
C H A P T E R 4

Growth and Decay

Our population and our use of the finite resources of planet Earth are growing exponentially,
along with our technical ability to change the environment for good or ill.

Stephen Hawking
TED talk (2008)

L ike the late Stephen Hawking, many natural and social scientists are concerned
with the dynamic sizes of populations and other quantities over time. In addition

to our growing use of natural resources, we may be interested in the size of a plant
population being affected by an invasive species, the magnitude of an infection
threatening a human population, the quantity of a radioactive material in a storage
facility, the penetration of a product in the global marketplace, or the evolving
characteristics of a dynamic social network. The possibilities are endless.

To study situations like these, scientists develop a simplified model that abstracts
key characteristics of the actual situation so that it might be more easily understood
and explored. In this sense, a model is another example of abstraction. Once we have
a model that describes the problem, we can write a simulation that shows what
happens when the model is applied over time. A simulation can provide a framework
for past observations or predict future behavior. Scientists often use modeling and
simulation in parallel with traditional experiments to compare their observations to
a proposed theoretical framework.

These parallel scientific processes are illustrated in Figure 4.1. On the left is the
computational process. In this case, we use “model” instead of “algorithm” to
acknowledge the possibility that the model is mathematical rather than algorithmic.
On the right side is the parallel experimental process, guided by the scientific method.
The results of the computational and experimental processes can be compared,
possibly leading to model adjustments or new experiments to improve the results.

129

Copyright Taylor and Francis, 2021

130 � 4 Growth and Decay

Make a hypothesis and
prediction

Design a model

Solve the model or implement
it with a simulation

Interpret the results and
evaluate your model and/or

simulation

Design an experiment

Carry out the experiment

Interpret the results and
evaluate your experiment

Compare results

Adjust the
model

Conduct
additional

experiments

Experimental scienceComputational science

Understand the problem

Figure 4.1 Parallel experimental and computational processes.

When we model the dynamic behavior of populations, we will assume that time
ticks in discrete steps and, at any particular time step, the current population size is
based on the population size at the previous time step. Depending on the problem,
a time step may be anywhere from a nanosecond to a century. In general, a new
time step may bring population increases, in the form of births and immigration,
and population decreases, in the form of deaths and emigration. In this chapter, we
will discuss a fundamental algorithmic technique, called an accumulator, that we
will use to model dynamic processes like these. Accumulators crop up in all kinds of
problems, and lie at the foundation of a variety of different algorithmic techniques.
We will continue to see examples throughout the book.

4.1 ACCUMULATORS
Managing a fishing pond
Suppose we manage a fishing pond that contained a population of 12,000 largemouth
bass on January 1 of this year. With no fishing, the bass population is expected
to grow at a rate of 8% per year, which incorporates both the birth rate and the

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 131

death rate of the population. The maximum annual fishing harvest allowed is 1,500
bass. Since this is a popular fishing spot, this harvest is attained every year. Is our
maximum annual harvest sustainable? If not, how long until the fish population dies
out? Should we reduce the maximum harvest? If so, what should it be reduced to?

We can find the projected population size for any given year by starting with the
initial population size, and then repeatedly computing the population size in each
successive year based on the size in the previous year. In pseudocode, if we remember
the current population in a variable named population, then we can update the
population each year with

population ← population + 0.08 × population − 1500
Or, equivalently,

population ← 1.08 × population − 1500
This is very similar to what we did back on page 14 in our final Sphere Volume

algorithm. Remember that an assignment statement evaluates the righthand side
first. So the value of population on the righthand side of the assignment operator is
the value population had before this assignment statement was executed. This value
is used to compute the new population assigned to the variable on the lefthand side.

If we wanted to know the projected size of the fish population three years from now,
we could incorporate this into the following algorithm.

Algorithm Pond Population

Input: the initial population
1 population ← initial population
2 repeat three times:
3 population ← 1.08 × population − 1500

Output: the final population

Suppose initial population is 12000. Then this algorithm performs the following steps:

Trace input: initial population = 12000
Step Line population Notes

1 1 12000 population ← initial population
2 2 ” no change; repeat line 3 three times
3 3 11460.0 population← 1.08 × population

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶12000
− 1500

4 3 10876.8 population← 1.08 × population
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶11460.0

− 1500

5 3 10246.944 population← 1.08 × population
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶10876.8

− 1500

Output: population = 10246.944

Copyright Taylor and Francis, 2021

132 � 4 Growth and Decay

In the first iteration of the loop (step 3 in the trace table), population is assigned the
previous value of population (12,000) times 1.08 minus 1500, which is 11,460. Then,
in the second iteration, population is updated again after computing the previous
value of population (now 11,460) times 1.08 minus 1500, which is 10,876.8. In the
third iteration, population is assigned its final value of 10,246.944. The variable
population is called an accumulator variable (or just an accumulator) because it
accumulates additional value in each iteration of the loop.

So this model projects that the bass population in three years will be 10,246 (ignoring
the “fractional fish” represented by the digits to the right of the decimal point).

In Python, we can implement this iterative algorithm with a for loop. We used the
following for loop in Section 2.2 to draw our geometric flower with eight petals:

for count in range(8):
tortoise.forward(200)
tortoise.left(135)

In this case, we need a for loop that will iterate three times:

population = 12000
for year in range(3):

population = 1.08 * population - 1500

Reflection 4.1 Type in the for loop above and add the following statement after the
assignment to population in the body of the for loop:

print(year + 1, int(population))

Run the program. What is printed? Do you see why?

We see in this example that we can use the index variable year just like any other
variable.

Reflection 4.2 How would you change this loop to compute the fish population in five
years? Ten years?

Changing the number of years to compute is simple. All we have to do is change the
value in the range to whatever we want: range(5), range(10), etc. If we put this
computation in a function, then we can have the desired number of years passed in
as a parameter. The parameter and its use are highlighted in red below.

1 def pond(years):
2 """Simulates a fish population in a fishing pond, and
3 prints annual population size. The population
4 grows 8% per year with an annual harvest of 1500.

5 Parameter:
6 years: number of years to simulate

7 Return value: the final population size
8 """

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 133

9 population = 12000
10 for year in range(years):
11 population = 1.08 * population - 1500
12 print(year + 1, int(population))

13 return population

14 def main():
15 finalPopulation = pond(10)
16 print('The final population is ' + str(finalPopulation) + '.')

17 main()

A trace table to show what happens when we call pond(10) is very similar to the
one from our pseudocode algorithm, except that we now also want to trace the value
of year, which is assigned a new value from 0 to 9 in each iteration.

Trace arguments: years = 10
Step Line population year Notes

1 9 12000 — population ← 12000

2 10 ” 0 year ← 0

3 11 11460.0 ” population ← 1.08 * 12000 - 1500

4 12 ” ” no changes; prints 1 11460

5 10 ” 1 year ← 1

6 11 10876.8 ” population ← 1.08 * 11460.0 - 1500

7 12 ” ” no changes; prints 2 10876

8 10 ” 2 year ← 2

9 11 10246.944 ” population ← 1.08 * 10876.8 - 1500

10 12 ” ” no changes; prints 3 10246

⋮

29 10 5256.718 9 year ← 9

30 11 4177.256 ” population ← 1.08 * 5256.718 - 1500

31 12 ” ” no changes; prints 10 4177

Return value: 4177.256
Reflection 4.3 What would happen if population = 12000 was inside the body of the
loop instead of before it? What would happen if we omitted the population = 12000

statement altogether?

The initialization of the accumulator variable before the loop is crucial. If population
were not initialized before the loop, then an error would occur in the first iteration
of the for loop because the righthand side of the assignment statement would not
make any sense!

Copyright Taylor and Francis, 2021

134 � 4 Growth and Decay

Reflection 4.4 Use the pond function to answer the original questions: Is this maximum
harvest sustainable? If not, how long until the fish population dies out? Should the pond
manager reduce the maximum harvest? If so, what should it be reduced to?

Calling this function with a large enough number of years shows that the fish
population drops below zero (which, of course, can’t really happen) in year 14:

1 11460

2 10876

3 10246

⋮
13 392

14 -1076

⋮

This harvesting plan is clearly not sustainable, so the pond manager should reduce
it to a sustainable level. In this case, determining the sustainable level is easy: since
the population grows at 8% per year and the pond initially contains 12,000 fish, we
cannot allow more than 0.08 ⋅ 12000 = 960 fish to be harvested per year without the
population declining.

Reflection 4.5 Generalize the pond function with two additional parameters: the initial
population size and the annual harvest. Using your modified function, compute the number
of fish that will be in the pond in 15 years if we change the annual harvest to 800.

With these modifications, your function might look like this:

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
for year in range(years):

population = 1.08 * population - harvest
print(year + 1, int(population))

return population

The value of the initialPopulation parameter takes the place of our previous
initial population of 12000 and the parameter named harvest takes the place of
our previous harvest of 1500. To answer the question above, we can replace the call
to the pond function from main with:

finalPopulation = pond(15, 12000, 800)

The result that is printed is:

1 12160

2 12332

⋮
13 15439

14 15874

15 16344

The final population is 16344.338228396558.

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 135

Reflection 4.6 How would you call the new version of the pond function to replicate its
original behavior, with an annual harvest of 1500?

Pretty printing

Before moving on, let’s look at a helpful Python trick, called a format string , that
enables us to format our table of annual populations in a more attractive way. To
illustrate the use of a format string, consider the following modified version of the
previous function.

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
print('Year | Population')
print('-----|-----------')
for year in range(years):

population = 1.08 * population - harvest
print('{0:^4} | {1:>9.2f}'.format(year + 1, population))

return population

The first two highlighted lines print a table header to label the columns. Then, in
the call to the print function inside the for loop, we utilize a format string to line
up the two values in each row. The syntax of a format string is

'<replacement fields>'.format(<values to format>)

(The parts in red above are descriptive and not part of the syntax.) The period
between the string and format indicates that format is a method of the string class;
we will talk more about the string class in Chapter 6. The parameters of the format

method are the values to be formatted. The format for each value is specified in a
replacement field enclosed in curly braces ({}) in the format string.

In the example in the for loop above, the {0:^4} replacement field specifies that the
first (really the “zero-th”; computer scientists like to start counting at 0) argument
to format, in this case year + 1, should be centered (^) in a field of width 4. The
{1:>9.2f} replacement field specifies that population, as the second argument to
format, should be right justified (>) in a field of width 9 as a floating point number
with two places to the right of the decimal point (.2f). When formatting floating
point numbers (specified by the f), the number before the decimal point in the
replacement field is the minimum width, including the decimal point. The number
after the decimal point in the replacement field is the number of digits to the right of
the decimal point in the number. (If we wanted to align to the left, we would use <.)
Characters in the string that are not in replacement fields (in this case, two spaces
with a vertical bar between them) are printed as-is. So, if year were assigned the
value 11 and population were assigned the value 1752.35171, the above statement

Copyright Taylor and Francis, 2021

136 � 4 Growth and Decay

would print
12

²
{0:^4}

| 1752.35
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{1:>9.2f}

To fill spaces with something other than a space, we can use a fill character immedi-
ately after the colon. For example, if we replaced the second replacement field with
{1:*>9.2f}, the previous statement would print the following instead:

12
²
{0:^4}

| * *1752.35
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{1:*>9.2f}

Measuring network value
Now let’s consider a different problem. Suppose we have created a new online social
network (or a new group within an existing social network) that we expect to steadily
grow over time. Intuitively, as new members are added, the value of the network to
its members grows because new relationships and opportunities become available.
The potential value of the network to advertisers also grows as new members are
added. But how can we quantify this value?

We will assume that, in our social network, two members can become connected
or “linked” by mutual agreement, and that connected members gain access to each
other’s network profile. The inherent value of the network lies in these connections,
or links, rather than in the size of its membership. Therefore, we need to figure out
how the potential number of links grows as the number of members grows. The
picture below visualizes this growth. The circles, called nodes, represent members of
the social network and lines between nodes represent links between members.

2 1 2 1

3

2 1

3

4

2 1

3

4

5

At each step, the red node is added to the network. The red links represent the
potential new connections that could result from the addition of the new member.

Reflection 4.7 What is the maximum number of new connections that could arise when
each of nodes 2, 3, 4, and 5 are added? In general, what is the maximum number of new
connections that could arise from adding node number n?

Node 2 adds a maximum of 1 new connection, node 3 adds a maximum of 2 new
connections, node 4 adds a maximum of 3 new connections, etc. In general, a
maximum of n − 1 new connections arise from the addition of node number n. This
pattern is illustrated in the table below.

node number 2 3 4 5 ⋯ n

maximum increase in number of links 1 2 3 4 ⋯ n − 1

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 137

Therefore, as shown in the last row, the maximum number of links in a network
with n nodes is the sum of the numbers in the second row:

1 + 2 + 3 + . . . + n − 1.

We will use this sum to represent the potential value of the network.

Let’s write a function, similar to the previous one, that lists the maximum number
of new links, and the maximum total number of links, as new nodes are added to
a network. In this case, we will need an accumulator to count the total number of
links. Adapting our pond function to this new purpose gives us the following:

def countLinks(totalNodes):
"""Prints a table with the maximum total number of links

in networks with 2 through totalNodes nodes.

Parameter:
totalNodes: the total number of nodes in the network

Return value:
the maximum number of links in a network with totalNodes nodes

"""

totalLinks = 0
for node in range(totalNodes):

newLinks = ???
totalLinks = totalLinks + newLinks
print(node, newLinks, totalLinks)

return totalLinks

In this function, we want our accumulator variable to count the total number
of links, so we named it totalLinks instead of population, and initialized it to
zero. Likewise, we named the parameter, which specifies the number of iterations,
totalNodes instead of years, and we named the index variable of the for loop
node instead of year because it will now be counting the number of the node that
we are adding at each step. In the body of the for loop, we add to the accumulator
the maximum number of new links added to the network with the current node (we
will return to this in a moment) and then print a row containing the node number,
the maximum number of new links, and the maximum total number of links in the
network at that point. (We leave formatting this row with a format string as an
exercise.)

Before we determine what the value of newLinks should be, we have to resolve one
issue. In the table above, the node numbers range from 2 to the number of nodes in
the network, but in our for loop, node will range from 0 to totalNodes - 1. This
turns out to be easily fixed because the range function can generate a wider variety
of number ranges than we have seen thus far. If we give range two arguments instead
of one, like range(start, stop), the first argument is interpreted as a starting

Copyright Taylor and Francis, 2021

138 � 4 Growth and Decay

value and the second argument is interpreted as the stopping value, producing a
range of values starting at start and going up to, but not including, stop. For
example, range(-5, 10) produces the integers −5,−4,−3, . . . ,8,9.

To see this for yourself, type list(range(-5, 10)) into the Python shell (or print
it in a program).

>>> list(range(-5, 10))
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The list function converts a range of numbers into a list that shows all of the
numbers in the range.

Reflection 4.8 What list of numbers does range(1, 10) produce? What about
range(10, 1)? Can you explain why in each case?

Reflection 4.9 Back to our program, what do we want our for loop to look like?

For node to start at 2 and finish at totalNodes, we want our for loop to be

for node in range(2, totalNodes + 1):

Now what should the value of newLinks be in our program? The answer is in the
table we constructed above; the maximum number of new links added to the network
with node number n is n − 1. In our loop, the node number is assigned to the name
node, so we need to add node - 1 links in each step:

newLinks = node - 1

With these substitutions, our function looks like this:

1 def countLinks(totalNodes):
2 """ (docstring omitted) """

3 totalLinks = 0
4 for node in range(2, totalNodes + 1):
5 newLinks = node - 1
6 totalLinks = totalLinks + newLinks
7 print(node, newLinks, totalLinks)

8 return totalLinks

9 def main():
10 links = countLinks(10)
11 print('The total number of links is ' + str(links) + '.')

12 main()

As with our previous for loop, you can see more clearly what this loop does by
carefully studying the following trace table.

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 139

Trace arguments: totalNodes = 10
Step Line totalLinks node newLinks Notes

1 3 0 — — totalLinks ← 0

2 4 ” 2 — node ← 2

3 5 ” ” 1 newLinks ← 2 - 1

4 6 1 ” ” totalLinks ← 0 + 1

5 7 ” ” ” no changes; prints 2 1 1

6 4 ” 3 ” node ← 3

7 5 ” ” 2 newLinks ← 3 - 1

8 6 3 ” ” totalLinks ← 1 + 2

9 7 ” ” ” no changes; prints 3 2 3

10 4 ” 4 ” node ← 4

11 5 ” ” 3 newLinks ← 4 - 1

12 6 6 ” ” totalLinks ← 3 + 3

13 7 ” ” ” no changes; prints 4 3 6

⋮

34 4 36 10 8 node ← 10

35 5 ” ” 9 newLinks ← 10 - 1

36 6 45 ” ” totalLinks ← 36 + 9

37 7 ” ” ” no changes; prints 10 9 45

Return value: 45
When we call countLinks(10) from the main function above, it prints

2 1 1

3 2 3

4 3 6

5 4 10

6 5 15

7 6 21

8 7 28

9 8 36

10 9 45

The total number of links is 45

Reflection 4.10 What does countLinks(100) return? What does this value represent?

Organizing a concert
Let’s look at one more example. Suppose you are putting on a concert and need to
figure out how much to charge per ticket. Your total expenses, for the band and
the venue, are $8,000. The venue can seat at most 2,000 and you have determined
through market research that the number of tickets you are likely to sell is related
to a ticket’s selling price by the following relationship:

Copyright Taylor and Francis, 2021

140 � 4 Growth and Decay

sales = 2500 - 80 * price

According to this relationship, if you give the tickets away for free, you will overfill
your venue. On the other hand, if you charge too much, you won’t sell any tickets at
all. You would like to price the tickets somewhere in between, so as to maximize your
profit. Your total income from ticket sales will be sales * price, so your profit
will be this amount minus $8000.

To determine the most profitable ticket price, we can create a table using a for loop
similar to that in the previous two problems. In this case, we would like to iterate
over a range of ticket prices and print the profit resulting from each choice. In the
following function, the for loop starts with a ticket price of one dollar and adds one
to the price in each iteration until it reaches maxPrice dollars.

1 def profitTable(maxPrice):
2 """Prints a table of profits from a show based on ticket price.

3 Parameters:
4 maxPrice: maximum price to consider

5 Return value: None
6 """

7 print('Price Income Profit')
8 print('------ --------- ---------')
9 for price in range(1, maxPrice + 1):

10 sales = 2500 - 80 * price
11 income = sales * price
12 profit = income - 8000
13 formatString = '${0:>5.2f} ${1:>8.2f} ${2:8.2f}'
14 print(formatString.format(price, income, profit))

15 def main():
16 profitTable(25)

17 main()

The number of expected sales in each iteration is computed from the value of the
index variable price, according to the relationship above. Then we print the price
and the resulting income and profit, formatted nicely with a format string. As we
did previously, we can look at what happens in each iteration of the loop with a
trace table:

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 141

Trace arguments: maxPrice = 25
Step Line price sales income profit Notes

1 7 — — — — prints header
2 8 — — — — prints underlines
3 9 1 — — — price ← 1

4 10 ” 2420 — — sales ← 2500 - 80 * 1

5 11 ” ” 2420 — income ← 2420 * 1

6 12 ” ” ” −5580 profit ← 2420 - 8000

7 13–14 ” ” ” ” prints price, income, profit
8 9 2 ” ” ” price ← 2

9 10 ” 2340 ” ” sales ← 2500 - 80 * 2

10 11 ” ” 4680 ” income ← 2340 * 2

11 12 ” ” ” −3320 profit ← 4680 - 8000

12 13–14 ” ” ” ” prints price, income, profit
13 9 3 ” ” ” price ← 3

⋮

Reflection 4.11 Complete a few more iterations in the trace table to make sure you
understand how the loop works.

Reflection 4.12 Run the program to determine what the most profitable ticket price is.

The program prints the following table:

Price Income Profit

------ --------- ---------

$ 1.00 $ 2420.00 $-5580.00

$ 2.00 $ 4680.00 $-3320.00

$ 3.00 $ 6780.00 $-1220.00

$ 4.00 $ 8720.00 $ 720.00

⋮
$15.00 $19500.00 $11500.00

$16.00 $19520.00 $11520.00

$17.00 $19380.00 $11380.00

⋮
$24.00 $13920.00 $ 5920.00

$25.00 $12500.00 $ 4500.00

The profit in the third column increases until it reaches $11,520.00 at a ticket price
of $16, then it drops off. So the most profitable ticket price seems to be $16.

Reflection 4.13 Our program only considered whole dollar ticket prices. How can we
modify it to increment the ticket price by fifty cents in each iteration instead?

The range function can only create ranges of integers, so we cannot ask the range

function to increment by 0.5 instead of 1. But we can achieve our goal by doubling

Copyright Taylor and Francis, 2021

142 � 4 Growth and Decay

the range of numbers that we iterate over, and then set the price in each iteration
to be the value of the index variable divided by two.

def profitTable(maxPrice):
""" (docstring omitted) """

print('Price Income Profit')
print('------ --------- ---------')
for price in range(1, 2 * maxPrice + 1):

realPrice = price / 2
sales = 2500 - 80 * realPrice
income = sales * realPrice
profit = income - 8000
formatString = '${0:>5.2f} ${1:>8.2f} ${2:8.2f}'
print(formatString.format(realPrice, income, profit))

Now when price is 1, the “real price” that is used to compute profit is 0.5. When
price is 2, the “real price” is 1.0, etc.

Reflection 4.14 Does our new function find a more profitable ticket price than $16?

Our new function prints the following table.

Price Income Profit

------ --------- ---------

$ 0.50 $ 1230.00 $-6770.00

$ 1.00 $ 2420.00 $-5580.00

$ 1.50 $ 3570.00 $-4430.00

$ 2.00 $ 4680.00 $-3320.00

⋮
$15.50 $19530.00 $11530.00

$16.00 $19520.00 $11520.00

$16.50 $19470.00 $11470.00

⋮
$24.50 $13230.00 $ 5230.00

$25.00 $12500.00 $ 4500.00

If we look at the ticket prices around $16, we see that $15.50 will actually make $10
more.

Just from looking at the table, the relationship between the ticket price and the
profit is not as clear as it would be if we plotted the data instead. For example, does
profit rise in a straight line to the maximum and then fall in a straight line? Or is it
a more gradual curve? We can answer these questions by drawing a plot with turtle
graphics, using the goto method to move the turtle from one point to the next.

import turtle

def profitPlot(tortoise, maxPrice):
""" (docstring omitted) """

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 143

for price in range(1, 2 * maxPrice + 1):
realPrice = price / 2
sales = 2500 - 80 * realPrice
income = sales * realPrice
profit = income - 8000
tortoise.goto(realPrice, profit)

def main():
george = turtle.Turtle()
screen = george.getscreen()
screen.setworldcoordinates(0, -15000, 25, 15000)
profitPlot(george, 25)

main()

Our new main function sets up a turtle and then uses the setworldcoordinates

method to change the coordinate system in the drawing window to fit the points
that we are likely to plot. In the for loop in the profitPlot function, since the
first value of realPrice is 0.5, the first goto is

george.goto(0.5, -6770)

which draws a line from the origin (0,0) to (0.5,−6770). In the next iteration, the
value of realPrice is 1.0, so the loop next executes

george.goto(1.0, -5580)

which draws a line from the previous position of (0.5,−6770) to (1.0,−5580). The
next value of realPrice is 1.5, so the loop then executes

george.goto(1.5, -4430)

which draws a line from from (1.0,−5580) to (1.5,−4430). And so on, until realPrice
takes on its final value of 25 and we draw a line from the previous position of
(24.5,5230) to (25,4500).

Reflection 4.15 What shape is the plot? Can you see why?

Reflection 4.16 When you run this plotting program, you will notice an ugly line from
the origin to the first point of the plot. How can you fix this? (We will leave the answer as
an exercise.)

Exercises
Write a function for each of the following problems. Be sure to appropriately document your
functions with docstrings and comments. Test each function with both common and boundary
case arguments, as described on page 38, and document your test cases. Use a trace table on
at least one test case.

4.1.1* Generalize the pond function so that it also takes the annual growth rate as a
parameter.

4.1.2. Generalize the pond function further to allow for the pond to be annually
restocked with an additional quantity of fish.

Copyright Taylor and Francis, 2021

144 � 4 Growth and Decay

4.1.3. Modify the countLinks function so that it prints a table like the following:

| | Links |

| Nodes | New | Total |

| ----- | --- | ----- |

| 2 | 1 | 1 |

| 3 | 2 | 3 |

| 4 | 3 | 6 |

| 5 | 4 | 10 |

| 6 | 5 | 15 |

| 7 | 6 | 21 |

| 8 | 7 | 28 |

| 9 | 8 | 36 |

| 10 | 9 | 45 |

4.1.4. Modify the profitTable function so that it considers all ticket prices that are
multiples of a quarter.

4.1.5. In the profitPlot function in the text, fix the problem raised by Reflection 4.16.

4.1.6. There are actually three forms of the range function:

• 1 parameter: range(stop)

• 2 parameters: range(start, stop)

• 3 parameters: range(start, stop, skip)

With three arguments, range produces a range of integers starting at the start
value and ending at or before stop - 1, adding skip each time. For example,

range(5, 15, 2)

produces the range of numbers 5, 7, 9, 11, 13 and

range(-5, -15, -2)

produces the range of numbers -5, -7, -9, -11, -13. To print these numbers,
one per line, we can use a for loop:

for number in range(-5, -15, -2):
print(number)

(a) Write a for loop that prints the integers from 0 to 100.

(b) Write a for loop that prints the integers from -50 to 50.

(c) Write a for loop that prints the even integers from 2 to 100, using the
third form of the range function.

(d) Write a for loop that prints the odd integers from 1 to 100, using the
third form of the range function.

(e) Write a for loop that prints the integers from 100 to 1 in descending
order.

(f) Write a for loop that prints the values 7, 11, 15, 19.

(g) Write a for loop that prints the values 2, 1, 0, −1, −2.

(h) Write a for loop that prints the values −7, −11, −15, −19.

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 145

4.1.7* Write a function

triangle()

that uses a for loop to print the following:

*

**

4.1.8. Write a function

diamond()

that uses for loops to print the following:

***** *****

**** ****

*** ***

** **

* *

* *

** **

*** ***

**** ****

***** *****

4.1.9. Write a function

square(letter, width)

that prints a square with the given width using the string letter. For example,
square('Q', 5) should print:

QQQQQ

QQQQQ

QQQQQ

QQQQQ

QQQQQ

4.1.10* Write a for loop that uses range(50) to print the odd integers from 1 to 100.

4.1.11* Write a function

multiples(n)

that prints all of the multiples of the parameter n between 0 and 100, inclusive.
For example, if n were 4, the function should print the values 0, 4, 8, 12,

4.1.12. Write a function

countdown(n)

that prints the integers between 0 and n in descending order. For example, if n
were 5, the function should print the values 5, 4, 3, 2, 1, 0.

Copyright Taylor and Francis, 2021

146 � 4 Growth and Decay

4.1.13. On page 122, we talked about how to simulate the minutes ticking on a digital
clock using modular arithmetic. Write a function

clock(ticks)

that prints ticks times starting from midnight, where the clock ticks once each
minute. To simplify matters, the midnight hour can be denoted 0 instead of 12.
For example, clock(100) should print

0:00

0:01

0:02

⋮
0:59

1:00

1:01

⋮
1:38

1:39

To line up the colons in the times and force the leading zero in the minutes, use
a format string like this:

print('{0:>2}:{1:0>2}'.format(hours, minutes))

4.1.14. Write a function

circles(tortoise)

that uses turtle graphics and a for loop to draw concentric circles with radii
10, 20, 30, . . . , 100. (To draw each circle, you may use the turtle graphics circle
method or the drawCircle function you wrote in Exercise 2.3.14.)

4.1.15* Write a function

plotSine(tortoise, n)

that uses turtle graphics to plot sinx from x = 0 to x = n degrees. Use
setworldcoordinates to make the x coordinates of the window range from 0
to n and the y coordinates range from -1 to 1.

4.1.16. Python also allows us to pass function names as parameters. So we can generalize
the function in Exercise 4.1.15 to plot any function we want. Write a function

plot(tortoise, n, f)

where f is the name of an arbitrary function that takes a single numerical
argument and returns a number. Inside the for loop in the plot function, we
can apply the function f to the index variable x with

tortoise.goto(x, f(x))

To call the plot function, we need to define one or more functions to pass in as
arguments. For example, to plot x2, we can define

def square(x):
return x * x

and then call plot with

plot(george, 20, square)

Or, to plot an elongated sinx, we could define

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 147

def sin(x):
return 10 * math.sin(x)

and then call plot with

plot(george, 20, sin)

After you create your new version of plot, also create at least one new function to
pass into plot for the parameter f. Depending on the functions you pass in, you
may need to adjust the window coordinate system with setworldcoordinates.

4.1.17* Write a function

growth1(totalDays)

that simulates a population growing by 3 individuals each day. For each day,
print the day number and the total population size.

4.1.18. Write a function

growth2(totalDays)

that simulates a population that grows by 3 individuals each day but also shrinks
by, on average, 1 individual every 2 days. For each day, print the day number
and the total population size.

4.1.19. Write a function

growth3(totalDays)

that simulates a population that increases by 110% every day. Assume that the
initial population size is 10. For each day, print the day number and the total
population size.

4.1.20. Write a function

growth4(totalDays)

that simulates a population that grows by 2 on the first day, 4 on the second day,
8 on the third day, 16 on the fourth day, etc. Assume that the initial population
size is 10. For each day, print the day number and the total population size.

4.1.21* Suppose a bacteria colony grows at a rate of 10% per hour and that there are
initially 100 bacteria in the colony. Write a function

bacteria(days)

that returns the number of bacteria in the colony after the given number of
days. How many bacteria are in the colony after one week?

4.1.22. Generalize the function that you wrote for the previous exercise so that it also
accepts parameters for the initial population size and the growth rate. How
many bacteria are in the same colony after one week if it grows at 15% per hour
instead?

4.1.23* Write a function

sumNumbers(n)

that returns the sum of the integers between 1 and n, inclusive. For example,
sum(4) returns 1 + 2 + 3 + 4 = 10. (Use a for loop; if you know a shortcut, don’t
use it.)

Copyright Taylor and Francis, 2021

148 � 4 Growth and Decay

4.1.24. Write a function

sumEven(n)

that returns the sum of the even integers between 2 and n, inclusive. For example,
sumEven(6) returns 2 + 4 + 6 = 12. (Use a for loop.)

4.1.25. Write a function

average(low, high)

that returns the average of the integers between low and high, inclusive. For
example, average(3, 6) returns (3 + 4 + 5 + 6)/4 = 4.5.

4.1.26* Write a function

factorial(n)

that returns the value of n! = 1 × 2 × 3 ×⋯× (n − 1) × n. (Be careful; how should
the accumulator be initialized?)

4.1.27. Write a function

power(base, exponent)

that returns the value of base raised to the exponent power, without using the
** operator. Assume that exponent is a positive integer.

4.1.28. The geometric mean of n numbers is defined to be the nth root of the product
of the numbers. (The nth root is the same as the 1/n power.) Write a function

geoMean(high)

that returns the geometric mean of the numbers between 1 and high, inclusive.

4.1.29. Write a function

sumDigits(number, numDigits)

that returns the sum of the individual digits in a parameter number that has
numDigits digits. For example, sumDigits(1234, 4) should return the value
1 + 2 + 3 + 4 = 10. (Hint: use a for loop and integer division (// and %).)

4.1.30. Between the ages of three and thirteen, girls grow an average of about six
centimeters per year. Write a function

growth(finalAge)

that prints a simple height chart based on this information, with one entry for
each age, assuming the average girl is 95 centimeters (37 inches) tall at age
three.

4.1.31. Consider the following fun game. Pick any positive integer less than 100 and
add the squares of its digits. For example, if you choose 25, the sum of the
squares of its digits is 22 + 52 = 29. Now make the answer your new number, and
repeat the process. For example, if we continue this process starting with 25,
we get: 25, 29, 85, 89, 145, 42, etc.

Write a function

fun(number, iterations)

that prints the sequence of numbers generated by this game, starting with the
two digit number, and continuing for the given number of iterations. It will
be helpful to know that no number will ever have more than three digits.

Execute your function with every integer between 15 and 25, with iterations

Copyright Taylor and Francis, 2021

4.1 ACCUMULATORS � 149

at least 30. What do you notice? Can you classify each of these integers into
one of two groups based on the results?

4.1.32. Create trace tables that show the execution of each of the following functions.

(a)* your growth1 function from Exercise 4.1.17 when it is called as
growth1(4)

(b) your growth3 function from Exercise 4.1.19 when it is called as
growth3(4)

(c) your bacteria function from Exercise 4.1.21 when it is called as
bacteria(5)

4.1.33* You have $1,000 to invest and need to decide between two savings accounts.
The first account pays interest at an annual rate of 1% and is compounded daily,
meaning that interest is earned daily at a rate of (1/365)%. The second account
pays interest at an annual rate of 1.25% but is compounded monthly. Write a
function

interest(originalAmount, rate, periods)

that computes the interest earned in one year on originalAmount dollars in an
account that pays the given annual interest rate, compounded over the given
number of periods. Assume the interest rate is given as a percentage, not a
fraction (i.e., 1.25 vs. 0.0125). Use the function to answer the original question.

4.1.34. Suppose you want to start saving a certain amount each month in an investment
account that compounds interest monthly. To determine how much money you
expect to have in the future, write a function

invest(investment, rate, years)

that returns the income earned by investing investment dollars every month in
an investment account that pays the given rate of return, compounded monthly
(rate / 12 % each month).

4.1.35. A mortgage loan is charged some rate of interest every month based on the
current balance on the loan. If the annual interest rate of the mortgage is r%,
then interest equal to r/12 % of the current balance is added to the amount owed
each month. Also each month, the borrower is expected to make a payment,
which reduces the amount owed.

Write a function

mortgage(principal, rate, years, payment)

that prints a table of mortgage payments and the remaining balance every month
of the loan period. The last payment should include any remaining balance.
For example, paying $1,000 per month on a $200,000 loan at 4.5% for 30 years
should result in the following table:

Month Payment Balance

1 1000.00 199750.00

2 1000.00 199499.06

3 1000.00 199247.18

⋮
359 1000.00 11111.79

360 11153.46 0.00

Copyright Taylor and Francis, 2021

150 � 4 Growth and Decay

4.2 DATA VISUALIZATION
Visualizing changes in population size over time will provide more insight into how
population models evolve. We could plot population changes with turtle graphics, as
we did in Section 4.1, but instead, we will use a dedicated plotting module called
matplotlib, so-named because it emulates the plotting capabilities of the technical
programming language MATLAB1.

To use matplotlib, we first import the module using

import matplotlib.pyplot as pyplot

matplotlib.pyplot is the name of module; “as pyplot” allows us to refer to the
module in our program with the abbreviation pyplot instead of its rather long full
name. The basic plotting functions take two arguments: a list of x values and an
associated list of y values. As we saw before, a list in Python is represented as a
comma-separated sequence of items enclosed in square brackets, such as

[4, 7, 2, 3.1, 12, 2.1]

We will use lists much more extensively in Chapter 7. For now, we only need to know
how to build a list of population sizes in our for loop so that we can plot them.
Let’s look at how to do this in the fishing pond function from page 135, reproduced
below.

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
print('Year | Population')
print('-----|-----------')
for year in range(years):

population = 1.08 * population - harvest
print('{0:^4} | {1:>9.2f}'.format(year + 1, population))

return population

To build this list, we start by creating an empty list before the loop:

populationList = []

To add an annual population size to the end of the list, we will use the append

method of the list class. We will first append the initial population size to the end
of the empty list with

populationList.append(initialPopulation)

If we pass in 12000 for the initial population parameter, this will result in
populationList becoming the single-element list [12000]. Inside the loop, we
want to append each value of population to the end of the growing list with

populationList.append(population)

1MATLAB is a registered trademark of The MathWorks, Inc.

Copyright Taylor and Francis, 2021

4.2 DATA VISUALIZATION � 151

Incorporating this code into our pond function, and deleting the calls to print,
yields:

1 def pond(years, initialPopulation, harvest):
2 """Simulates a fish population and plots annual population size.
3 The population grows 8% per year with an annual harvest.

4 Parameters:
5 years: number of years to simulate
6 initialPopulation: the initial population size
7 harvest: the size of the annual harvest

8 Return value: the final population size
9 """

10 population = initialPopulation
11 populationList = []
12 populationList.append(initialPopulation)
13 for year in range(1, years + 1):
14 population = 1.08 * population - harvest
15 populationList.append(population)
16 return population

We have also changed the for loop range to start at 1 to reflect that the first
population size computed inside the loop reflects the size at year 1 (and the pop-
ulation before the loop represents “year 0”). The trace table below shows how
populationList grows with each iteration, assuming an initial population of 12,000.

Trace arguments: years = 14, initialPopulation = 12000, harvest = 1500

Step Line year population populationList Notes
1 11 — 12000 — init population
2 12 — ” [] init populationList
3 13 — ” [12000] append 12000

4 14 1 ” ” year ← 1

5 15 ” 11460.0 ” update population

6 16 ” ” [12000, 11460.0] append 11460.0

7 14 2 ” ” year ← 2

8 15 ” 10876.8 ” update population

9 16 ” ” [12000, ..., 10876.8] append 10876.8

⋮

43 14 14 392.539 [12000, ..., 392.539] year ← 14

44 15 ” -1076.056 ” update population

45 16 ” ” [12000, ..., -1076.056] append -1076.056

Return value: -1076.056

Copyright Taylor and Francis, 2021

152 � 4 Growth and Decay

Figure 4.2 Plot of population size in our fishing pond model with years = 15.

In each iteration, the current value of population is appended to the end of
populationList. So when the loop is finished, there are years + 1 population sizes
in the list.

Reflection 4.17 Add a statement to print populationList at the end of each iteration
of the loop so that you can see better how it grows.

There is a strong similarity between the manner in which we are appending elements
to a list and the accumulators that we have been talking about in this chapter. In
an accumulator, we accumulate values into a sum by repeatedly adding new values
to a running sum. The running sum changes (usually grows) in each iteration of the
loop. With the list in the for loop above, we are accumulating values in a different
way—by repeatedly appending them to the end of a growing list. Therefore, we call
this technique a list accumulator .

We now want to use this list of population sizes as the list of y values in a matplotlib

plot. For the x values, we need a list of the corresponding years, which can be obtained
with range(years + 1).

Reflection 4.18 Why do we need the x values to be range(years + 1) instead of
range(1, years + 1)? Think about how many population values are in populationList.

Once we have both lists, we can create a plot by calling the plot function and then
display the plot by calling the show function:

Copyright Taylor and Francis, 2021

4.2 DATA VISUALIZATION � 153

pyplot.plot(range(years + 1), populationList)
pyplot.show()

The first argument to the plot function is the list of x values and the second
parameter is the list of y values. The matplotlib.pyplot module includes many
optional ways to customize our plots before we call show. Some of the simplest are
functions that label the x and y axes:

pyplot.xlabel('Year')
pyplot.ylabel('Fish Population Size')

Incorporating the plotting code yields the following function, whose output is shown
in Figure 4.2.

import matplotlib.pyplot as pyplot

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
populationList = []
populationList.append(initialPopulation)
for year in range(1, years + 1):

population = 1.08 * population - harvest
populationList.append(population)

pyplot.plot(range(years + 1), populationList)
pyplot.xlabel('Year')
pyplot.ylabel('Fish Population Size')
pyplot.show()

return population

For more complex plots, we can alter the scales of the axes, change the color and
style of the curves, and label multiple curves on the same plot. See Appendix A.4
for a sample of what is available. Some of the options must be specified as keyword
arguments of the form name = value. For example, to color a curve in a plot red
and specify a label for the plot legend, you would call something like this:

pyplot.plot(x, y, color = 'red', label = 'Bass population')
pyplot.legend() # creates a legend from labeled lines

Exercises
4.2.1* A zombie can convert two people into zombies everyday. Assuming we start

with just one zombie, write a function

zombieApocalypse(days)

that plots the total number of zombies (y axis) roaming the earth over each
of the given number of days (x axis). Appropriately label your axes. Use your
function to create a plot of zombie growth over 14 days.

Copyright Taylor and Francis, 2021

154 � 4 Growth and Decay

1 2 3 4 5 6 7 8 9 10
Nodes

0

5

10

15

20

25

30

35

40

45
M

a
x
im

u
m

 n
u
m

b
e
r

o
f

lin
ks

Figure 4.3 Plot for Exercise 4.2.2.

0 5 10 15 20 25
Ticket price ($)

10000

5000

0

5000

10000

15000

P
ro

fi
t

($
)

Figure 4.4 Plot for Exercise 4.2.3.

4.2.2. Modify the countLinks function on page 138 so that it uses matplotlib to
plot the number of nodes on the x axis and the maximum number of links on
the y axis. Create a plot that shows the maximum number of links for 1 to 10
nodes; it should look like the one in Figure 4.3.

4.2.3* Modify the profitPlot function on page 142 so that it uses matplotlib to
plot ticket price on the x axis and profit on the y axis. (Remove the tortoise

parameter.) Create a plot that shows the profit for ticket prices up to $25; it
should look like the one in Figure 4.4. To get the correct prices (in half dollar
increments) on the x axis, you will need to create a second list of x values and
append realPrice to it in each iteration.

4.2.4. Modify your growth1 function from Exercise 4.1.17 so that it uses matplotlib
to plot days on the x axis and the total population on the y axis. Create a plot
that shows the growth of the population over 30 days.

4.2.5. Modify your growth3 function from Exercise 4.1.19 so that it uses matplotlib
to plot days on the x axis and the total population on the y axis. Create a plot
that shows the growth of the population over 30 days.

4.2.6. Modify your invest function from Exercise 4.1.34 so that it uses matplotlib

to plot months on the x axis and your total accumulated investment amount
on the y axis. Create a plot that shows the growth of an investment of $50 per
month for ten years growing at an annual rate of 8%.

4.2.7* Write a function that compares the growth rates of two bacteria colonies (like in
Exercise 4.1.21), one that grows 10% per hour and another that grows 15% per
hour. Your function should have one for loop that accumulates two population
variables and two lists independently. After the loop, use two pyplot.plot calls
before pyplot.show(), each with its own label (as shown above), to plot the
populations. Include a legend that shows which curve is which. Create a plot
with your function that compares growth over a period of 3 days.

4.2.8. Vampires can each convert v people a day into vampires. However, there is a
band of vampire hunters that can kill k vampires per day. Write a function

vampireApocalypse(v, k, vampires, people, days)

Copyright Taylor and Francis, 2021

4.3 CONDITIONAL ITERATION � 155

that plots the numbers of vampires and people in a town with initial population
people over the given number of days, assuming the town starts with a coven
with vampires members. Use your function to create a plot of vampires and
people over a period of 7 days. See the previous exercise for how to plot multiple
lists.

4.2.9. Write a function that compares the growth in population sizes in Exercises 4.1.17,
4.1.19, and 4.1.20 over a number of days. Create a plot with your function
that compares growth over 14 days. Use three calls to pyplot.plot before
pyplot.show() and include a legend. Contrast the three growth rates. What
do you notice?

4.3 CONDITIONAL ITERATION
In our fishing pond model, to determine when the population size fell below zero, it
was sufficient to simply print the annual population sizes for at least 14 years, and
look at the results. However, if it had taken a thousand years for the population size
to fall below zero, then looking at the output would be far less convenient. Instead,
we would like to have a program tell us the year directly, by ceasing to iterate when
population drops below zero, and then returning the year it happened. This is
a different kind of problem because we no longer know how many iterations are
required before the loop starts. In other words, we have no way of knowing what
value to pass into range in a for loop.

Instead, we need a more general kind of loop that will iterate only while some
condition is met. Such a loop is generally called a while loop. In Python, a while
loop looks like this:

while <condition>:
<body>

The <condition> is replaced with a Boolean expression that evaluates to True or
False, and the <body> is replaced with statements constituting the body of the loop.
The loop checks the value of the condition before each iteration. If the condition is
true, it executes the body of the loop, and then checks the condition again. If the
condition is false, the body of the loop is skipped, and the loop ends.

When will the fish disappear?
To solve this problem, we want to continue to update population in a loop while
popluation > 0. This Boolean expression is true if the value of population is
positive, and false otherwise. Using this Boolean expression in the while loop in the
following function, we can find the year that the fish population drops to 0.

Copyright Taylor and Francis, 2021

156 � 4 Growth and Decay

1 def yearsUntilZero(initialPopulation, harvest):
2 """Computes the number of years until a fish population reaches zero.
3 Population grows 8% per year with an annual harvest.

4 Parameters:
5 initialPopulation: the initial population size
6 harvest: the size of the annual harvest

7 Return value: year during which the population reaches zero
8 """

9 population = initialPopulation
10 year = 0
11 while population > 0:
12 population = 1.08 * population - harvest
13 year = year + 1
14 return year

The following trace table shows how the loop works when initialPopulation is
12000 and harvest is 1500, as in our original pond function in Section 4.1.

Trace arguments: initialPopulation = 12000, harvest = 1500

Step Line population year Notes
1 9 12000 — population ← 12000

2 10 ” 0 year ← 0

3 11 ” ” population > 0, so execute the body of the loop
4 12 11460.0 ” update population

5 13 ” 1 increment year
6 11 ” ” population > 0, so execute the body of the loop
7 12 10876.8 ” update population

8 13 ” 2 increment year
9 11 ” ” population > 0, so execute the body of the loop
⋮

42 11 392.539 13 population > 0, so execute the body of the loop
43 12 -1076.056 ” update population

44 13 ” 14 increment year
45 11 ” ” population <= 0, so exit the loop
46 14 ” ” return 14

Return value: 14

Before the loop, population is 12000 and year is 0. Since population > 0 is true,
the loop body executes in steps 4–5, causing population to become 11460 and
year to become 1. We then go back to the top of the loop in step 6 to check

Copyright Taylor and Francis, 2021

4.3 CONDITIONAL ITERATION � 157

the condition again. Since population > 0 is still true, the loop body executes
again in steps 7–8, causing population to become 10876.8 and year to become
2. Iteration continues until year reaches 14. In this year, population becomes
-1076.06. When the condition is checked at the beginning of the next iteration, we
find that population > 0 is false, so the loop ends and the function returns 14.

Using while loops can be tricky for a few reasons. First, a while loop may not
iterate at all. For example, if the initial value of population were zero, the condition
in the while loop will be false before the first iteration, and the loop will be over
before it starts.

Reflection 4.19 What will be returned by the function if the initial value of population

were zero?

A loop that sometimes does not iterate at all is generally not a bad thing, and can
even be used to our advantage. In this case, if population were initially zero, the
function would return zero because the value of year would never be incremented
in the loop. And this is correct; the population dropped to zero in year zero, before
the clock started ticking beyond the initial population size. But it is something that
one should always keep in mind when designing algorithms involving while loops.

Second, and related to the first point, you need to always make sure that the
condition in the while loop makes sense before the first iteration. For example,
suppose we forgot to give population an initial value before the loop. Then the
loop condition would not make any sense because population was not defined.

Third, a while loop may become an infinite loop. For example, suppose
initialPopulation is 12000 and harvest is 800 instead of 1500. In this case,
as we saw on page 134, the population size increases every year instead. So the
population size will never reach zero and the loop condition will never be false, so
the loop will iterate forever. For this reason, we must always make sure that the
body of a while loop makes progress toward the loop condition becoming false.

These points can be summarized in two rules to always keep in mind when designing
an algorithm with a while loop:

1. Initialize the condition before the loop. Always make sure that the condition
makes sense and will behave in the intended way the first time it is tested.

2. In each iteration of the loop, work toward the condition eventually becoming
false. Not doing so will result in an infinite loop.

When will your nest egg double?
Let’s look at one more example. Suppose we have $1000 to invest and we would like
to know how long it will take for our money to double in size, growing at 5% per
year. To answer this question, let’s start with the following incomplete loop that
compounds 5% interest each year:

Copyright Taylor and Francis, 2021

158 � 4 Growth and Decay

amount = 1000
while ???:

amount = 1.05 * amount
print(amount)

Reflection 4.20 What should be the condition in the while loop?

We want the loop to stop iterating when amount reaches 2000. Therefore, we want
the loop to continue to iterate while amount < 2000.

amount = 1000
while amount < 2000:

amount = 1.05 * amount
print(amount)

Reflection 4.21 What is printed by this block of code? What does this result tell us?

Once the loop is done iterating, the final amount is printed (approximately $2078.93),
but this does not answer our question.

Reflection 4.22 How do we figure out how many years it takes for the $1000 to double?

To answer our question, we need to count the number of times the while loop
iterates, which is very similar to what we did in the yearsUntilZero function. We
can introduce another variable that is incremented in each iteration, and print its
value after the loop, along with the final value of amount:

amount = 1000
while amount < 2000:

amount = 1.05 * amount
year = year + 1

print(year, amount)

Reflection 4.23 Make these changes and run the code again. Now what is printed?

Oops, an error message is printed, telling us that the name year is undefined.

Reflection 4.24 How do we fix the error?

The problem is that we did not initialize the value of year before the loop. Therefore,
the first time year = year + 1 was executed, year was undefined on the right
side of the assignment statement. Adding one statement before the loop fixes the
problem:

amount = 1000
year = 0
while amount < 2000:

amount = 1.05 * amount
year = year + 1

print(year, amount)

Reflection 4.25 Now what is printed by this block of code? In other words, how many
years until the $1000 doubles?

We will see some more examples of while loops later in this chapter, and again in
Section 5.6.

Copyright Taylor and Francis, 2021

4.3 CONDITIONAL ITERATION � 159

Exercises
4.3.1* Suppose you put $1000 into the bank and you get a 3% interest rate compounded

annually. How would you use a while loop to determine how long it will take
for your account to have at least $1200 in it?

4.3.2. Repeat the last question, but this time write a function

interest(amount, rate, target)

that takes the initial amount, the interest rate, and the target amount as
parameters. The function should return the number of years it takes to reach
the target amount.

4.3.3. Since while loops are more general than for loops, we can emulate the behavior
of a for loop with a while loop. For example, we can emulate the behavior of
the for loop

for counter in range(10):
print(counter)

with the while loop

counter = 0
while counter < 10:

print(counter)
counter = counter + 1

(a) Create a trace table for each of the loops above to make sure you
understand how they are equivalent.

(b) What happens if we omit counter = 0 before the while loop? Why
does this happen?

(c) What happens if we omit counter = counter + 1 from the body of
the while loop? What does the loop print?

(d) Show how to emulate the following for loop with a while loop:

for counter in range(3, 12):
print(counter)

(e) Show how to emulate the following for loop with a while loop:

for counter in range(12, 3, -1):
print(counter)

4.3.4* In the profitTable function on page 142, we used a for loop to indirectly
consider all ticket prices divisible by a half dollar. Rewrite this function so that
it instead uses a while loop that increments price by $0.50 in each iteration.

4.3.5. A zombie can convert two people into zombies everyday. Starting with just one
zombie, how long would it take for the entire world population (7 billion people)
to become zombies? Write a function

zombieApocalypse()

that returns the answer to this question.

Copyright Taylor and Francis, 2021

160 � 4 Growth and Decay

4.3.6* Tribbles increase at the rate of 50% per hour (rounding down if there are an
odd number of them). How long would it take 10 tribbles to reach a population
size of 1 million? Write a function

tribbleApocalypse()

that returns the answer to this question.

4.3.7. Vampires can each convert v people a day into vampires. However, there is a
band of vampire hunters that can kill k vampires per day. If a coven of vampires
starts with vampires members, how long before a town with a population of
people becomes a town with no humans left in it? Write a function

vampireApocalypse(v, k, vampires, people)

that returns the answer to this question.

4.3.8. An amoeba can split itself into two once every h hours. How many hours does
it take for a single amoeba to become target amoebae? Write a function

amoebaGrowth(h, target)

that returns the answer to this question.

4.3.9. Write a function

virus(rate, target)

that returns the number of days until target people are infected by a virus,
assuming one person is initially infected and the number infected grows by the
given rate each day.

4.3.10. Suppose each person newly infected by a virus is able to infect R additional
people. R is called the reproduction number of the virus. (Think of this as a
one-time event; the person does not infect R additional people every day.) Write
a function

virus2(R, target)

that returns the number of days until target people are infected, assuming only
one person is initially infected.

*4.4 CONTINUOUS MODELS
This section is available on the book website.

*4.5 NUMERICAL ANALYSIS
This section is available on the book website.

Copyright Taylor and Francis, 2021

4.6 SUMMING UP � 161

4.6 SUMMING UP
Although we have solved a variety of different problems in this chapter, almost all of
the functions that we have designed have the same basic format:

def accumulator():
total = # initialize the accumulator
for index in range(): # iterate some number of times

total = total + # add something to the accumulator
return total # return final accumulator value

The functions we designed differ primarily in what is added to the accumulator (the
red statement) in each iteration of the loop. Let’s look at three of these functions in
particular: the pond function from page 135, the countLinks function from page 138,
and the solution to Exercise 4.1.30 from page 148, shown below.

def growth(finalAge):
height = 95
for age in range(4, finalAge + 1):

height = height + 6
return height

In the growth function, a constant value is added to the accumulator in each
iteration:

height = height + 6

In the countLinks function, the value of the index variable, minus one, is added to
the accumulator:

newLinks = node - 1
totalLinks = totalLinks + newLinks

And in the pond function, a factor of the accumulator itself is added in each iteration:

population = population + 0.08 * population # ignoring "- 1500"

These three types of accumulators grow in three different ways. Adding a constant
value to the accumulator in each iteration, as in the growth function, results in
a final sum that is equal to the number of iterations times the constant value. In
other words, if the initial value is a, the constant added value is c, and the number
of iterations is n, then the final value of the accumulator is a + cn. (In the growth

function, a = 95 and c = 6, so the final sum is 95 + 6n.) As n increases, cn increases
by a constant amount. This is called linear growth , and is illustrated by the blue
line in Figure 4.5.

Adding the value of the index variable to the accumulator, as in the countLinks

function, leads to faster growth. In countLinks, the final value of the accumulator is

1 + 2 + 3 +⋯ + (n − 1)

which is equal to
1

2
⋅ n ⋅ (n − 1) = n

2 − n
2

.

Copyright Taylor and Francis, 2021

162 � 4 Growth and Decay

0 20 40 60 80 100 120
n

0

2000

4000

6000

8000

10000

12000

14000

16000

su
m

linear
quadratic
exponential

Figure 4.5 An illustration of linear, quadratic, and exponential growth. The curves

are generated by accumulators adding 6, the index variable, and 1.08 times the

accumulator, respectively, in each iteration.

Tangent 4.1 explains two clever ways to derive this result. Since this sum is propor-
tional to n2, we say that it exhibits quadratic growth , as shown by the red curve
in Figure 4.5. This sum is actually quite handy to know, and it will surface again in
Chapter 10.

Finally, adding a factor of the accumulator to itself in each iteration, as in the
pond function, results in even faster growth. In the pond function, if we add
0.08 * population to population in each iteration, the accumulator variable
will be equal to the initial value of population times 1.08n at the end of n iterations
of the loop. For this reason, we call this exponential growth , which is illustrated
by the green curve in Figure 4.5. Notice that, as n gets larger, exponential growth
quickly outpaces the other two curves, even when the power of n is small, like 1.08.

So although all accumulator algorithms look more or less alike, the effects of the
accumulators can be strikingly different. Understanding the relative rates of these
different types of growth is quite important in a variety of fields, not just computer
science. For example, mistaking an exponentially growing epidemic for a linearly
growing one can be a life or death mistake!

These classes of growth can also be applied to the time complexity of algorithms, as
we saw briefly in Section 1.2 and will see more in later chapters. When applied in
this way, n represents the size of the algorithm’s input and the y-axis represents the

Copyright Taylor and Francis, 2021

4.6 SUMMING UP � 163

Tangent 4.1: Triangular numbers

There are a few nice tricks to figure out the value of the sum

1 + 2 + 3 +⋯ + (n − 2) + (n − 1) + n

for any positive integer n. The first technique is to add the numbers in the sum from
the outside in. Notice that the sum of the first and last numbers is n + 1. Then, coming
in one position from both the left and right, we find that (n − 1) + 2 = n + 1 as well.
Next, (n − 2) + 3 = n + 1. This pattern will obviously continue, as we are subtracting 1
from the number on the left and adding 1 to the number on the right. In total, there
is one instance of n + 1 for every two terms in the sum, for a total of n/2 instances of
n + 1. Therefore, the sum is

1 + 2 + 3 +⋯ + (n − 2) + (n − 1) + n = n
2
(n + 1) = n(n + 1)

2
.

For example, 1+2+3+⋯+8 = (8⋅9)/2 = 36 and 1+2+3+⋯+1000 = (1000⋅1001)/2 = 500,500.

The second technique to derive this result is more visual. Depict each number in the
sum as a column of circles, as shown on the left below with n = 8.

The first column has n = 8 circles, the second has n − 1 = 7, etc. So the total number of
circles in this triangle is equal to the value we are seeking. Now make an exact duplicate
of this triangle, and place its mirror image to the right of the original triangle, as shown
on the right above. The resulting rectangle has n rows and n + 1 columns, so there are
a total of n(n + 1) circles. Since the number of circles in this rectangle is exactly twice
the number in the original triangle, the number of circles in the original triangle is
n(n + 1)/2. Based on this representation, numbers like 36 and 500,500 that are sums of
this form are called triangular numbers.

number of elementary steps required by the algorithm to compute the corresponding
output. Algorithms that exhibit linear or quadratic time complexity are generally
considered to be acceptable algorithms, while those exhibiting exponential time
complexity are essentially worthless on all but the smallest inputs.

Copyright Taylor and Francis, 2021

164 � 4 Growth and Decay

Exercises
4.6.1. Decide whether each of the following accumulators exhibits linear, quadratic, or

exponential growth.

(a)* total = 0
for count in range(n):

total = total + count * 2

(b) total = 10
for count in range(n):

total = total + count / 2

(c)* total = 1
for count in range(n):

total = total + total

(d) total = 0
for count in range(n):

total = total + 1.2 * total

(e) total = 0
for count in range(n):

total = total + 0.01

(f) total = 10
for count in range(n):

total = 1.2 * total

4.6.2. Look at Figure 4.5. For values of n less than about 80, the fast-growing expo-
nential curve is actually below the other two. Explain why.

4.6.3. Write a program to generate Figure 4.5.

4.7 FURTHER DISCOVERY
The epigraph of this chapter is from a TED talk given by Stephen Hawking in 2008.
You can watch it yourself at

www.ted.com/talks/stephen_hawking_asks_big_questions_about_the_universe .

If you are interested in learning more about population dynamics models, and
computational modeling in general, a great source is Introduction to Computational
Science [61] by Angela Shiflet and George Shiflet.

*4.8 PROJECTS
This section is available on the book website.

Copyright Taylor and Francis, 2021

www.ted.com/talks/stephen_hawking_asks_big_questions_about_the_universe

