randomly moving particle is likely to get in a fixed amount of time.

You may have already modeled a simple random walk in Exercise 2.3.23 by moving
a turtle around the screen and choosing a random angle to turn at each step. We
will now develop a more restricted version of a random walk in which the particle
is forced to move on a two-dimensional grid. At each step, we want the particle to
move in one of the four cardinal directions, each with equal probability.

To simulate random processes, we need an algorithm or device that produces
random numbers, called a random number generator (RNG). A conventional
computer processor cannot implement a true RNG because everything it does is
entirely predictable. Therefore, a computer either needs to incorporate a specialized
device that can detect and transmit truly random physical events (like subatomic
quantum fluctuations) or simulate randomness with a clever algorithm called a
pseudorandom number generator (PRNG). A PRNG generates a sequence of
numbers that appear to be random although, in reality, they are not.

The Python module named random provides a PRNG in a function named random.
The random function returns a pseudorandom number between zero and one, but
not including one. For example:

>>> import random
>>> random.random()
0.9699738944412686

(Your output will differ.) It is convenient to refer to the range of real numbers
produced by the random function as [0,1). The square bracket on the left means
that 0 is included in the range, and the parenthesis on the right means that 1 is
not included in the range. Tangent 5.1 explains a little more about this so-called
interval notation, if it is unfamiliar to you.

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 167

Tangent 5.1: Interval notation

It is customary to represent the interval (i.e., set or range), of real numbers between
a and b, including a and b, with the notation [a, b]. In contrast, the set of integers
between the integers a and b, including a and b, is denoted [a . . b]. For example, [3,7]
represents every real number greater than or equal to 3 and less than or equal to 7,
while [3 . .7] represents the integers 3,4,5,6,7.

To denote an interval of real numbers between a and b that does not contain an endpoint
a or b, we replace the endpoint’s square bracket with a parenthesis. So [a,b) is the
interval of real numbers between a and b that does contain a but does not contain b.
Similarly, (a,b] contains b but not a, and (a,b) contains neither a nor b.

One small step
Now let’s write an algorithm to take one step of a random walk. We will save the
particle’s (x,y) coordinates in two variables, x and y. Then we will use the random

function to assign a random value in [0,1) to a variable named randi (why not?).

x = 0 # particle starts at (0, 0)
y = 0
randi = random.random() # random number in the interval [0, 1)

To use this pseudorandom number to randomly move the particle, we need to think
about the interval of possible random numbers as being divided into four equal
subintervals, and associate a direction with each one:

1. If randi is in [0,0.25), then move east.

2. If randi is in [0.25,0.5), then move north.

3. If randi is in [0.5,0.75), then move west.

4. If randi is in [0.75,1.0), then move south.

We can implement this in Python with an if statement, which executes a particular
sequence of statements only if some Boolean expression is true. The following
statement increments x if randi is in the subinterval [0,0.25):

if randi < 0.25: # if randi is in [0, 0.25), then
x = x + 1 # move east

Reflection 5.1 Why do we not need to also check whether randi is at least zero?

An if statement is also called a conditional statement because, like the while

loops we saw earlier, they make decisions that are conditioned on a Boolean expression.
(Unlike while loops, however, an if statement is only executed once.) The Boolean
expression in this case, randi < 0.25, is true if randi is less than 0.25 and false
otherwise. If the Boolean expression is true, the statement(s) that are indented
beneath the condition are executed. On the other hand, if the Boolean expression
is false, the indented statement(s) are skipped, and the statement following the
indented statement(s) is executed next.

Copyright Taylor and Francis, 2021

168 � 5 Forks in the Road

Math symbol Python symbol

< <

≤ <=

> >

≥ >=

= ==

≠ !=

Table 5.1 Python’s six comparison operators.

Let’s move now to the second case. To check whether randi is in [0.25,0.5), we need
to check whether randi is greater than or equal to 0.25 and randi is less than 0.5.
The meaning of “and” in the previous sentence is identical to the Boolean operator
from Section 3.2. In Python, this condition is represented just as you might expect:

randi >= 0.25 and randi < 0.5

The >= operator is Python’s representation of “greater than or equal to” (≥). It
is one of six comparison operators (or relational operators), listed in Table 5.1,
some of which have two-character representations in Python. (Note especially that
== is used to test for equality. We will discuss these operators further in Section 5.4.)
Adding this case to the first case, we now have two if statements:

if randi < 0.25: # if randi is in [0, 0.25), then
x = x + 1 # move east

if randi >= 0.25 and randi < 0.5: # if randi is in [0.25, 0.5), then
y = y + 1 # move north

Let’s think about how these statements will behave in two different cases. First,
if randi is assigned a value that is less than 0.25, the condition in the first if

statement will be true and x = x + 1 will be executed. Next, the condition in the
second if statement will be checked. But since this condition is false, y will not be
incremented.

On the other hand, if randi is assigned a value that is between 0.25 and 0.5, then
the condition in the first if statement will be false, so the indented statement x =

x + 1 will be skipped and execution will continue with the second if statement.
Since the condition in the second if statement is true, y = y + 1 will be executed.

To complete our four-way decision, we can add two more if statements:

1 if randi < 0.25: # if randi is in [0, 0.25), then
2 x = x + 1 # move east
3 if randi >= 0.25 and randi < 0.5: # if randi is in [0.25, 0.5), then
4 y = y + 1 # move north
5 if randi >= 0.5 and randi < 0.75: # if randi is in [0.5, 0.75), then
6 x = x - 1 # move west
7 if randi >= 0.75 and randi < 1.0: # if randi is in [0.75, 1.0), then
8 y = y - 1 # move south
9 print(x, y) # executed after all 4 cases

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 169

There are four possible ways these statements could execute, one for each interval in
which randi can reside. To illustrate one of these cases, suppose randi was randomly
assigned the value 0.4.

Trace arguments: randi = 0.4

Step Line x y Notes
— — 0 0 assume x = 0 and y = 0

1 1 ” ” randi < 0.25 is false, so skip to line 3
2 3 ” ” randi >= 0.25 and randi < 0.5 is true, so do line 4
3 4 ” 1 y ← y + 1 (move north)
4 5 ” ” randi >= 0.5 and randi < 0.75 is false, so skip to line 7
5 7 ” ” randi >= 0.75 and randi < 1.0 is false, so skip to line 9
6 9 ” ” prints 0 1

Since the condition of the first if statement is false, the trace table shows that
the indented statement on line 2 is skipped. Next, we test the condition of the if

statement on line 3. Since this condition is true (0.25 < 0.4 < 0.5), the indented
statement on line 4, y = y + 1, is executed. We continue by testing the condition of
the third if statement, on line 5. Since this condition is false, we skip the indented
statement on line 6. Next, we continue to the fourth if statement on line 7, and
test its condition, which is false. So line 8 is skipped and execution continues on line
9, which prints the values of x and y. Notice that, for any possible value of randi,
only one of the four indented statements will be executed.

Reflection 5.2 Is this sequence of steps efficient? If not, what steps could be skipped and
in what circumstances?

The code behaves correctly, but it seems unnecessary to test subsequent conditions
after we have already found the correct case. If there were many more than four
cases, this extra work could be substantial. Here is a much more efficient structure:

1 if randi < 0.25: # if randi is in [0, 0.25), then
2 x = x + 1 # move east and finish
3 elif randi < 0.5: # otherwise, if randi is in [0.25, 0.5), then
4 y = y + 1 # move north and finish
5 elif randi < 0.75: # otherwise, if randi is in [0.5, 0.75), then
6 x = x - 1 # move west and finish
7 elif randi < 1.0: # otherwise, if randi is in [0.75, 1.0), then
8 y = y - 1 # move south and finish
9 print(x, y) # executed after all 4 cases

The keyword elif is short for “else if,” meaning that the condition that follows is
checked only if no preceding condition was true. In other words, as we sequentially
check each of the four conditions, if we find that one is true, then the associated
indented statement(s) are executed, and we skip the remaining conditions in the
group. We also eliminated the unnecessary >= checks from each condition (e.g.,
randi >= 0.25). These are redundant because, if we encounter an elif condition,

Copyright Taylor and Francis, 2021

170 � 5 Forks in the Road

we know that the previous condition must have been false, i.e., we know that randi
must be greater than all of the previously tested intervals.

The next trace table, with randi again randomly assigned 0.4, illustrates the
advantage of this alternative structure.

Trace arguments: randi = 0.4

Step Line x y Notes
— — 0 0 assume x = 0 and y = 0

1 1 ” ” randi < 0.25 is false, so skip to line 3
2 3 ” ” randi < 0.5 is true, so do line 4
3 4 ” 1 y ← y + 1 (move north) and skip to line 9
4 9 ” ” prints 1 0

Everything up through step 3 is identical, but now, after the condition on line 3 is
found to be true and line 4 is executed, the remaining elif statements are skipped,
and execution continues on line 9, after the last elif.

Reflection 5.3 For each of the four possible intervals to which randi could belong, how
many elif conditions are checked?

Reflection 5.4 Suppose you replace every elif with if in the most recent version above.
What would then happen if randi had the value 0.4?

This code can be streamlined a bit more. Since randi must be in [0,1), there is no
point in checking the last condition, randi < 1.0. If execution has proceeded that
far, randi must be in [0.75,1). So we can safely execute the last statement, y = y -

1, without checking anything. This is accomplished by replacing the last elif with
an else statement:

1 if randi < 0.25: # if randi is in [0, 0.25), then
2 x = x + 1 # move east and finish
3 elif randi < 0.5: # otherwise, if randi is in [0.25, 0.5), then
4 y = y + 1 # move north and finish
5 elif randi < 0.75: # otherwise, if randi is in [0.5, 0.75), then
6 x = x - 1 # move west and finish
7 else: # otherwise,
8 y = y - 1 # move south and finish
9 print(x, y) # executed after all 4 cases

The else signals that, if no previous condition is true, the statement(s) indented
under the else should be executed.

Reflection 5.5 Again, suppose you replace every elif with if in this newest version.
What would happen now if randi had the value 0.4?

If we (erroneously) replaced the two instances of elif above with if, then the final
else would be associated only with the last if. So if randi had the value 0.4,
the second and third if conditions would both be true and the second and third
indented statements would both be executed. The last indented statement would
not be executed because the last if condition was true.

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 171

In situations where there are only two choices, an else can just accompany an if.
For example, if wanted to randomly move a particle on a line instead of in two
dimensions, our conditional would look like:

1 if randi < 0.5: # if randi is in [0, 0.5), then
2 x = x + 1 # move east and finish
3 else: # otherwise,
4 x = x - 1 # move west and finish
5 print(x) # executed after the if/else

Monte Carlo simulation
The randomWalk function below uses our if/elif/else conditional structure in
a loop to simulate a random walk, and then returns the distance the particle has
moved from the origin. To make the grid movement easier to see, we multiply the
turtle’s movement by a variable moveLength. Figure 5.1 shows an example of what
you will see when you call randomWalk from a main function.

def randomWalk(steps, tortoise):
"""Displays a random walk on a grid.

Parameters:
steps: the number of steps in the random walk
tortoise: a Turtle object

Return value: the final distance from the origin
"""

x = 0 # initialize (x, y) = (0, 0)
y = 0
moveLength = 10 # length of a turtle step
for step in range(steps):

randi = random.random() # randomly choose a direction
if randi < 0.25: # if randi is in [0, 0.25), then

x = x + 1 # move east and finish
elif randi < 0.5: # otherwise, if randi is in [0.25, 0.5), then

y = y + 1 # move north and finish
elif randi < 0.75: # otherwise, if randi is in [0.5, 0.75), then

x = x - 1 # move west and finish
else: # otherwise,

y = y - 1 # move south and finish
tortoise.goto(x * moveLength, y * moveLength) # draw one step

return math.sqrt(x * x + y * y) # return distance from (0, 0)

How far, on average, does a randomly walking particle move from its origin in a
given number of steps? The answer to this question can, for example, provide insight
into the rate at which a fluid spreads or the extent of an animal’s foraging territory.

The distance traveled in any one particular random walk is meaningless; the particle

Copyright Taylor and Francis, 2021

172 � 5 Forks in the Road

Figure 5.1 A 1000-step random walk produced by the randomWalk function.

may return the origin, walk away from the origin at every step, or do something in
between. None of these outcomes tells us anything about the expected, or average,
behavior of the system. To model the expected behavior, we need to compute the
average distance over many, many random walks. This kind of simulation is called a
Monte Carlo simulation , after the famous casino in Monaco.

As we will be calling randomWalk many times, we would like to speed things up
by skipping the turtle visualization of the random walks. We can prevent drawing
by incorporating a flag variable as a parameter to randomWalk. A flag variable
has a Boolean value, and is used to switch some behavior on or off. In Python, the
two possible Boolean values are named True and False (note the capitalization). In
the randomWalk function, we will call the flag variable draw, and cause its value to
influence the drawing behavior with another if statement:

def randomWalk(steps, tortoise, draw):
"""Displays a random walk on a grid.

Parameters:
steps: the number of steps in the random walk
tortoise: a Turtle object
draw: a Boolean indicating whether to draw the random walk

Return value: the final distance from the origin
"""

⋮
if draw:

tortoise.goto(x * moveLength, y * moveLength)
⋮

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 173

Now, when we call randomWalk, we pass in either True or False for our third
argument. If draw is True, then tortoise.goto(⋯) will be executed but, if draw
is False, it will be skipped.

Reflection 5.6 Incorporate draw into your randomWalk function and try calling it with
both True and False passed in for the third parameter.

To find the average over many trials, we will call our randomWalk function repeatedly
in a loop, and use an accumulator variable to sum up all the distances.

def rwMonteCarlo(steps, trials):
"""A Monte Carlo simulation to find the expected distance

that a random walk finishes from the origin.

Parameters:
steps: the number of steps in the random walk
trials: the number of random walks

Return value: the average distance from the origin
"""

totalDistance = 0
for trial in range(trials):

distance = randomWalk(steps, None, False)
totalDistance = totalDistance + distance

return totalDistance / trials

The parameters steps and trials are the number of steps in each random walk
and the number of times to call the randomWalk function, respectively. Notice that
we have passed in None as the argument for the second parameter (tortoise) of
randomWalk. With False being passed in for the parameter draw, the value assigned
to tortoise is never used, so we pass in None as a placeholder.

Reflection 5.7 Call rwMonteCarlo(500, 5) ten times in a loop, printing the result each
time. What do you notice? Do you think five trials is enough? Now perform the same
experiment with 10, 100, 1000, and 10000 trials. How many trials do you think are sufficient
to get a reliable result?

As we increase the number of trials in a Monte Carlo simulation, our average results
become more consistent, but what do the individual trials look like? To find out, we
can generate a histogram of the individual random walk distances. A histogram for
a data set is a bar graph that shows how the items in the data set are distributed
across some number of intervals, which are usually called “bins” or “buckets.” To
make a histogram of the distances, we need to create a list of these values in the
loop, and then call the pyplot.hist function to display them as a histogram. A
modified version of rwMonteCarlo that also displays a histogram is shown below.

Copyright Taylor and Francis, 2021

174 � 5 Forks in the Road

0 20 40 60 80 100
Distance

0

25

50

75

100

125

150

175

200
Fr

eq
ue

nc
y

Figure 5.2 A histogram showing the distribution of distances in 5000 trials of a

1000-step random walk.

def rwMonteCarlo(steps, trials):
""" (docstring omitted) """

totalDistance = 0
distances = []
for trial in range(trials):

distance = randomWalk(steps, None, False)
totalDistance = totalDistance + distance
distances.append(distance)

pyplot.hist(distances, 75)
pyplot.xlabel('Distance')
pyplot.ylabel('Frequency')
pyplot.show()

return totalDistance / trials

The first argument to pyplot.hist is the list of values, and the second is the
number of bins to use. A histogram produced by calling the modified function
with rwMonteCarlo(1000, 5000) is shown in Figure 5.2. The x-axis represents the
distance moved from the origin in the random walks, grouped into 75 bins, and
the y-axis is the number of times each bin of distances appeared among the 5000
trials. The mean distance returned by the function was about 28, and you can see

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 175

that the histogram shows that most of the trials were near that value. The overall
shape of the histogram resembles a “bell curve,” more formally known as a normal
distribution. (To learn more about why this phenomenon occurs, see Section 5.3.)

Ultimately, we want to understand the distance traveled as a function of the number
of steps. In other words, if the particle moves n steps, does it travel an average
distance of n/2 or n/25 or

√
n or log2 n or . . . ? To empirically discover the answer,

we need to run the Monte Carlo simulation for many different numbers of steps, and
try to infer a pattern from a plot of the results. We leave this as an exercise.

Exercises
5.1.1* What is printed by the following sequence of statements in each of the cases

below? Explain your answers.

if votes1 >= votes2:
print('Candidate one wins!')

elif votes1 <= votes2:
print('Candidate two wins!')

else:
print('There was a tie.')

(a) votes1 = 184 and votes2 = 206

(b) votes1 = 255 and votes2 = 135

(c) votes1 = 195 and votes2 = 195

5.1.2* There is a problem with the statements in the previous exercise. Fix them so
that they correctly fulfill their intended purpose.

5.1.3. What is printed by the following sequence of statements in each of the cases
below? Explain your answers.

majority = (votes1 + votes2 + votes3) / 2
if votes1 > majority:

print('Candidate one wins!')
if votes2 > majority:

print('Candidate two wins!')
if votes3 > majority:

print('Candidate three wins!')
else:

print('A runoff is required.')

(a) votes1 = 5 and votes2 = 5 and votes3 = 5

(b) votes1 = 9 and votes2 = 2 and votes3 = 4

(c) votes1 = 0 and votes2 = 15 and votes3 = 0

5.1.4. Make the statements in the previous problem more efficient and fix them so
that they fulfill their intended purpose.

Copyright Taylor and Francis, 2021

176 � 5 Forks in the Road

5.1.5. What is syntactically wrong with the following sequence of statements?

if x < 1:
print('Something.')

else:
print('Something else.')

elif x > 3:
print('Another something.')

5.1.6. What is the final value assigned to result after each of the following code
segments?

(a) n = 13
result = n
if n > 12:

result = result + 12
if n < 5:

result = result + 5
else:

result = result + 2

(b) n = 13
result = n
if n > 12:

result = result + 12
elif n < 5:

result = result + 5
else:

result = result + 2

5.1.7* Suppose the weather forecast calls for a 70% chance of rain. Write a function

weather()

that prints 'RAIN' with probability 0.7, and 'SUN!' otherwise. Then write
another version that snows with probability 0.66, produces a sunny day with
probability 0.33, and rains cats and dogs with probability 0.01.

5.1.8* Write a function

roll()

that simulates the rolling of a single fair die by returning each of the integers 1
through 6 with equal probability. Use random.random().

5.1.9. Write a function

loaded()

that simulates the rolling of a single “loaded die” that rolls more 1’s and
6’s than it should. The probability of rolling each of 1 or 6 should be 0.25.
The function should use the random.random function and an if/elif/else

conditional construct to assign a roll value to a variable named roll, and then
return the value of roll.

5.1.10* Write a function that chooses a random number between 1 and 100, prompts for
a guess, and prints whether the guess is correct, too high, or too low. Use the
function random.randrange(1, 101) to get your random number. For example,
your function might display:

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 177

Guess my number: 50

Your guess was too high. My number was 5.

5.1.11. Write a function to implement a simple calculator. The function should prompt
for an operation (addition, subtraction, multiplication, or division), the two
numbers to operate on, and then print the result. If an unknown operation is
entered, the program should say so. For example, your function might display:

Operation: *

First number: 67

Second number: 34.1

The answer is 2284.7.

or

Operation: &

First number: 5

Second number: 3.2

I don't know how to do that!

5.1.12. Write a function

factors(number)

that prints all of the factors of the given number. For example, factors(66)
should print 2 3 6 11 22 33 66 (one per line).

5.1.13* Write a function

countVotes(votes)

that implements the algorithm from Exercise 1.2.7, but also accounts
for the possibility of a tie. The parameter is a list of strings like
['John', 'Laura', 'Laura', 'John', 'Laura']. If Laura receives the most
votes, return the string 'Laura'; if John receives the most votes, return 'John';
if it is a tie, return 'Tie'.

5.1.14. Write a function

assignGrades(scores)

that returns a list of letter grades corresponding to the numerical scores in the
list scores. For example, assignGrades([78, 91, 85]) should return the list
['C', 'A', 'B'].

5.1.15. Sometimes we want a random walk to reflect circumstances that bias the
probability of a particle moving in some direction (i.e., gravity, water current, or
wind). For example, suppose that we need to incorporate gravity, so a movement
to the north is modeling a real movement up, away from the force of gravity.
Then we might want to decrease the probability of moving north to 0.15, increase
the probability of moving south to 0.35, and leave the other directions as they
were. Show how to modify the randomWalk function to implement this situation.

5.1.16* To discover the distance traveled by a randomly walking particle as a function
of the number of its steps, we can call the rwMonteCarlo function for many
different numbers of steps, and try to infer a pattern from a plot of the results.

(a) Write a function

plotDistances(maxSteps, trials)

Copyright Taylor and Francis, 2021

178 � 5 Forks in the Road

that does this with steps equal to 100, 200, . . . , maxSteps, and then
plots the results with matplotlib.pyplot. Include properly labeled
axes and a legend.

(b) Call plotDistances(1000, 5000) to view the relationship between the
number of steps taken and the distance moved from the origin. What is
your hypothesis for the function approximated by the plot?

(c) The function we are seeking has actually been mathematically deter-
mined, and is approximately

√
n. Confirm this empirically by plotting

this function alongside the simulated results. To do so, initialize a new
list of y values before your loop, and append math.sqrt(steps) to this
list inside your loop (steps is your for loop index variable). This creates
a list of values of the

√
n function. Plot these values alongside your

random walk results.

(d) As you discovered in Reflection 5.7, the quality of any Monte Carlo
approximation depends on the number of trials. Call plotDistances a
few more times with smaller and larger numbers of trials. What do you
notice in your plot?

5.1.17. Determining the number of bins to use in a histogram is part science, part
art. If you use too few bins, you might miss the shape of the distribution. If
you use too many bins, there may be many empty bins and the shape of the
distribution will be too jagged. Experiment with the correct number of bins for
10,000 trials in the rwHistogram function you wrote in the previous exercise.
At the extremes, create a histogram with only 3 bins and another with 1,000
bins. Then try numbers in between. What seems to be a good number of bins?
(You may also want to do some research on this question.)

5.1.18. The Monty Hall problem is a famous puzzle based on the game show “Let’s
Make a Deal,” hosted, in its heyday, by Monty Hall. You are given the choice
of three doors. Behind one is a car, and behind the other two are goats. You
pick a door, and then Monty, who knows what’s behind all three doors, opens a
different one, which always reveals a goat. You can then stick with your original
door or switch. What do you do (assuming you would prefer a car)?

We can write a Monte Carlo simulation to find out. First, write a function

montyHall(choice, switch)

that decides whether we win or lose, based on our original door choice and
whether we decide to switch doors. Assume that the doors are numbered 0, 1,
and 2, and that the car is always behind door number 2. If we originally chose
the car, then we lose if we switch but we win if we don’t. Otherwise, if we did
not originally choose the car, then we win if we switch and lose if we don’t. The
function should return True if we win and False if we lose.

Now write a function

monteMonty(trials)

that performs a Monte Carlo simulation with the given number of trials to find
the probability of winning if we decide to switch doors. For each trial, choose a
random door number (between 0 and 2), and call the montyHall function with
your choice and switch = True. Count the number of times we win, and return
this number divided by the number of trials. Can you explain the result?

Copyright Taylor and Francis, 2021

5.1 RANDOM WALKS � 179

5.1.19. The value of π can be estimated with Monte Carlo
simulation. Suppose you draw a circle on the wall
with radius 1, inscribed inside a square with side
length 2, as shown to the right. You then close your
eyes and throw darts at the circle. Assuming every
dart lands inside the square, the fraction of the darts
that land in the circle estimates the ratio between the
area of the circle and the area of the square. We know
that the area of the circle is C = πr2 = π12 = π and
the area of the square is S = 22 = 4. So the exact ratio
is π/4. With enough darts, f , the fraction (between
0 and 1) that lands in the circle will approximate
this ratio: f ≈ π/4, which means that π ≈ 4f .

1

2

To make matters a little simpler, we can just throw darts in the upper right
quarter of the circle (shaded above). The ratio here is the same: (π/4)/1 = π/4.
If we place this quarter circle on x and y axes, with the center of the circle at
(0,0), our darts will now all land at points with x and y coordinates between 0
and 1. Use this idea to write a function

montePi(darts)

that approximates the value π by repeatedly throwing random virtual darts
that land at points with x and y coordinates in [0,1). Count the number that
land at points within distance 1 of the origin, and return this fraction.

5.1.20. The Good, The Bad, and The Ugly are in a three-way gun fight (sometimes
called a “truel”). The Good always hits his target with probability 0.8, The Bad
always hits his target with probability 0.7, and The Ugly always hits his target
with probability 0.6. Initially, The Good aims at The Bad, The Bad aims at The
Good, and The Ugly aims at The Bad. The gunmen shoot simultaneously. In the
next round, each gunman, if he is still standing, aims at his same target, if that
target is alive, or at the other gunman, if there is one, otherwise. This continues
until only one gunman is standing or all are dead. What is the probability that
they all die? What is the probability that The Good survives? What about The
Bad? The Ugly? On average, how many rounds are there? Write a function

goodBadUgly()

that simulates one instance of this three-way gun fight. Your function should
return 1, 2, 3, or 0 depending upon whether The Good, The Bad, The Ugly, or
nobody is left standing, respectively. Next, write a function

monteGBU(trials)

that calls your goodBadUgly function repeatedly in a Monte Carlo simulation
to answer the questions above.

*5.2 PSEUDORANDOM NUMBER GENERATORS
This section is available on the book website.

*5.3 SIMULATING PROBABILITY DISTRIBUTIONS
This section is available on the book website.

Copyright Taylor and Francis, 2021

180 � 5 Forks in the Road

5.4 BACK TO BOOLEANS
In this section, we will further develop your facility with conditional expressions and
Boolean logic. (If your Boolean logic is rusty, you may want to review Section 3.2
first.)

In Python, Boolean expressions evaluate to either the value True or the value False,
which correspond to the binary values 1 and 0, respectively, that we worked with in
Section 3.2. The values True and False can be printed, assigned to variable names,
and manipulated just like numeric values. For example, try the following examples
and make sure you understand each result.

>>> print(0 < 1)
True
>>> result = 0 > 1
>>> print(result)
False
>>> name = 'Kermit'
>>> print(name == 'Gonzo')
False

The “double equals” (==) operator tests for equality; it has nothing to do with
assignment. The Python interpreter will remind you if you mistakenly use a single
equals in an if statement. For example, try this:

>>> if value = 0:
if value = 0:

^
SyntaxError: invalid syntax

However, the interpreter will not catch the error if you mistakenly use == in an
assignment statement. For example, try this:

>>> value = 1
>>> value == value + 1 # increment value?
False

In a program, nothing will be printed as a result of the second statement, and value

will not be incremented as expected. So be careful!

As we saw in Section 3.2, Boolean expressions can be combined with the Boolean
operators (or logical operators) and, or, and not. As a reminder, Figure 5.3 contains
the truth tables for the three Boolean operators, expressed in Python notation. In
the tables, the variable names a and b represent arbitrary Boolean variables or
expressions.

For example, suppose we wanted to determine whether a household has an annual
income within some range, say $40,000 to $65,000. We can use an and operator, as
we initially did to check if randi was within an interval earlier.

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 181

a b a and b a or b not a

False False False False True

False True False True True

True False False True False

True True True True False

Figure 5.3 Combined truth table for the three Python Boolean operators.

>>> pay = 53000
>>> (pay >= 40000) and (pay <= 65000)
True
>>> pay = 12000
>>> (pay >= 40000) and (pay <= 65000)
False
>>> pay = 78000
>>> (pay >= 40000) and (pay <= 65000)
False

When 53000 is assigned to pay, the two Boolean expressions pay >= 40000 and pay

<= 65000 are both True, so (pay >= 40000) and (pay <= 65000) is also True, as
summarized in the table below.

pay pay >= 40000 pay <= 65000 (pay >= 40000) and (pay <= 65000)

53000 True True True

12000 False True False

78000 True False False

However, as shown in the second and third rows, when 12000 or 78000 is assigned
to pay, one of the components in the and expression is False, so the entire and

expression is also False.

Using an or operator in this situation would be incorrect, as you can see below.

pay pay >= 40000 pay <= 65000 (pay >= 40000) or (pay <= 65000)

53000 True True True

12000 False True True

78000 True False True

Since an or expression is True if at least one of its operands is True, the expression
(pay >= 40000) or (pay <= 65000) will be True for every possible value of pay!
(Think about it.)

Copyright Taylor and Francis, 2021

182 � 5 Forks in the Road

Predicate functions
We can incorporate this income test into a function like this:

def middleClass(pay):
"""Decide whether an income is classified as "middle class."

Parameter:
pay: annual household income

Return: Boolean value indicating whether pay is a middle class income
"""

if (pay >= 40000) and (pay <= 65000):
result = True

else:
result = False

return result

Functions that return Boolean values are called predicate functions. Calling
middleClass(53000) will return the value True while middleClass(12000) will
return False. But this function is equivalent to one that just returns the value of
the Boolean expression:

def middleClass(pay):
""" (docstring omitted) """

return (pay >= 40000) and (pay <= 65000)

To see that these two functions return identical values, notice that the return
value in the first version is always the same as the value of the expression
(pay >= 40000) and (pay <= 65000). If the expression is True, the function re-
turns True. If the expression is False, the function returns False. So simply returning
the value of the expression, as in the second version, accomplishes the same thing.

As another example, suppose we wanted to write a function to decide, in some for-
profit company, whether the CEO’s compensation divided by the average employees’
is at most some “fair” ratio. A simple function that returns the result of this test
looks like this:

def fair(employee, ceo, ratio):
"""Decide whether the ratio of CEO to employee pay is fair.

Parameters:
employee: average employee pay
ceo: CEO pay
ratio: the fair ratio

Return:
a Boolean indicating whether ceo / employee is fair

"""

return (ceo / employee) <= ratio

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 183

Reflection 5.8 There is a subtle problem though with this function. What is it?

This function will not always work properly because, if the average employees’
compensation equals zero (or zero is mistakenly passed in), the division operation
will result in an error. Therefore, we have to test whether employee == 0 before
attempting the division and, if so, return False (because not paying employees is
obviously not fair). Otherwise, we want to return the result of the fairness test. The
following function implements this algorithm.

def fair(employee, ceo, ratio):
""" (docstring omitted) """

if employee == 0:
result = False

else:
result = (ceo / employee) <= ratio

return result

Short circuit evaluation
The fair function can be simplified by making use of a feature that Python applies
to both the and and or operators called short circuit evaluation . Since only
one operand of an and expression must be False for the expression to be False,
the Python interpreter does not bother to evaluate the second operand in an and

expression if the first is False. Likewise, since only one operand of an or expression
must be True for the expression to be True, the Python interpreter does not bother
to evaluate the second operand in an or expression if the first is True.

This means that our fair function can be simplified to:

def fair(employee, ceo, ratio):
""" (docstring omitted) """

return (employee != 0) and ((ceo / employee) <= ratio)

If employee is 0, then (employee != 0) is False, and the function returns
False without evaluating (ceo / employee <= ratio). On the other hand, if
(employee != 0) is True, then (ceo / employee <= ratio) is evaluated, and
the return value depends on this outcome. Notice that this would not work if the
and operator did not use short circuit evaluation because, if (employee != 0) were
False and then (ceo / employee <= ratio) was evaluated, the division would
result in a “divide by zero” error!

To illustrate the analogous mechanism with the or operator, suppose we wanted to
write the function in the opposite way, instead returning True if the ratio is unfair.
The first version of the function would look like this:

Copyright Taylor and Francis, 2021

184 � 5 Forks in the Road

def unfair(employee, ceo, ratio):
""" (docstring omitted) """

if employee == 0:
result = True

else:
result = (ceo / employee) > ratio

return result

However, taking advantage of short circuit evaluation with the or operator, we can
simplify the whole function to:

def unfair(employee, ceo, ratio):
""" (docstring omitted) """

return (employee == 0) or ((ceo / employee) > ratio)

In this case, if (employee == 0) is True, the whole expression returns True with-
out evaluating the division test, thus avoiding an error. On the other hand, if
(employee == 0) is False, the division test is evaluated, and the final result is
equal to the outcome of this test.

DeMorgan’s laws
Let’s now create a new function that uses a while loop to repeatedly prompt for
employee and CEO salaries, and decide whether the ratio is fair. The function will
ask at the end of each iteration whether it should continue.

def fairnessChecker():
""" (docstring omitted) """

ratio = float(input('Maximum fair ceo:employee pay ratio: '))
answer = 'y'
while answer != 'n':

employee = float(input('Employee pay: '))
ceo = float(input('CEO pay: '))
if fair(employee, ceo, ratio):

print("That's fair.")
else:

print("That's not fair.")
answer = input('Continue (y/n)? ')

Reflection 5.9 Why is answer initialized to 'y' before the loop?

The function repeatedly prompts for salaries while answer, which is obtained at the
end of the loop body, is not 'n'. If answer is not initialized before the loop, then
the while loop condition will not make sense before the first iteration. If it is not

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 185

initialized to something other than 'n', then the loop will not iterate the first time.
It could be intialized to anything other than 'n', but 'y' makes the most sense.
Notice also that, because fair is a predicate function, we simply use its return value
as the Boolean condition in the if statement.

How can we modify the while loop condition to also allow an uppercase 'N' to exit
the loop? Should the while loop condition be changed to

(answer != 'n') and (answer != 'N')

or to

(answer != 'n') or (answer != 'N') ?

To make the correct choice, it sometimes helps to think about the opposite sit-
uation: when we want the loop to stop. This is rather easy in this case: when
answer is either 'n' or 'N'. In other words, we want the loop to stop when
(answer == 'n') or (answer == 'N'). So the while loop condition needs to be
the negation of this, or:

not((answer == 'n') or (answer == 'N')) .

We can use De Morgan’s laws, named after 19th century British mathematician
Augustus De Morgan, to express this condition in a different way. They are:

1. not (a and b) is equivalent to not a or not b.

2. not (a or b) is equivalent to not a and not b.

You may recognize these from Exercises 3.2.12 and 3.2.13, which asked you to
construct the following truth tables to prove the laws’ veracity!

a b a and b not(a and b) not a not b not a or not b

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

a b a or b not(a or b) not a not b not a and not b

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

The first law says that a and b is false if either a is false or b is false. The second law
says that a or b is false if both a is false and b is false. Applying the first law to our
condition, we find that not((answer == 'n') or (answer == 'N')) is equivalent
to

not (answer == 'n') and not (answer == 'N')

or

(answer != 'n') and (answer != 'N') .

Copyright Taylor and Francis, 2021

186 � 5 Forks in the Road

Operators Description

1. ** exponentiation (power)

2. +, - unary positive and negative

3. *, /, //, % multiplication and division

4. +, - addition and subtraction

5. <, <=, >, >=, !=, ==, in, not in comparison operators

6. not Boolean not

7. and Boolean and

8. or Boolean or

Table 5.2 Operator precedence, listed from highest to lowest. This is an expanded

version of Table 1.1.

Incorporating this new condition into the while loop in fairnessChecker is easy.

Let’s take the complexity one step further by changing two things. First, let’s stop
the loop when a fair pay ratio is obtained. Second, instead of iterating while answer

is anything but 'n' or 'N', let’s iterate only while answer is either 'y' or 'Y'. These
changes are incorporated into the following revised function.

1 def fairnessChecker():
2 """ (docstring omitted) """

3 ratio = float(input('Maximum fair ceo:employee pay ratio: '))
4 answer = 'y'
5 isFair = False
6 while (answer == 'y' or answer == 'Y') and not isFair:
7 employee = float(input('Employee pay: '))
8 ceo = float(input('CEO pay: '))
9 isFair = fair(employee, ceo, ratio)

10 if isFair:
11 print("That's fair.")
12 else:
13 print("That's not fair.")
14 answer = input('Continue (y/n)? ')

We have changed the test involving answer on line 6 and introduced a new Boolean
flag variable isFair to keep track of whether the current pay ratio is fair. Notice
that, to keep the while loop going, we need both answer to be 'y' or 'Y' and for
the pay ratio to be unfair, that is, not isFair. We have been using parentheses
around certain expressions in this section mostly for clarity, but the parentheses in
this while loop condition are actually necessary. As shown in Table 5.2, the and

operator has precedence over the or operator. Therefore, without the parentheses,

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 187

the expression answer == 'Y' and not isFair would be evaluated first, and that
would not make sense.

The variable isFair is initialized to False before the loop so that it iterates at least
once, and assigned within the loop on line 9 to be the value returned by the fair

function. To avoid unnecessarily calling fair twice, we also use isFair as the if

condition. We also now only prompt to continue if the pay ratio is not fair.

Thinking inside the box
Let’s next use a random walk simulation to analyze how long it takes for a particle
(or a person) to escape an enclosed space. This sort of scenario can also simulate
how likely it is for a virus to escape quarantine if there is a slight chance of a break
out. We will use turtle graphics to visualize a simple square room with a door, as
shown below:

(0,0)

(−width, width)

(−width, −width)

(width, width)

(width, −width)

4 * radius

The variables width and radius will be set to half the width of the room and
the radius of the particle, respectively. We want to move the particle randomly
in the room while also respecting the walls. For the particle movement, we will
use a slightly different random walk in which the amount added to the particle’s
position is dictated by a normal probability distribution with mean zero. (Also see
Exercise 5.3.1.) Here is the overall idea of the algorithm in pseudocode.

Copyright Taylor and Francis, 2021

188 � 5 Forks in the Road

Algorithm Escape

Input: width of the room
1 draw the room with the given width and create a turtle
2 x ← 0
3 y ← 0
4 number of steps ← 0
5 repeat while the particle has not escaped:
6 number of steps ← number of steps + 1
7 make one normally distributed step, modifying x and y
8 if the particle hits a wall, then:
9 bounce back to the previous position

10 else if the particle finds the door, then:
11 escape and exit the loop
12 move the turtle to position (x, y)

Output: number of steps

The easier parts of this implementation (essentially lines 2–7), including how to
perform the random walk, look like this:

x = 0 # position of the particle
y = 0
escaped = False
numSteps = 0
while not escaped:

numSteps = numSteps + 1
dx = random.gauss(0, step) # normal with mean 0 and std dev step
dy = random.gauss(0, step)
x = x + dx
y = y + dy

bounce off the walls and set escaped to True if
the particle finds the door

particle.goto(x, y)

Since the normal (i.e., Gaussian) distribution is centered at zero, dx and dy can be
either positive or negative, meaning that the particle can move in any direction. The
random walk will continue until the Boolean variable escaped is set to True, which
we will implement next.

When the particle hits a wall, we want it to “bounce” back to its previous po-
sition. We can tell that the left edge of the particle is touching the west wall if
(x - radius <= -width) is true. Similarly, if (x + radius >= width) is true,
then the right edge of the particle must be touching the east wall. By combining
these with analogous expressions for the north and south walls, we can make the
particle bounce back like this:

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 189

if (x - radius <= -width) or (x + radius >= width) \
or (y - radius <= -width) or (y + radius >= width):

x = x - dx # return to previous position
y = y - dy

Reflection 5.10 Why is or the correct Boolean operator here? When would the expression
be true if we used and instead?

To incorporate the door, we need to modify the condition so that it excludes the
opening in the west wall. The door opening extends from y coordinate -2 * radius

at the bottom to 2 * radius at the top. So we will know if the particle is in the
doorway if it is touching the west wall and

(y - radius >= -2 * radius) and (y + radius <= 2 * radius),

or equivalently, (y >= -radius) and (y <= radius). But we need the negation
of this expression so we can exclude the opening in the “bounce” condition.

Reflection 5.11 What is the negation of (y >= -radius) and (y <= radius)?

Using DeMorgan’s laws, the negation of this expression is

not(y >= -radius) or not(y <= radius).

Or equivalently,

(y < -radius) or (y > radius).

Therefore, the modified if condition, causing the particle to bounce back when it
touches a wall, is:

if ((x <= -width + radius) and ((y < -radius) or (y > radius))) \
or (x >= width - radius) or (y <= -width + radius) \
or (y >= width - radius):
x = x - dx
y = y - dy

elif (x <= -width + radius) and ((y >= -radius) and (y <= radius)):
escaped = True

Note that the outer parentheses around ((y < -radius) or (y > radius)) are
necessary to ensure that the expression is evaluated correctly. We added an elif

clause to catch when the particle has found the open doorway and set the flag variable
to True to end the while loop. The finished function, with drawing statements
omitted, follows. The complete function can be found on the book website.

Copyright Taylor and Francis, 2021

190 � 5 Forks in the Road

import random
import turtle

def escape(width):
"""Compute the number of steps required for a randomly moving

particle to escape a square room with a door.

Parameter:
width: the width of the room

Return value: the number of steps needed to escape
"""

step = 15 # standard deviation of one particle step
radius = 10 # radius of the particle

draw the room and create a turtle named particle here (omitted)

x = 0 # position of the particle
y = 0
escaped = False
numSteps = 0
while not escaped:

numSteps = numSteps + 1
dx = random.gauss(0, step) # normal with mean 0 and std dev step
dy = random.gauss(0, step)
x = x + dx
y = y + dy

if ((x <= -width + radius) and ((y < -radius) or (y > radius))) \
or (x >= width - radius) or (y <= -width + radius) \
or (y >= width - radius):
x = x - dx
y = y - dy

elif (x <= -width + radius) and ((y >= -radius) and (y <= radius)):
escaped = True

particle.goto(x, y)

return numSteps

Reflection 5.12 How can we confirm that this expression is really correct?

To confirm that any Boolean expression is correct, we can create a truth table for it,
and then confirm that every case matches what we intended. This is often not really
necessary in practice but, at times, with really complex situations, it can reassuring.
We will illustrate by just considering the expression testing whether the particle is
touching the west wall but is not in the doorway:

(x <= -width + radius) and ((y < -radius) or (y > radius))

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 191

In this expression, there are three separate Boolean “inputs,” one for each expression
containing a comparison operator. In the truth table, we will represent each of these
with a letter to save space:

• (x <= -width + radius) will be represented by a,

• (y < -radius) will be represented by b, and

• (y > radius) will be represented by c.

So the final expression we want to evaluate is a and (b or c).

In the truth table below, the first three columns represent our three inputs. With
three inputs, we need 23 = 8 rows, one for each possible assignment of truth values.
There is a trick to quickly writing down all the truth value combinations; see if you
can spot it in the first three columns. (We are using T and F as abbreviations for
True and False.)

a b c b or c a and (b or c)

F F F F F

F F T T F

F T F T F

F T T T F

T F F F F

T F T T T

T T F T T

T T T T T

We need to first evaluate (y < -radius) or (y > radius). The result, shown in
the fourth column, is the or of the second and third columns. Then, in the fifth
column, we and the first column with the fourth to get our final result. This column
says that the expression is true in the three highlighted cases. For our expression
to be correct, these need to be exactly the situations in which we want the particle
to bounce off the west wall. (We can assume that the particle is also within the
proper y bounds because that is checked elsewhere in the original expression.) Let’s
examine each highlighted row to make sure that this result is correct:

• row 6: a is true, b is false, and c is true

In this case, (x <= -width + radius) is true, (y < -radius) is false, and
(y > radius) is true. So the particle is touching the wall and is not below
the door and is above the door. Check.

• row 7: a is true, b is true, and c is false

In the second case, (x <= -width + radius) is true, (y < -radius) is true,
and (y > radius) is false. So the particle is touching the wall and is below
the door and is not above the door. Check.

Copyright Taylor and Francis, 2021

192 � 5 Forks in the Road

• row 8: a is true, b is true, and c is true

Finally, this case is when all three are true. So the particle is touching the wall
and is below the door and is above the door. This cannot possibly happen, so
it doesn’t matter that the expression is (oddly) true. Check.

Many happy returns
We often come across situations in which we want a function to return different
values depending on the outcome of a condition. The simplest example is finding the
maximum of two numbers a and b. If a is at least as large as b, we want to return a;
otherwise, b must be larger, so we return b.

def max(a, b):
""" (docstring omitted) """

if a >= b:
result = a

else:
result = b

return result

We can simplify this function a bit by returning the appropriate value right in the
if/else statement:

def max(a, b):
""" (docstring omitted) """

if a >= b:
return a

else:
return b

It may look strange at first to see two return statements in one function, but it
all makes perfect sense. Recall from Section 2.5 that return both ends the function
and assigns the function’s return value. So this means that at most one return

statement can ever be executed in a function. In this case, if a >= b is True, the
function ends and returns the value of a. Otherwise, the function executes the else

clause, which returns the value of b.

The fact that the function ends if a >= b is True means that we can simplify it even
further: if execution continues past the if part of the if/else, it must be the case
that a >= b is False. So the else is extraneous; the function can be simplified to:

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 193

def max(a, b):
""" (docstring omitted) """

if a >= b:
return a

return b

This same principle can be applied to situations with more than two cases. Suppose
we wanted to use if statements to convert a percentage grade to a grade point (i.e.,
GPA) on a 0–4 scale. A natural implementation of this might look like the following:

def assignGP(score):
"""Returns the grade point equivalent of score.

Parameter:
score: a score between 0 and 100

Return value: the equivalent grade point value
"""

if score >= 90:
return 4

elif score >= 80:
return 3

elif score >= 70:
return 2

elif score >= 60:
return 1

else:
return 0

Reflection 5.13 Why do we not need to check upper bounds on the scores in each case? In
other words, why does the second condition not need to be score >= 80 and score < 90?

Suppose score was 92. Then the first condition is True, so the function returns the
value 4 and ends. Execution never proceeds past the statement return 4. For this
reason, the “el” in the next elif is extraneous. In other words, because execution
would never have made it there if the previous condition was True, there is no need
to tell the interpreter to skip testing this condition if that was the case.

Now suppose score was 82. In this case, the first condition would be False, so we
continue on to the first elif condition. Because we got to this point, we already
know that score < 90 (hence the omission of that check). The first elif condition
is True, so we immediately return the value 3. So there is no need for the “el” in the
second elif either because there is no need to skip testing this condition if either of
the previous conditions were True. In fact, we can remove the “el”s from all of the
elifs, and the final else, with no loss in efficiency at all.

Copyright Taylor and Francis, 2021

194 � 5 Forks in the Road

def assignGP(score):
""" (docstring omitted) """

if score >= 90:
return 4

if score >= 80:
return 3

if score >= 70:
return 2

if score >= 60:
return 1

return 0

Some programmers find it clearer to leave the elif statements in, and that is fine
too. We will do it both ways in the coming chapters. But, as you begin to see more
algorithms, you will probably see code like this, and so it is important to understand
why it is correct.

Exercises
Write a function for each of the following exercises. Test each one with both common and
boundary case arguments, as described on page 38, and document your test cases.

5.4.1* Write a function

password()

that asks for a username and a password. It should return True if the username
is entered as alan.turing and the password is entered as notTouring, and
return False otherwise.

5.4.2. Suppose that in a game that you are making, the player wins if her score is at
least 100. Write a function

hasWon(score)

that returns True if she has won, and False otherwise.

5.4.3. Suppose you have designed a sensor that people can wear to monitor their
health. One task of this sensor is to monitor body temperature: if it falls outside
the range 97.9○ F to 99.3○ F, the person may be getting sick. Write a function

monitor(temperature)

that takes a temperature (in Fahrenheit) as a parameter, and returns True if
temperature falls in the healthy range and False otherwise.

5.4.4* A year is a leap year if it is divisible by four, unless it is a century year in which
case it must be divisible by 400. For example, 2028 and 1600 are leap years, but
2027 and 1800 are not. Write a function

leapYear(year)

that returns the value of a single Boolean expression to indicate whether the
year is a leap year. Also write a function

leapYears(beginYear, endYear)

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 195

that uses your leapYear function to return a list of all the leap years between
(and including) the two years given as parameters.

5.4.5* Write a function

nextLeapYear(afterYear)

that uses your leapYear function from the previous exercise to return the closest
leap year after the year given as a parameter.

5.4.6. Write a function

even(number)

that returns True if number is even, and False otherwise.

5.4.7* Write a function

between(number, low, high)

that returns True if number is in the interval [low,high] (between low and
high, including both low and high), and False otherwise.

5.4.8. Write a function

justOne(a, b)

that returns True if exactly one (but not both) of the numbers a or b is 10, and
False otherwise.

5.4.9. Write a function

roll()

that simulates rolling two of the loaded dice implemented in Exercise 5.1.9 (by
calling the function loaded), and returns True if the sum of the dice is 7 or 11,
or False otherwise.

5.4.10. The following function returns a Boolean value indicating whether an integer
number is a perfect square. Rewrite the function in one line, taking advantage
of the short-circuit evaluation of and expressions.

def perfectSquare(number):
if number < 0:

return False
else:

return math.sqrt(number) == int(math.sqrt(number))

5.4.11. Write a function

previousSquare(before)

that uses your perfectSquare function from the previous exercise to return the
maximum perfect square smaller than the number given as a parameter. If the
parameter is not positive, return 0.

5.4.12* Write a function

winner(score1, score2)

that returns 1 or 2, indicating whether the winner of a game is Player 1 or
Player 2. The higher score wins and you can assume that there are no ties.

5.4.13. Repeat the previous exercise, but also return 0 to indicate a tie.

Copyright Taylor and Francis, 2021

196 � 5 Forks in the Road

5.4.14* Your firm is looking to buy computers from a distributor for $1500 per machine.
The distributor will give you a 5% discount if you purchase more than 20
computers. Write a function

cost(quantity)

that takes as a parameter the quantity of computers you wish to buy, and
returns the cost of buying them from this distributor.

5.4.15. Repeat the previous exercise, but add three more parameters: the cost per
machine, the number of computers necessary to get a discount, and the discount.

5.4.16. The speeding ticket fine in a nearby town is $50 plus $5 for each mph over the
posted speed limit. In addition, there is an extra penalty of $200 for all speeds
above 90 mph. Write a function

fine(speedLimit, clockedSpeed)

that returns the fine amount (or 0 if clockedSpeed ≤ speedLimit).

5.4.17. Write a function

gradeRemark()

that prompts for a grade, and then returns
the corresponding remark (as a string) from
the table to the right.

Grade Remark

96–100 Outstanding
90–95 Exceeds expectations
80–89 Acceptable
1–79 Trollish

5.4.18. Write a function that takes two integer values as parameters and returns their
sum if they are not equal and their product if they are.

5.4.19. Write a function

amIRich(amount, rate, years)

that accumulates interest on amount dollars at an annual rate of rate percent
for a number of years. If your final investment is at least double your original
amount, return True; otherwise, return False.

5.4.20* Write a function

maxOfThree(a, b, c)

the returns the maximum value of the parameters a, b, and c. Be sure to test it
with many different numbers, including some that are equal.

5.4.21. Write a function

shipping(amount)

that returns the shipping charge for an online retailer based on a purchase of
amount dollars. The company charges a flat rate of $6.95 for purchases up to
$100, plus 5% of the amount over $100.

5.4.22* Write a function

oddFactors(number)

that returns a list of all of the odd factors of the given number. For example,
oddFactors(66) should return the list [3, 11, 33].

Copyright Taylor and Francis, 2021

5.4 BACK TO BOOLEANS � 197

5.4.23. Write a function

commonFactors(number1, number2)

that returns a list containing all of the common factors of two numbers. For
example, commonFactors(18, 36) should return the list [2, 3, 6, 9, 18].

5.4.24. Write a function

isPrime(number)

that checks whether a given number is prime. The function should return True

if the number is prime and False otherwise. (Use a for loop.) Then write a
function

primes(begin, end)

that uses your isPrime function to return a list of all prime numbers between
(and including) the two numbers given as parameters.

5.4.25. Write a function

nextPrime(after)

that uses your isPrime function from the previous exercise to return the smallest
prime number after the number given as a parameter.

5.4.26. Starting with two positive integers a and b, consider the sequence in which
the next number is the digit in the ones place of the sum of the pre-
vious two numbers. For example, if a = 1 and b = 1, the sequence is
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0, . . . Write a function

mystery(a, b)

that returns the length of the sequence when the last two numbers repeat the
values of a and b for the first time. (When a = 1 and b = 1, the function should
return 62.)

5.4.27. The Chinese zodiac relates each year to an
animal in a twelve-year cycle. The animals
for one particular cycle are given in the
table to the right. Write a function

zodiac(year)

that takes as a parameter a year (this
could be any year in the past or future)
and returns the corresponding animal as
a string. Then write another function

zodiacTable(beginYear, endYear)

Year Animal Year Animal
2004 monkey 2010 tiger
2005 rooster 2011 rabbit
2006 dog 2012 dragon
2007 pig 2013 snake
2008 rat 2014 horse
2009 ox 2015 goat

that uses your zodiac function to print a table of the zodiac animals for all
years between (and including) the two parameters.

5.4.28. Consider the rwMonteCarlo function on page 173. What will the function return
if trials equals 0? What if trials is negative? Propose a way to deal with
these issues by adding statements to the function.

Copyright Taylor and Francis, 2021

198 � 5 Forks in the Road

5.4.29. Write a Boolean expression that is true if a point (x,y) resides in either of the
shaded boxes below (including their boundaries), and false otherwise. Assume
that the particle is not able to ever roam outside the outermost square. The
shaded rectangle on the right represents all points with x coordinates at least d.

(-d,-d)
(0,0)

(d,0)

5.4.30. Use a truth table to show that the expression you derived in the previous exercise
is correct.

5.4.31. Use a truth table to show that the Boolean expressions

(x > d and y > d) or (x < -d and y > d)

and

(y > d) and (x > d or x < -d)

are equivalent.

5.4.32. Write a function

drawRow(tortoise, row)

that uses turtle graphics to draw one row of an 8 × 8 red/black checkerboard. If
the value of row is even, the row should start with a red square; otherwise, it
should start with a black square. You may want to use the drawSquare function
you wrote in Exercise 2.3.11. Your function should only need one for loop and
only need to draw one square in each iteration.

5.4.33. Write a function

checkerBoard(tortoise)

that draws an 8 × 8 red/black checkerboard, using the function you wrote in
Exercise 5.4.32.

Copyright Taylor and Francis, 2021

5.5 DEFENSIVE PROGRAMMING � 199

5.5 DEFENSIVE PROGRAMMING
At the end of the first chapter, we previewed the coming attractions by pointing
out that once your toolbox contained the four types of statements you now know—
assignments, arithmetic, loops, and conditionals—the possibilities were endless.
But with great power comes great responsibility.1 On the one hand, you can let
your creativity flourish; on the other hand, you know enough to get yourself into
convoluted situations that are harder to debug. So it is time to start taking a more
deliberate approach to writing correct programs. Our strategy will be twofold. First,
we will think more carefully and rigorously about what the inputs to a problem
should look like and anticipate what might go awry if they don’t. Second, we will
start testing each function more formally with carefully chosen inputs to make sure
it really does what we think it does.

Checking parameters
When we are identifying the input to a problem, we need to also think about
constraints on the input. What class(es) should the input belong to? What range of
values make sense for the problem? How should the algorithm or function behave if
it receives input that doesn’t make sense? Thinking about these issues proactively
in advance, defensively, tends to result in more robust and correct programs. This
is especially important if other people are going to use your programs because
you cannot control what (foolish) things they might do. Taken further, defensive
programming is a key component of computer security . A security analyst’s job
is to anticipate how a criminal might exploit errors in a program to gain access to
files and resources that should be off-limits.

To illustrate these strategies, we will revisit the leapYear and nextLeapYear func-
tions from Exercises 5.4.4–5.4.5. Here are possible implementations of these functions.

def leapYear(year):
"""Determine whether a year is a leap year.

Parameter:
year: an integer year

Return value: a Boolean value indicating whether year is a leap year
"""

if year % 100 != 0: # if year is not a century year
return year % 4 == 0 # it is a leap year if divisible by 4

else: # else if year is a century year
return year % 400 == 0 # it is a leap year if divisible by 400

1Also known as the Peter Parker principle.

Copyright Taylor and Francis, 2021

200 � 5 Forks in the Road

def nextLeapYear(afterYear):
"""Determine the next leap year after a given year.

Parameter:
afterYear: an integer year

Return value: the next leap year
"""

year = afterYear + 1 # start looking in the next year
while not leapYear(year): # while we haven't found a leap year

year = year + 1 # keep looking ...
return year

Reflection 5.14 In the leapYear function, are there any values of year that should be
disallowed?

To answer this question, it helps to know something about the Gregorian calendar,
which is divided into two eras: the Common Era (CE) and Before the Common Era
(BCE) (or AD and BC in the Christian tradition). Both CE and BCE start at year
one; there is no year zero. Therefore, since the function does not allow a way to
specify CE or BCE, we should assume that only CE years, starting at year one, are
allowed. If any value of year less than one is given, we will simply return False by
inserting an if statement at the beginning of the function.

def leapYear(year):
"""Determine whether a year is a leap year.

Parameter:
year: an integer year greater than zero in the Common Era

Return value: a Boolean value indicating whether year is a leap year
"""

if year < 1:
return False

if year % 100 != 0: # if year is not a century year
return year % 4 == 0 # it is a leap year if divisible by 4

else: # else if year is a century year
return year % 400 == 0 # it is a leap year if divisible by 400

The highlighted requirement that year must be an integer greater than zero is called
a precondition . A precondition for a function is something that must be true when
the function is called for the function to behave correctly. But our leapYear function
currently only enforces part of the stated precondition.

Reflection 5.15 What happens if the argument passed in for year is not an integer? For
example, try calling leapYear('cookies').

Copyright Taylor and Francis, 2021

5.5 DEFENSIVE PROGRAMMING � 201

Calling leapYear('cookies') results in the following error:

TypeError: not all arguments converted during string formatting

This happens when the % operator is applied to the value of year, which is 'cookies',
and 100 in the first if statement. Because year is a string, Python is interpreting
this expression as an old kind of string formatting operation that we don’t cover. To
avoid this rather opaque error message, we need to make sure that year is an integer
at the beginning of the function. We can do this with the isinstance function,
which takes two arguments: a value and the name of a class. The function returns
True if the variable or value refers to an object (i.e., instance) of the class, and
False otherwise. For example,

>>> isinstance(5.0, int)
False
>>> isinstance(5.0, float)
True
>>> word = 'cookies'
>>> isinstance(word, str)
True
>>> isinstance(word, int)
False

To use this in the leapYear function, we replace the first if statement with

if not isinstance(year, int) or (year < 1):
return False

Reflection 5.16 The order of the two conditions in the or expression is important. Why?

Similar to a precondition, the postcondition for a function is a statement of what
must be true when the function finishes. A postcondition usually specifies what the
function returns and what, if any, side effects it has. Recall that a side effect occurs
when a global variable is modified or some other event in a function modifies a global
resource. For example, calls to print and modifications of files are considered to be
side effects because they have impacts outside of the function itself.

Reflection 5.17 What is the postcondition of the leapYear function?

The postcondition for the leapYear function is that the function returns a Boolean
indicating whether year is a leap year, which is already stated in the docstring.
Because they describe the input and output of a function, and therefore how the
function can be used, preconditions and postconditions are often included explicitly
in the docstring. For now, we will retain our docstring format and just make sure
that preconditions and postconditions are implicitly stated in our parameter and
return value sections.

The use of preconditions and postconditions is called design by contract because
the precondition and postcondition establish a contract between the function designer
and the function caller. The function caller understands that the precondition must
be met before the function is called and the function designer guarantees that, if the
precondition is met, the postcondition will also be met.

Copyright Taylor and Francis, 2021

202 � 5 Forks in the Road

Now let’s look at the nextLeapYear function.

Reflection 5.18 In the nextLeapYear function, what happens if afterYear is a float?
Or something else? Or a negative integer?

The precondition for the nextLeapYear function should be the same as the leapYear
function since the parameter is also a year in CE. Indeed, if afterYear is anything
but an int, then the while loop will be infinite because we modified leapYear to
always return False in these cases! So we definitely need to check that afterYear is
an int but making sure it is positive is a judgment call. If afterYear is a negative
integer, one could argue that the function behaves correctly because it will eventually
return 4, the smallest leap year in CE. On the other hand, passing in any year less
than one is technically an error because there are no valid years less than one in CE.
When in doubt, it is best to take the more cautious approach to prevent the most
errors.

Reflection 5.19 What should the nextLeapYear function return if the precondition is
not met?

Knowing what to return in this case is trickier. One option would be to return None.
But this could be inconvenient for a calling function to handle because the possible
return values are of two different types. An alternative would be to return the same
type as the normal return value (an int) but a value that the function would not
otherwise return, like zero in this case. This behavior needs to be clearly stated in
the docstring as part of the function’s postcondition.

def nextLeapYear(afterYear):
"""Determine the next leap year after a given year.

Parameter:
afterYear: an integer year greater than zero in the Common Era

Return value: the next leap year or zero if afterYear is not
a positive integer

"""

if not isinstance(afterYear, int) or (afterYear < 1):
return 0

year = afterYear + 1 # start looking in the next year
while not leapYear(year): # while we haven't found a leap year

year = year + 1 # keep looking ...
return year

Assertions
An alternative way to enforce preconditions is to raise an exception in lieu of
letting the function return normally. This is precisely what happens when the
Python interpreter displays a TypeError or a ValueError and aborts a program. A
built-in function raises an exception when something goes wrong and the function

Copyright Taylor and Francis, 2021

5.5 DEFENSIVE PROGRAMMING � 203

cannot continue. When a function raises an exception, it does not return normally.
Instead, execution of the function ends at the moment the exception is raised and
execution instead continues in part of the Python interpreter called an exception
handler. By default, the exception handler prints an error message and aborts the
entire program.

It is possible for our functions to also raise TypeError and ValueError exceptions,
but we will not address this option until Chapter 12. We will instead consider just
one particularly simple type of exception called an AssertionError, which may be
raised by an assert statement. An assert statement tests a Boolean condition,
and raises an AssertionError if the condition is False. If the condition is True,
the assert statement does nothing. For example,

>>> year = 2021
>>> assert year > 0 # does nothing
>>> year = -1
>>> assert year > 0
AssertionError
>>> assert year > 0, 'year must be a positive'
AssertionError: year must be a positive

The first assert statement above does nothing because the condition being as-
serted is True. But the condition in the second assert statement is False, so an
AssertionError exception is raised. The third assert statement demonstrates that
we can also include an informative message to accompany an AssertionError.

We can replace the first if statement in our leapYear function with one or more
assertions to catch both types of errors that we discussed previously:

assert isinstance(year, int), 'year must be an integer'
assert year > 0, 'year must be positive'

Or, we could combine them into one assert statement:

assert isinstance(year, int) and (year > 0),
'year must be a positive integer'

This statement is saying that year must both be an integer and positive. If either of
these conditions is False, then the assert statement will display

AssertionError: year must be a positive integer

and abort the program.

Reflection 5.20 Call this modified version of leapYear from the nextLeapYear function.
What happens now when you call nextLeapYear(2020.4)?

Note that, since the assert statement aborts the entire program, it should only be
used in circumstances in which there is no other reasonable course of action. But
the definition of “reasonable” usually depends on the circumstances.

Copyright Taylor and Francis, 2021

204 � 5 Forks in the Road

Unit testing
The only way to really ensure that a function is correct is to either mathematically
prove it is correct or test it with every possible input. But since both of these
strategies are virtually impossible in all but the most trivial situations, the best we
can do is to test our functions with a variety of carefully chosen inputs that are
representative of the entire range of possibilities. In large software companies, there
are dedicated teams whose sole jobs are to design and carry out tests of individual
functions, the interplay between functions, and the overall software project.

In the context of a program with many functions, it is very important to test
each function before you move on to other functions. The process of writing a
program consists of multiple iterations of Polya’s four-step process, as we outlined
in Chapter 1.

1. Understand the problem.

2. Design an algorithm.

3. Write a program.

4. Look back.

Once you come up with an overall design and identify what functions you need
in your program, you should follow the “Design–Program–Test” process in steps
2–4 for each function individually. If you do not follow this advice and instead test
everything for the first time when you think you are done, it will be very hard to
discern where your errors are and you are guaranteed to waste all sorts of time. As
you test each function, you are likely to discover situations that you had not thought
of previously, sending you back to the drawing board, so to speak. If you discover
these issues too late, they may have adverse effects on everything else and throw
your whole project into disarray.

We will group our tests for each function in what is known as a unit test . The
“unit” in our case will be an individual function, but in general it may be any block
of code with a specific purpose. Each unit test will itself be a function, named test_

followed by the name of the function that we are testing. For example, our unit test
function for the leapYear function will be named test_leapYear. Each unit test
function will contain several individual tests, each of which will assert that calling
the function with a particular set of parameters returns the correct answer.

Let’s design a unit test for the leapYear function. We will assume that the functions
we are testing are checking preconditions with if statements rather than assertions.
We will start with a few easy tests:

def test_leapYear():
assert leapYear(2024) == True
assert leapYear(2025) == False

print('Passed all tests of leapYear!')

(Since leapYear returns a Boolean value, these could also be written as

Copyright Taylor and Francis, 2021

5.5 DEFENSIVE PROGRAMMING � 205

Tangent 5.2: Unit testing frameworks

Python also provides two modules to specifically facilitate unit testing. The doctest

module provides a way to incorporate tests directly into function docstrings. The
unittest module provides a fully featured unit testing framework that automates the
unit and regression testing process, and is more similar to the approach we are taking
in this section. If you would like to learn more about these tools, visit

http://docs.python.org/3/library/development.html

assert leapYear(2024) and assert not leapYear(2025).) Add this function to
the same file as your leapYear and nextLeapYear functions. Also include another
function that will call all of your unit tests:

def test():
test_leapYear()

Reflection 5.21 What is printed by the assert statements in the test_leapYear func-
tion when you call the test function?

If the leapYear function is working correctly, nothing should be printed by
the assert statements. On the other hand, if the leapYear function were
to fail one of the tests, the program would abort at that point with an
AssertionError exception. To see this, change the first assertion to (incorrectly)
read assert leapYear(2024) == False. Then rerun the program. You should see

Traceback (most recent call last):

⋮ (order of function calls displayed here)

assert leapYear(2024) == False
AssertionError

This error tells you which assertion failed so that you can track down the problem.
(In this case, there is no problem; change the assert statement back to the correct
version.)

On their own, the results of these two tests do not provide enough evidence to show
that the leapYear function is correct. As we first discussed back in Section 1.4,
we need to choose a variety of tests that are representative of the entire range of
possibilities. The input that we use for a particular test is called a test case . As
we first saw back on page 38, we can generally divide test cases into common case,
boundary cases, and corner cases.

Common cases

First, test the function on several straightforward inputs to make sure that its basic
functionality is intact, as we started to do above. Be sure to choose test cases that
cover the range of possible inputs and possible outputs.

Copyright Taylor and Francis, 2021

http://docs.python.org/3/library/development.html

206 � 5 Forks in the Road

assert leapYear(2024) == True
assert leapYear(2025) == False
assert leapYear(1969) == False
assert leapYear(1900) == False
assert leapYear(40) == True
assert leapYear(11111) == False

Boundary and corner cases

A boundary case is an input that rests on a boundary of the range of legal inputs or
on the boundary between different outputs. In the case of the leapYear function, we
want to test the function on the smallest allowable years. (If there were a maximum
year, we would want to test that too.) We also want to test on inputs that are next
to each other but result in different answers.

assert leapYear(1) == False
assert leapYear(0) == False
assert leapYear(-1) == False
assert leapYear(4) == True

assert leapYear(2019) == False
assert leapYear(2020) == True
assert leapYear(2021) == False

Reflection 5.22 Does the leapYear function pass these tests?

A corner case is any other kind of rare input that might cause the function to
break. For the leapYear function, our boundary cases took care of most of these.
Thinking up pathological corner cases is an acquired skill that comes with experience.
Many companies pay top dollar for programmers whose sole job is to discover corner
cases that break their software!

After adding test cases for the nextLeapYear function, our program looks like this:

test_leapyear.py

def test_leapYear():
omitted here...

def test_nextLeapYear():
assert nextLeapYear(2020) == 2024 # common cases
assert nextLeapYear(2025) == 2028
assert nextLeapYear(1899) == 1904
assert nextLeapYear(100) == 104
assert nextLeapYear(11111) == 11112

assert nextLeapYear(1) == 4 # boundary cases
assert nextLeapYear(0) == 0
assert nextLeapYear(-100) == 0
assert nextLeapYear(2023) == 2024
assert nextLeapYear(2024) == 2028

Copyright Taylor and Francis, 2021

5.5 DEFENSIVE PROGRAMMING � 207

print('Passed all tests of nextLeapYear!')

def test():
test_leapYear()
test_nextLeapYear()

test()

Notice that we always call all of the individual test functions from test(). This is
called regression testing ; we will revisit this in the next chapter.

Testing floats
Special care must be taken when testing functions that return floating point numbers.
To see why, consider the following small function.

def addFloats(steps):
total = 0
for count in range(steps):

total = total + 0.0001
return total

If we call this function with addFloats(1000000), the loop adds one ten-thousandth
one million times, so the answer should be one hundred. However, if we try to test this
with assert addFloats(1000000) == 100.0, the assert will fail because rounding
errors caused the value of total to be slightly greater than 100. To deal with this
inconvenience, we need to always test floating point values within a range instead.
In this case, the following assert statement is much more appropriate:

assert (addFloats(1000000) > 99.9999) and (addFloats(1000000) < 100.0001)

The size of the range that you test will depend on the accuracy that is necessary in
your particular application.

Catching exceptions
As you know, when exceptions like ValueError or TypeError are raised, the default
behavior is for the program to abort. However, it is possible to change this behavior
by “catching” exceptions. A good application of this is testing whether numeric
values are received by input functions. For example, consider the first prompt in
the fairnessChecker function on page 186.

ratio = float(input('Maximum fair ceo:employee pay ratio: '))

If one mistakenly enters a non-numeric value at this prompt, the float function will
generate a ValueError exception like this:

Maximum fair ceo:employee pay ratio: cookies

ValueError: could not convert string to float: 'cookies'

To avoid this behavior and print a more helpful error message, we can use a
try/except statement:

Copyright Taylor and Francis, 2021

208 � 5 Forks in the Road

try:
ratio = float(input('Maximum fair ceo:employee pay ratio: '))

except ValueError:
print('The ratio must be a number.')
return

If an exception is raised while executing the statement(s) in the try clause, execution
immediately jumps to an except clause for that exception. In this case, if a value is
entered that cannot be converted by the float function, triggering a ValueError

exception, the print statement in the except clause will be executed followed by a
return to end the function since it cannot go forward without a value for ratio.
If an exception is generated but no matching except clause is found, the default
behavior (usually aborting the program) is followed. After executing the except

clause, execution continues normally. If no exception occurs in the try clause, then
the except clause is skipped.

An even nicer solution would be to place the input function in a loop to prompt
again if an exception is raised.

good = False
while not good:

try:
ratio = float(input('Maximum fair ceo:employee pay ratio: '))

except ValueError:
print('Please enter a number.')

else: # no exception was raised
good = True # so end the loop

The optional else clause is executed if no exception is raised in the try clause. In
this case, if a ValueError exception is raised, the print in the except clause is
executed and the prompt is issued again. If no exception is raised, good is set to
True, causing the loop to end.

Exercises
For each of the following functions from earlier chapters, (a) write a suitable precondition
and postcondition, and (b) add assert statement(s) to enforce your precondition.

5.5.1* import math

def volumeSphere(radius):
return (4 / 3) * math.pi * (radius ** 3)

5.5.2. def fair(employee, ceo, ratio):
return (ceo / employee <= ratio)

5.5.3. def middleClass(pay):
return (pay >= 40000) and (pay <= 65000)

Copyright Taylor and Francis, 2021

5.5 DEFENSIVE PROGRAMMING � 209

5.5.4. def windChill(temperature, windSpeed):
Note: only valid for temperatures <= 10 degrees Celsius
and wind speeds above 4.8 km/h.
chill = 13.12 + 0.6215 * temperature \

+ (0.3965 * temperature - 11.37) \
* windSpeed ** 0.16

temperature = round(chill)
return temperature

5.5.5* import turtle

def plot(tortoise, n):
for x in range(-n, n + 1):

tortoise.goto(x, x * x)

5.5.6. def pond(years):
population = 12000
for year in range(1, years + 1):

population = 1.08 * population - 1500
return population

5.5.7. def decayC14(originalAmount, years, dt):
amount = originalAmount
k = -0.00012096809434
numIterations = int(years / dt) + 1
for i in range(1, numIterations):

amount = amount + k * amount * dt
return amount

5.5.8. def argh(n):
return 'A' + ('r' * n) + 'gh!'

Design a thorough unit test for each of the following functions. If you discover errors during
your testing, identify and fix them.

5.5.9* def assignGP(score):
"""Assign a grade point to a score between 0 and 100."""

if score >= 90:
return 4

if score >= 80:
return 3

if score >= 70:
return 2

if score >= 60:
return 1

return 0

Copyright Taylor and Francis, 2021

210 � 5 Forks in the Road

5.5.10. def power(base, exponent):
"""Compute base ** exponent."""

count = 0
result = 1
while count <= exponent:

result = result * base
count = count + 1

return result

5.5.11. def factorial(n):
"""Compute n! = 1 * 2 * 3 * ... * n."""

result = 1
for number in range(n):

result = result * number
return result

5.5.12* Design a thorough unit test for the volumeSphere function in Exercise 5.5.1.

5.5.13. Design a thorough unit test for the windChill function in Exercise 5.5.4.

5.5.14. Design a thorough unit test for the decayC14 function in Exercise 5.5.7.

Add a try/except clause within a loop to each of the two following functions to re-prompt
for input if converting it to a number causes an exception.

5.5.15* def daysAlive():
text = input('How old are you? ')
age = int(text)
print('You have been alive for', round(age * 365.25), 'days!')

5.5.16. def guessMyNumber():
myNumber = random.randrange(1, 11)
guess = int(input('Guess a number from 1 to 10: '))
if guess == myNumber:

print('Nice guess!')
else:

print('Nope.')

5.5.17. An alternative way to deal with a possible division by zero error in the fair func-
tion on page 182 is to let the division happen and catch the ZeroDivisionError
exception if it occurs. Modify the function, shown below, in this way. The func-
tion should return 0 if division by zero is detected.

def fair(employee, ceo, ratio):
return (ceo / employee) <= ratio

5.6 GUESS MY NUMBER
In this section, we will design a function to play the classic “I’m thinking of a number”
game to practice a bit more with complex conditionals and while loops. Here is a
first attempt at a function to play the game.

Copyright Taylor and Francis, 2021

5.6 GUESS MY NUMBER � 211

import random

def guessingGame(maxGuesses):
"""Plays a guessing game. The human player tries to guess

the computer's number from 1 to 100.

Parameter:
maxGuesses: the maximum number of guesses allowed

Return value: None
"""

secretNumber = random.randrange(1, 101)
for guesses in range(maxGuesses):

myGuess = input('Please guess my number: ')
try:

myGuess = int(myGuess)
except ValueError:

myGuess = 0 # count this as a miss

if myGuess == secretNumber: # win
print('You got it!')

else: # try again
print('Nope. Try again.')

The randrange function returns a random integer that is at least the value of its first
argument, but less than its second argument (similar to the way the range function
interprets its arguments). After the function chooses a random integer between 1
and 100, it enters a for loop that will allow us to guess up to maxGuesses times.
The function prompts us for our guess with the input function, and then assigns
the response to myGuess as a string. Because we want to interpret the response as
an integer, we use the int function to convert the string. If myGuess cannot be
converted to an int, we catch the exception and assign myGuess to 0 so it will count
as a missed guess. Once it has myGuess, the function uses the if/else statement to
tell us whether we have guessed correctly. After this, the loop will give us another
guess, until we have used them all up.

Reflection 5.23 Try playing the game by calling guessingGame(20). Does it work? Is
there anything we need to improve?

You may have noticed three issues:

1. After we guess correctly, unless we have used up all of our guesses, the loop
iterates again and gives us another guess. Instead, we want the game to end.

2. It would be much friendlier for the game to tell us whether an incorrect guess
is too high or too low.

3. If we do not guess correctly in at most maxGuesses guesses, the last thing we see

Copyright Taylor and Francis, 2021

212 � 5 Forks in the Road

is 'Nope. Try again.' before the function ends. But there is no opportunity
to try again; instead, it should tell us that we have lost.

We will address these issues in order.

Ending the game nicely
Our current for loop, like all for loops, iterates a prescribed number of times.
Instead, we want the loop to only iterate for as long as we need another guess.
So this is another instance that calls for a while loop. In this case, we need the
loop to iterate while we have not guessed the secret number, in other words, while
myGuess != secretNumber. But we also need to stop when we have used up all of
our guesses, as counted by the index variable guesses. So we also want our while

loop to iterate while guesses < maxGuesses. Since both of these conditions must
be True for us to keep iterating, our desired while loop condition is:

while (myGuess != secretNumber) and (guesses < maxGuesses):

Because we are replacing our for loop with this while loop, we will now need to
manage the index variable manually. We do this by initializing guesses = 0 before
the loop and incrementing guesses in the body of the loop. Here is the updated
function with these changes highlighted:

def guessingGame(maxGuesses):
""" (docstring omitted) """

secretNumber = random.randrange(1, 101)
myGuess = 0
guesses = 0
while (myGuess != secretNumber) and (guesses < maxGuesses):

myGuess = input('Please guess my number: ')
try:

myGuess = int(myGuess)
except ValueError:

myGuess = 0
guesses = guesses + 1 # increment # of guesses
if myGuess == secretNumber: # win

print('You got it!')
else: # try again

print('Nope. Try again.')

Reflection 5.24 Notice that we have also included myGuess = 0 before the loop. Why
do we bother to assign a value to myGuess before the loop? Is there anything special about
the value 0? (Hint: try commenting it out.)

If we comment out myGuess = 0, we will see the following error on the line containing
the while loop:

UnboundLocalError: local variable 'myGuess' referenced before assignment

This error means that we have referred to an unknown variable named myGuess. The

Copyright Taylor and Francis, 2021

5.6 GUESS MY NUMBER � 213

name is unknown to the Python interpreter because we had not defined it before
it was first referenced in the while loop condition. Therefore, we need to initialize
myGuess before the while loop, so that the condition makes sense the first time it
is tested. Recall from Section 4.3 that this was one of the two important things to
remember about while loops. We initialize myGuess to 0, a value that cannot be
the secret number, to make sure the loop iterates at least once.

The second important consideration for while loops is to ensure that the condition
will eventually become false. For the and expression in this while loop to become false,
either (myGuess != secretNumber) must be false or (guesses < maxGuesses)

must be false. This reasoning is the same as De Morgan’s first law that we discussed
in the previous section.

Reflection 5.25 How do the statements in the body of the loop ensure that eventually
(myGuess != secretNumber) or (guesses < maxGuesses) will be False?

Prompting for a new guess creates the opportunity for the first part to become
False, while incrementing guesses ensures that the second part will eventually
become False. Therefore, we cannot have an infinite loop.

Friendly hints
Inside the loop, we currently handle two cases: (1) we win, and (2) we do not win
but get another guess. To be friendlier, we should split the second case into two
subcases: (2a) our guess was too low, and (2b) our guess was too high. We can
accomplish this by replacing the not-so-friendly print('Nope. Try again.') with
another if/else that decides between the two new subcases:

if myGuess == secretNumber: # win
print('You got it!')

else: # try again
if myGuess < secretNumber: # too low

print('Too low. Try again.')
else: # too high

print('Too high. Try again.')

Now, if myGuess == secretNumber is false, we execute the first else clause, the
body of which is the new if/else construct. If myGuess < secretNumber is true,
we print that the number is too low; otherwise, we print that the number is too high.

Reflection 5.26 Do you see a way in which the conditional construct above can be
simplified?

The conditional construct above is really just equivalent to a decision between three
disjoint possibilities: (a) the guess is equal to the secret number, (b) the guess is less
than the secret number, or (c) the guess is greater than the secret number. In other
words, it is equivalent to:

Copyright Taylor and Francis, 2021

214 � 5 Forks in the Road

if myGuess == secretNumber: # win
print('You got it!')

elif myGuess < secretNumber: # too low
print('Too low. Try again.')

else: # too high
print('Too high. Try again.')

A proper win/lose message
Now inside the loop, we currently handle three cases: (a) we win, and (b) our guess
is too low and we get another guess, and (c) our guess is too high and we get another
guess. But we are missing the case in which we run out of guesses. In this situation,
we want to print something like 'Too bad. You lose.' instead of one of the “try
again” messages.

Reflection 5.27 How can we augment the if/elif/else statement so that it correctly
handles all four cases?

In the game, if we incorrectly use our last guess, then two things must be true
just before the if condition is tested: myGuess is not equal to secretNumber and
guesses is equal to maxGuesses. So we can incorporate this condition into the
if/elif/else too:

if (myGuess != secretNumber) and (guesses == maxGuesses): # lose
print('Too bad. You lose.')

elif myGuess == secretNumber: # win
print('You got it!')

elif myGuess < secretNumber: # too low
print('Too low. Try again.')

else: # too high
print('Too high. Try again.')

Notice that we have made the previous first if statement into an elif statement
because we only want one of the four messages to be printed. However, here is an
alternative structure that is more elegant:

if myGuess == secretNumber: # win
print('You got it!')

elif guesses == maxGuesses: # lose
print('Too bad. You lose.')

elif myGuess < secretNumber: # too low
print('Too low. Try again.')

else: # too high
print('Too high. Try again.')

By placing the new condition second, we can leverage the fact that, if we get to the
first elif, we already know that myGuess != secretNumber. Therefore, we do not
need to include it explicitly.

There is a third way to handle this situation that is perhaps even more elegant.
Notice that both of the first two conditions are going to happen at most once, and
at the end of the program. So it might make more sense to put them after the loop.

Copyright Taylor and Francis, 2021

5.6 GUESS MY NUMBER � 215

Doing so also exhibits a nice parallel between these two events and the two parts of
the while loop condition. As we discussed earlier, the negation of the while loop
condition is

(myGuess == secretNumber) or (guesses >= maxGuesses)

So when the loop ends, at least one of these two things is true. Notice that these two
events are exactly the events that define a win or a loss: if the first part is true, then
we won; if the second part is true, we lost. So we can move the win/loss statements
after the loop, and decide which to print based on which part of the while loop
condition became false:

if myGuess == secretNumber: # win
print('You got it!')

else: # lose
print('Too bad. You lose.')

In the body of the loop, with these two cases gone, we will now need to check if we
still get another guess (mirroring the while loop condition) before we print one of
the “try again” messages:

if (myGuess != secretNumber) and (guesses < maxGuesses):
if myGuess < secretNumber: # too low

print('Too low. Try again.')
else: # too high

print('Too high. Try again.')

Reflection 5.28 Why is it not correct to combine the two if statements above into a
single statement like the following?

if (myGuess != secretNumber) and (guesses < maxGuesses) \
and (myGuess < secretNumber):

print('Too low. Try again.')
else:

print('Too high. Try again.')

Hint: what does the function print when guesses < maxGuesses is false and
myGuess < secretNumber is true?

All of these changes are incorporated into the final game shown below. As you play
it, think about what the best strategy is. Exercise 5.6.7 asks you to write a Monte
Carlo simulation to compare three different strategies for playing the game.

Copyright Taylor and Francis, 2021

216 � 5 Forks in the Road

import random

def guessingGame(maxGuesses):
""" (docstring omitted) """

secretNumber = random.randrange(1, 101)
myGuess = 0
guesses = 0
while (myGuess != secretNumber) and (guesses < maxGuesses):

myGuess = input('Please guess my number: ')
try:

myGuess = int(myGuess)
except ValueError:

myGuess = 0
guesses = guesses + 1 # increment # of guesses used

if (myGuess != secretNumber) and (guesses < maxGuesses):
if myGuess < secretNumber: # guess is too low

print('Too low. Try again.') # give a hint
else: # guess is too high

print('Too high. Try again.') # give a hint

if myGuess == secretNumber: # win
print('You got it!')

else: # lose
print('Too bad. You lose.')

def main():
guessingGame(10)

main()

Exercises
5.6.1* Write a function

ABC()

that prompts for a choice of A, B, or C and keeps prompting until it receives
one of those strings. Your function should return the final choice.

5.6.2. Write a function

numberPlease()

that prompts for an integer between 1 and 100 (inclusive) and continues to
prompt until it receives a number within this range. Your function should return
the final number.

5.6.3. Write a function

differentNumbers()

that prompts for two different numbers. The function should use a while loop

Copyright Taylor and Francis, 2021

5.6 GUESS MY NUMBER � 217

to keep prompting for a pair of numbers until the two numbers are different,
and then print the final numbers.

5.6.4. Write a function

rockPaperScissorsLizardSpock(player1, player2)

that decides who wins in a game of rock-paper-scissors-lizard-Spock.2 Each
of player1 and player2 is a string with value 'rock', 'paper', 'scissors',
'lizard', or 'Spock'. The function should return 1 if player 1 wins, -1 if
player 2 wins, or 0 if they tie. Test your function by playing the game with the
following main program:

def main():
player1 = input('Player1: ')
player2 = input('Player2: ')
outcome = rockPaperScissorsLizardSpock(player1, player2)
if outcome == 1:

print('Player 1 wins!')
elif outcome == -1:

print('Player 2 wins!')
else:

print('Player 1 and player 2 tied.')

5.6.5* Write a function

yearsUntilDoubled(amount, rate)

that returns the number of years until amount is doubled when it earns the
given rate of interest, compounded annually. Use a while loop.

5.6.6. The hailstone numbers are a sequence of numbers generated by the following
simple algorithm. First, choose any positive integer. Then, repeatedly follow this
rule: if the current number is even, divide it by two; otherwise, multiply it by three
and add one. For example, suppose we choose the initial integer to be 3. Then this
algorithm produces the following sequence: 3,10,5,16,8,4,2,1,4,2,1,4,2,1, . . .
For every initial integer ever tried, the sequence always reaches one and then
repeats the sequence 4,2,1 forever after. Interestingly, however, no one has ever
proven that this pattern holds for every integer! Write a function

hailstone(start)

that prints the hailstone number sequence starting from the parameter start,
until the value reaches one. Your function should return the number of integers
in your sequence. For example, if start were 3, the function should return 8.
(Use a while loop.)

5.6.7. In this exercise, you will design a Monte Carlo simulation to compare the
effectiveness of three strategies for playing the guessing game. Each of these
strategies will be incorporated into the guessing game function we designed
in this chapter, but instead of checking whether the player wins or loses, the
function will continue until the number is guessed, and then return the number
of guesses used. We will also make the maximum possible secret number a
parameter, so that we can compare the results for different ranges of secret
numbers.

2See http://en.wikipedia.org/wiki/Rock-paper-scissors-lizard-Spock for the rules.

Copyright Taylor and Francis, 2021

http://en.wikipedia.org/wiki/Rock-paper-scissors-lizard-Spock

218 � 5 Forks in the Road

The first strategy is to make a random guess each time, ignoring any previous
guesses:

def guessingGame1(maxNumber):
"""Play the guessing game by making random guesses."""

secretNumber = random.randrange(1, maxNumber + 1)
myGuess = 0
guesses = 0
while (myGuess != secretNumber):

myGuess = random.randrange(1, maxNumber + 1)
guesses = guesses + 1

return guesses

The second strategy is to avoid duplicate guesses by trying every number from
1 to 100. This function is identical, except it replaces the red statement above
as follows:

def guessingGame2(maxNumber):
"""Play the guessing game by making incremental guesses."""
⋮

myGuess = myGuess + 1
⋮

Finally, the third strategy uses previous outcomes to narrow in on the secret
number:

def guessingGame3(maxNumber):
"""Play the guessing game intelligently by narrowing in

on the secret number."""

secretNumber = random.randrange(1, maxNumber + 1)
myGuess = 0
low = 1
high = maxNumber
guesses = 0
while (myGuess != secretNumber):

myGuess = (low + high) // 2
guesses = guesses + 1
if myGuess < secretNumber:

low = myGuess + 1
elif myGuess > secretNumber:

high = myGuess - 1
return guesses

Write a Monte Carlo simulation to compare the expected (i.e., average) behavior
of these three strategies. Use a sufficiently high number of trials to get consistent
results. Similarly to what we did in Section 5.1, run your simulation for a range
of maximum secret numbers, specifically 5,10,15, . . . , 100, and plot the average
number of guesses required by each strategy for each maximum secret number.
(The x-axis of your plot will be the maximum secret number and the y-axis will
be the average number of guesses.) Explain the results. In general, how many
guesses on average do you think each strategy requires to guess a secret number
between 1 and n?

Copyright Taylor and Francis, 2021

5.7 SUMMARY AND FURTHER DISCOVERY � 219

5.7 SUMMARY AND FURTHER DISCOVERY
In previous chapters, we designed deterministic algorithms that did the same thing
every time we executed them, if we gave them the same inputs. Giving those
algorithms different arguments, of course, could change their behavior, whether it
be drawing a different size shape, modeling a different population, or experimenting
with a different investment scenario. In this chapter, we started to investigate a
new class of algorithms that can change their behavior “on the fly,” so to speak.
These algorithms all make choices using Boolean logic, the same Boolean logic
on which computers are fundamentally based. By combining comparison operators
and Boolean operators, we can characterize any decision. By incorporating these
Boolean expressions into conditional statements (if/elif/else) and conditional
loops (while), we vastly increase the diversity of algorithms that we can design.
These are fundamental techniques that we will continue to use and develop over the
next several chapters, as we start to work with textual and numerical data that we
read from files and download from the web.

Notes for further discovery
This chapter’s epigraph is a famous “Yogiism,” from Hall of Fame catcher, coach,
and manager Yogi Berra [8].

If you would like to learn more about Robert Brown’s experiments, and the history
and science behind them, visit the following website, titled “What Brown Saw and
You Can Too.”

http://physerver.hamilton.edu/Research/Brownian/index.html

The Drunkard’s Walk by Leonard Mlodinow [41] is a very accessible book about
how randomness and chance affect our lives. For more information about generating
random numbers, and the differences between PRNGs and true random number
generators, visit

https://www.random.org/randomness/ .

The Park-Miller random number generator is due to Keith Miller and the late Steve
Park [46].

The Roper Center for Public Opinion Research, at Cornell University, maintains
some helpful educational resources about random sampling and errors in the context
of public opinion polling at

https://ropercenter.cornell.edu/learn/polling-and-public-opinion .

*5.8 PROJECTS
This section is available on the book website.

Copyright Taylor and Francis, 2021

http://physerver.hamilton.edu/Research/Brownian/index.html
https://www.random.org/randomness/
https://ropercenter.cornell.edu/learn/polling-and-public-opinion

Copyright Taylor and Francis, 2021

