
C H A P T E R 3

Inside a Computer

One day ladies will take their computers for walks in the park and tell each other, “My little
computer said such a funny thing this morning.”

Alan Turing
1951

And now for something completely different!

Monty Python’s Flying Circus

There are only 10 types of people in the world: those who understand binary, and those
who don’t.

Unknown

A lan Turing, the father of Computer Science, optimistically predicted that by
now computers would be carrying on meaningful conversations with human

beings. While this has not yet come to pass, by executing clever algorithms very
fast, computers can sometimes appear to exhibit primitive intelligence. In a historic
example, in 1997, the IBM Deep Blue computer defeated reigning world champion
Garry Kasparov in a six-game match of chess. In 2011, IBM’s Watson computer beat
two champions in the television game show Jeopardy. Five years later, the AlphaGo
program defeated the world Go champion over a five match series. And now we are
on the cusp of seeing autonomous vehicles almost entirely replacing human drivers.

The intelligence that we sometimes attribute to computers, however, is actually
human intelligence that was originally expressed as an algorithm, and then as a
program. Contemporary computers at their cores remain dumb machines. Even the
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Figure 3.1 A simplified look at layers of abstraction when using a computer.

statements in a high-level programming language are themselves abstract conve-
niences built upon a much more rudimentary set of instructions that a computer
can execute natively.

3.1 COMPUTERS ARE DUMB
When you use a computer, you are utilizing layers of functional abstractions. As
illustrated in Figure 3.1, at the highest layer, you are presented with a “desktop”
abstraction on which you can store files and use applications (or programs) to
do work. That there appear to be many applications active simultaneously on
this desktop is also an abstraction. In reality, some applications may be working
in parallel while others are not, but the computer is alternating among them so
quickly that they appear to be working in parallel. Each of these applications is a
sequence of machine language instructions that can be executed by the computer
hardware. Some of these instructions rely on various functional abstractions provided
by the computer’s operating system to save files, access the computer’s memory,
retrieve information from the Internet, etc. In other words, the operating system
provides functional abstractions that allow us, via the applications we use, to more
conveniently and efficiently use the computer’s resources.

Since machine language is the only thing that a computer “understands,” every
statement in a Python program must be translated by the Python interpreter into
a sequence of equivalent machine language instructions before it can be executed.
An interpreter translates one line of a high-level program into machine language,
executes it, then translates the next line and executes it, etc. Other languages
(such as C++) use a compiler instead. A compiler translates a high-level language
program all at once into machine language. Then the compiled machine language
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Tangent 3.1: High performance computing

Although today’s computers are extremely fast, there are some problems that are so big
that additional power is necessary. These include weather forecasting, molecular modeling
and drug design, aerodynamics, and deciphering encrypted data. For these problems,
scientists use supercomputers . A supercomputer, or high performance computer , is made
of up to tens of thousands of nodes, connected by a very fast data network that shuttles
information between nodes. A node, essentially a standalone computer, can contain
multiple processors, each with multiple cores. The fastest supercomputers today have
millions of cores and a million gigabytes of memory.

To realize the power of these computers, programmers need to supply their cores with a
constant stream of data and instructions. The results computed by the individual cores
are then aggregated into an overall solution. The algorithm design and programming
techniques, known as parallel programming , are beyond the scope of this book, but
we provide additional resources at the end of the chapter if you would like to learn
more.

program can be executed from start to finish without additional translation. This
tends to make compiled programs faster than interpreted ones. However, interpreted
languages allow us to more closely interact with a program during its execution.

The types of instructions that constitute a machine language are based on the internal
design of a modern computer. As illustrated in Figure 3.1, a computer essentially
consists of one or more processors connected to a memory . A computer’s memory,
often called RAM (short for random access memory), is conceptually organized as a
long sequence of cells, each of which can contain one unit of information. Each cell
is labeled with a unique memory address that allows the processor to reference
it specifically. So a computer’s memory is like a huge sequence of equal-sized post
office boxes, each of which can hold exactly one letter. Each P.O. box number is
analogous to a memory address and a letter is analogous to one unit of information.
The information in each cell can represent either one instruction or one unit of data.1

So a computer’s memory stores both programs and the data on which the programs
work. A variable name in Python is essentially a reference to a memory address.

A processor , often called a CPU (short for central processing unit) or core, contains
both the machinery for executing instructions and a small set of memory locations
called registers that temporarily hold data values needed by the current instruction.
If a computer contains more than one core, as most modern computers do, then it
is able to execute more than one instruction at a time. These instructions may be
from different programs or from the same program. This means that our previous
definition of an algorithm as a sequence of instructions is not strictly correct. In fact,
an algorithm (or a program) may consist of several semi-independent sequences of
steps called threads that cooperatively solve a problem.

1In reality, each instruction or unit of data usually occupies multiple contiguous cells.
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Figure 3.2 Inside an Apple MacBook Pro. Image courtesy of iFixit (ifixit.com).

The processors and memory are connected by a communication channel called a bus .
When a processor needs a value in memory, it transmits the request over the bus, and
then the memory returns the requested value the same way. The bus also connects
the processors and memory to several other components that either improve the
machine’s efficiency or its convenience, like the Internet and secondary storage
devices like hard drives (HD), solid state drives (SSD), and flash memory. As you
probably know, the contents of a computer’s memory are lost when the computer
loses power, so we use secondary storage to preserve data for longer periods of time.
We interact with these devices through a “file system” abstraction that makes it
appear as if our hard drives are really filing cabinets. When you execute a program or
open a file, it is first copied from secondary storage into memory where the processor
can access it.

Figure 3.2 shows what these components look like inside a laptop computer. In
addition to the processor, memory, and flash storage, which acts as secondary
storage, a lot of real estate is occupied by the graphics processor and its dedicated
memory, which are responsible for our computers’ abilities to display high resolution
video and fast-paced video games. The Thunderbolt controllers are responsible for
transferring data between the computer and external devices (and the network)
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connected through Thunderbolt 3 (USB-C) ports. The security chip encrypts data
in flash storage, prevents unauthorized software from running, and stores fingerprint
data for securely logging in.

Reflection 3.1 Look up the technical specifications for your computer. On a Mac, select
“About This Mac” from the Apple menu. In Windows, search for “System Information” or
“msinfo32.”

Machine language
The machine language instructions that a processor can execute are very limited in
their abilities.2 For example, consider something as simple as addition in Python:

>>> total = number1 + number2

Even something this simple is too complex for one machine language instruction.
The machine language equivalent likely, depending on the computer, consists of four
instructions that do the following.

1. Load the value in the memory cell referred to by the variable number1 into a
register in the processor.

2. Load the value in the memory cell referred to by the variable number2 into
another register in the processor.

3. Add the values in these two registers and store the result in a third register.

4. Store the value in the third register in the memory cell referred to by the
variable total.

From the moment a computer is turned on, its processors are operating in a continuous
loop called the fetch and execute cycle (or machine cycle). In each cycle, the
processor fetches one machine language instruction from memory and executes it.
This cycle repeats until the computer is turned off or loses power. This is essentially
all a computer does. The rate at which a computer performs the fetch and execute
cycle is related to the rate at which its internal clock “ticks” (the processor’s clock
rate). The ticks of this clock keep the machine’s operations synchronized. Modern
personal computers have clocks that tick a few billion times each second; a 3 gigahertz
(GHz) processor ticks 3 billion times per second (“giga” means “billion” and a “hertz”
is one tick per second).

So computers, at their most basic level, really are quite dumb; the processor blindly
follows the fetch and execute cycle, dutifully executing whatever sequence of simple
instructions we give it. The frustrating errors that we yell at computers about are,
in fact, human errors. The great thing about computers is not that they are smart,
but that they follow our instructions so quickly; they can accomplish an incredible
amount of work in a very short amount of time. Whether that work is useful, however,
is up to us.

2Python programs are actually translated into an intermediate form called byte code first. See
Tangent 3.2 for details.
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Tangent 3.2: Byte code

In Python, the translation process is actually a little more complicated than the
more generic discussion in this section. Before they are executed, Python programs
are compiled into an intermediate language called byte code. Then the byte code
instructions are executed by a virtual machine that understands how to translate them
into machine language. A virtual machine is a program that emulates a computer.

The Python virtual machine uses a stack instead of registers to store references to
objects. A stack is conceptually a “pile” of values that can only be accessed from the top.
The only operations on a stack are pushing a value onto the top of the stack and popping
the value off the top of the stack. The following sequence of byte code instructions is
what is actually produced for total = number1 + number2 by the Python interpreter.

0 LOAD_FAST 0 (number1)
2 LOAD_FAST 1 (number2)
4 BINARY_ADD
6 STORE_FAST 2 (total)

The first two instructions push references to the variables number1 and number2 onto
the stack. The BINARY_ADD instruction pops the two values off the stack, adds them
together (in binary) and pushes the result onto the top of the stack. The final instruction
pops the result off the stack and stores it at the memory location referred to by the
variable total.

If you would like see byte code for yourself, you can. To see the byte code generated for
a function named myFunction, do this:

import dis
dis.dis(myFunction)

3.2 EVERYTHING IS BITS
Our discussion so far has glossed over a very important consideration: in what
form does a computer store programs and data? In addition to machine language
instructions, we need to store numbers, documents, maps, images, sounds, presenta-
tions, spreadsheets, and more. Using a different storage medium for each type of
information would be insanely complicated and inefficient. Instead, we need a simple
storage format that can accommodate any type of data. The answer is bits. A bit
is the simplest possible unit of information, capable of taking on one of only two
values: 0 or 1 (or equivalently, off/on, no/yes, or false/true). Storing data as bits
makes perfect sense because bit storage is simple, bits can represent anything, and
computing with bits is almost trivial.

Bits are switches
Storing the value of a bit is absurdly simple: a bit is equivalent to an on/off switch,
and the value of the bit is equivalent to the state of the switch: off = 0 and on = 1.
A computer’s memory is essentially composed of billions of microscopic switches,
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organized into memory cells. Each memory cell contains 8 switches, so each cell
can store 8 bits, called a byte . We represent a byte simply as a sequence of 8 bits,
such as 01101001. A computer with 8 gigabytes (GB) of memory contains about 8
billion memory cells, each storing one byte. (Similarly, a kilobyte (KB) is about one
thousand bytes, a megabyte (MB) is about one million bytes, and a terabyte (TB)
is about one trillion bytes.)

Bits can represent anything
A second advantage of storing information with bits is that, as the simplest possible
unit of information, it serves as a “lowest common denominator.” All information
can be converted to bits in a fairly straightforward manner. Numbers, words, images,
music, and machine language instructions are all encoded as sequences of bits before
they are stored in memory. Information stored as bits is also said to be in binary
notation . For example, consider the following sequence of 16 bits (or two bytes).

0100010001010101

This bit sequence can represent each of the following, depending upon how it is
interpreted:

(a) the integer value 17,493;

(b) the decimal value 2.166015625;

(c) the two characters “DU”;

(d) the Intel machine language instruction inc x (“increment” x); or

(e) the 4 × 4 black and white image to the right, called a bitmap (0
represents a white square and 1 represents a black square).

For now, let’s just look more closely at how numbers are stored. Integers are
represented in a computer using the binary number system, which is understood best
by analogy to the decimal number system. In decimal, each position in a number has
a value that is a power of ten: from right to left, the positional values are 100 = 1,
101 = 10, 102 = 100, etc. The value of a decimal number comes from adding the digits,
each first multiplied by the value of its position. So 1,831 represents the value

1 × 103 + 8 × 102 + 3 × 101 + 1 × 100 = 1000 + 800 + 30 + 1.

The binary number system is no different, except that each position represents a
power of two, and there are only two digits instead of ten. From right to left, the
binary number system positions have values 20 = 1, 21 = 2, 22 = 4, 23 = 8, etc. So, for
example, the binary number 110011 represents the value

1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 32 + 16 + 2 + 1 = 51

in decimal. The 16 bit number above, 0100010001010101, is equivalent to

214 + 210 + 26 + 24 + 22 + 20 = 16,384 + 1,024 + 64 + 16 + 4 + 1 = 17,493.
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Tangent 3.3: Hexadecimal notation

Hexadecimal is base 16 notation. Just as the positional values in decimal are powers
of 10 and the positional values in binary are powers of 2, the positional values in
hexadecimal are powers of 16. Because of this, hexadecimal needs 16 digits, which are 0

through 9, followed by the letters a through f. The letter a has the value 10, b has the
value 11, . . . , f has the value 15. For example, the hexadecimal number 51ed has the
decimal value

5 ⋅ 163 + 1 ⋅ 162 + 14 ⋅ 161 + 13 ⋅ 160 = 5 ⋅ 4096 + 1 ⋅ 256 + 14 ⋅ 16 + 13 ⋅ 1 = 20,973.

Hexadecimal is used a convenient shorthand for binary. Because any 4 binary dig-
its can represent the values 0 through 15, they can be conveniently replaced by
a single hexadecimal digit. So the hexadecimal number 100522f10 is equivalent to
000100000000010100100010111100010000 in binary, as shown below:

1 0 0 5 2 2 f 1 0

0001 0000 0000 0101 0010 0010 1111 0001 0000
Instead of displaying this 36 bit binary number, it is more convenient to display the 9
digit hexadecimal equivalent.

Reflection 3.2 To check your understanding, show why the binary number 1001000 is
equivalent to the decimal number 72.

This idea can be extended to numbers with a fractional part as well. In decimal, the
positions to the right of the decimal point have values that are negative powers of
10: the tenths place has value 10−1 = 0.1, the hundredths place has value 10−2 = 0.01,
etc. So the decimal number 18.31 represents the value

1 × 101 + 8 × 100 + 3 × 10−1 + 1 × 10−2 = 10 + 8 + 0.3 + 0.01.

Similarly, in binary, the positions to the right of the “binary point” have values that
are negative powers of 2. For example, the binary number 11.0011 represents the
value

1 × 21 + 1 × 20 + 0 × 2−1 + 0 × 2−2 + 1 × 2−3 + 1 × 2−4 = 2 + 1 + 1

8
+ 1

16
= 3

3

16

in decimal. This is not, however, how we derived (b) above. As we will discuss in
Section 3.3, numbers with fractional components are stored in a computer using
floating point notation, which converts a number to scientific notation first before
storing it.

Reflection 3.3 To check your understanding, show why the binary number 1001.101 is
equivalent to the decimal number 9 5/8.

Computing with bits
A third advantage of binary is that computation on binary values is exceedingly
easy. In fact, there are only three fundamental operators, called and, or, and not.
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These are known as the Boolean operators, after 19th century mathematician
George Boole, who is credited with inventing modern mathematical logic, now called
Boolean logic or Boolean algebra.

Let the variables a and b each represent a bit with a value of 0 or 1. Then a and b
is equal to 1 only if both a and b are equal to 1; otherwise a and b is equal to 0.3

This is conveniently represented by the following truth table :

a b a and b

0 0 0

0 1 0

1 0 0

1 1 1

Each row of the truth table represents one of the four permutations of the values of
a and b. These permutations are shown in the first two columns. The last column of
the truth table contains the corresponding values of a and b for each row. We see
that a and b is 1 only when a and b are both 1. If we let 1 represent “true” and
0 represent “false,” this conveniently matches our own intuitive meaning of “and.”
The statement “the barn is red and white” is true only if the barn both has red on
it and has white on it.

The second Boolean operator, or, also takes two operands. The expression a or b is
equal to 1 if at least one of a or b is equal to 1; otherwise a or b is equal to 0. This
is represented by the following truth table:

a b a or b

0 0 0

0 1 1

1 0 1

1 1 1

Notice that a or b is 1 even if both a and b are 1. This is different from our normal
understanding of “or.” If we say that “the barn is red or white,” we usually mean it
is either red or white, not both. But the Boolean operator can mean both are true.
(There is another Boolean operator called “exclusive or” that does mean “either/or,”
but we won’t get into that here.)

Finally, the not operator only takes one operand and simply inverts a bit, changing
0 to 1, or 1 to 0. So, not a is equal to 1 if a is equal to 0, or 0 if a is equal to 1. The
truth table for the not operator is simple:

a not a

0 1

1 0

3In formal Boolean algebra, a and b is usually represented a ∧ b, a or b is represented a ∨ b, and
not a is represented ¬a.
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Notice that this truth table only needs two rows because there are only two possible
inputs.

With these basic operators, we can build more complicated expressions. For example,
suppose we wanted to find the value of the expression not a and b. Note that here
the not operator applies only to the variable a immediately after it, not the entire
expression a and b. For not to apply to the expression, we would need parentheses:
not (a and b). We can evaluate the Boolean expression not a and b by building a
truth table for it. We start by listing all of the combinations of values for a and b,
and then create a column for not a, since we need that value before we can evaluate
the and in the expression.

a b not a

0 0 1

0 1 1

1 0 0

1 1 0

Then, we create a column for not a and b by anding each value in the not a column
with its corresponding value in the b column. These individual operations are shown
off to the right for each row.

a b not a not a and b
0 0 1 0 ( 1 and 0 = 0 )
0 1 1 1 ( 1 and 1 = 1 )
1 0 0 0 ( 0 and 0 = 0 )
1 1 0 0 ( 0 and 1 = 0 )

So, referring to the first two columns of the second row, we find that not a and b is
1 only when a is 0 and b is 1. Or, equivalently, not a and b is true only when a is
false and b is true. (Think about that for a moment; it makes sense, doesn’t it?)

Python can also work with Boolean values. The Boolean value 0 is represented
by False in Python and the Boolean value 1 is represented by True. (Note the
capitalization.) For example, we can validate that the first row of our truth table is
correct like this:

>>> a = False
>>> b = False
>>> not a and b
False

Then, by just changing b, we can validate the second row:

>>> b = True
>>> not a and b
True

Reflection 3.4 Use Python to validate the third and fourth rows of the truth table as
well.
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In Chapter 5, we will start using Boolean expressions in conditional statements and
loops to control what happens in our programs.

Exercises
3.2.1* Show how to convert the binary number 1101 to decimal.

3.2.2. Show how to convert the binary number 1111101000 to decimal.

3.2.3* Show how to convert the binary number 11.0011 to decimal.

3.2.4. Show how to convert the binary number 11.110001 to decimal.

3.2.5* To convert a decimal number to binary, you can repeatedly divide the number
by 2 and keep track of the remainders. The sequence of remainders in reverse
order is the binary equivalent. For example, suppose we want to convert 13 to
binary. First, divide 13 by 2 and get the quotient and remainder (in Python,
13 // 2 and 13 % 2), which are 6 and 1. Then do the same with 6, giving
quotient 3 and remainder 0. Continue until the quotient is 0. The complete
process is summarized in the table below.

number number // 2 number % 2

Step 1: 13 6 1

Step 2: 6 3 0

Step 3: 3 1 1

Step 4: 1 0 1

The equivalent binary number is the remainder column backwards: 1101. (Con-
firm that this is correct by converting this back to decimal.)

Use this process now to convert the decimal number 22 to binary.

3.2.6. Show how to convert the decimal number 222 to binary.

3.2.7* If we want to convert a decimal value less than one to binary, we need a different
approach. To perform this conversion, we try to repeatedly subtract decreasing
powers of 2, starting with 2−1, from the decimal value. When we can subtract
the power of 2, we put a 1 in that place; if we cannot subtract because the power
of 2 is too large, we put a 0 in that place instead. For example, let’s convert
0.3125 to binary. Since 2−1 = 1/2 = 0.5 is larger than 0.3125, we place a 0 in this
place:

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0

Next, we subtract 2−2 = 1/4 = 0.25 from the remaining 0.3125, leaving 0.0625,
and put a 1 in that place:

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0 1
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The next place value, 2−3 = 1/8 = 0.125 is larger than our remaining 0.0625, so
we put a 0 in that place:

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0 1 0

The next place value, 2−4 = 1/16 = 0.0625 fits perfectly so after subtracting, we
get zero. We put a 1 in that place and we are done.

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0 1 0 1

Our work shows that 0.3125 is decimal is equivalent to 0.0101 in binary.

Use this process to convert the decimal number 3.625 to binary.

3.2.8. Show how to convert the decimal number 25.53125 to binary.

3.2.9. An image stored in a computer is composed of a two-
dimensional grid of pixels. In a black and white image, each
pixel is either black or white. Consider the 6×6 black and white
image to the right. Describe two plausible ways to represent
this image as a linear sequence of bits.

3.2.10* Design a truth table for the Boolean expression not (a and b).

3.2.11. Design a truth table for the Boolean expression not (a or b).

3.2.12* Design a truth table for the Boolean expression not a or not b. Compare the
result to the truth table for not (a and b). What do you notice? The relationship
between these two Boolean expressions is one of De Morgan’s laws.

3.2.13. Design a truth table for the Boolean expression not a and not b. Compare the
result to the truth table for not (a or b). What do you notice? The relationship
between these two Boolean expressions is the other of De Morgan’s laws.

3.3 COMPUTER ARITHMETIC
As we have already seen, computers store numbers in two different ways: as integers
and as floats. Understanding this is important because some operators’ behaviors
depend upon the type they are given. There are also limitations to what is possible
with computer arithmetic, meaning that it sometimes behaves differently than real
arithmetic depending on which type of numbers you are using.

Limited precision
Binary representation and finite memory often mean that computer arithmetic gives
us unexpected results. To illustrate, compute the following very large number:

>>> 2.0 ** 100
1.2676506002282294e+30
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This result is a float because 2.0 is a float, and whenever a float is involved in a
computation, the result is also a float. Very large floating point numbers like this
are printed in scientific notation. The e stands for “exponent,” and the number
following represents a power of ten. So this number represents

1.2676506002282294 × 1030 = 1267650600228229400000000000000.

(You can also use this notation in your programs, e.g., 18e6 in place of 18000000.)

Now try computing the same large number with an integer 2 in place of 2.0:

>>> 2 ** 100
1267650600228229401496703205376

Reflection 3.5 Did 2 ** 100 and 2.0 ** 100 both give the correct answer?

In normal arithmetic, 2.0100 and 2100 are, of course, the same number. However, in
Python, the results of 2.0 ** 100 and 2 ** 100 are different. The second result
is correct because Python integers have unlimited precision , meaning that they
can be arbitrarily long, limited only by the computer’s memory. The first result is
incorrect because the fixed number of bits used to represent floating point numbers
leads to limited precision . Although the range of numbers that can be represented
in floating point notation is quite large, sometimes a value is too large or too small
to even be approximated well. If we line these two numbers up and add commas, we
can see that the first result is off by almost 1.5 trillion!

1,267,650,600,228,229,401,496,703,205,376
1,267,650,600,228,229,400,000,000,000,000

Some numbers cannot be represented at all. For example, try:

>>> 10.0 ** 500
OverflowError: (34, 'Result too large')

An overflow error means that the computer did not have enough space to represent
the correct value. A similar fatal error will occur if we try to do something illegal,
like divide by zero:

>>> 10.0 / 0
ZeroDivisionError: division by zero

You will also see the effects of limited precision when you perform more common
computations. For example, try this:

>>> averageWords = 15
>>> averageSyllables = 1.78
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> readingLevel
11.264000000000003

The correct answer here is 11.264, but Python didn’t make an arithmetic mistake.
To execute these statements, our decimal numbers are converted to binary floating
point notation, the computations are performed in this format, and then the result
is converted back to decimal. At each of these steps, errors may be introduced due to
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Tangent 3.4: Floating point notation

Python floating point numbers are usually stored in 64 bits of memory, in a format
known as IEEE 754 double-precision floating point. One bit is allocated to the sign
of the number, 11 bits are allocated to the exponent, and 52 bits are allocated to the
mantissa , the fractional part to the right of the point. After a number is converted to
binary, the binary point and exponent are adjusted so that there is a single 1 to the
left of the binary point. Then the exponent is stored in its 11 bit slot and as much of
the mantissa that can fit is stored in the 52 bit slot. If the mantissa is longer than 52
bits, it is simply truncated and information is lost. This is exactly what happens when
we compute 2.0 ** 100 on page 118. Since space is limited in computers’ memory,
tradeoffs between accuracy and space are common, and it is important to understand
these limitations to avoid errors. In Chapter 4, we will see a more common situation in
which this becomes quite important.

the limited precision of the floating point representation. So when we get the result,
it contains a very small error. These kinds of errors are just part of the reality of
computer arithmetic. In most of what we do, they won’t matter. But in many real
scientific computations where very small numbers are the norm, these kinds of errors
can have dramatic effects that must be mitigated as a normal part of the process. If
you are interested, you can learn more about floating point notation in Tangent 3.4.

Error propagation
Slight errors can become magnified in an iterative computation. To illustrate the
problem, suppose we are simulating a process that is occurring continuously over
time.4 Since we cannot actually simulate a continuous process on a computer, we
instead repeatedly simulate very small slices of the simulation in a loop. We will
use a variable dt to represent the length of each slice of time in our simulation. The
following loop shows how time would be advanced in this scenario.

>>> dt = 0.0001
>>> endTime = 1000000
>>> time = 0
>>> for step in range(1, endTime + 1):
>>> time = time + dt
>>> # one slice of the actual simulation would be here

Reflection 3.6 What should the value of time be at the end of this loop?

The loop accumulates the value 0.0001 one million times, so time should be 0.0001 ⋅
1,000,000 = 100. However, it is actually a small fraction over.

>>> time
100.00000000219612

Since dt was very small, there was a slight error every time dt was added to time.

4We will actually develop such simulations in Section 4.4.
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These errors propagated through the loop, making the value of time increasingly
inaccurate. In some applications, even errors this small may be significant. And it
can get even worse with more iterations. Scientific computations can often run for
days or weeks, and the number of iterations involved can blow up errors significantly.

Reflection 3.7 Run the code again but with 10 million iterations. What do you notice
about the error?

To avoid this kind of error propagation, we could have assigned time to be the
product of dt and the current step number:

>>> for step in range(1, endTime + 1):
>>> time = step * dt

In this way, the value of time is computed from only one arithmetic operation
instead of many, reducing the potential error.

Division
When we computed 2 ** 100, the result was an integer because both operands were
integers. This is true everywhere but with division. Even when the result should be
an integer, normal division, also called “true division,” will give you a float.

>>> 100 / 2
50.0

Python provides another kind of division, called “floor division,” that always gives
an integer result. The floor division operator, represented by two slashes (//), rounds
the quotient down to the nearest integer. (Rounding down to the nearest integer
is called “taking the floor” of a number in mathematics, hence the name of the
operator.)

>>> 14 / 3
4.6666666666666667
>>> 14 // 3
4

When both integers are positive, you can think of floor division as the “long division”
you learned in elementary school, as it gives the whole quotient without the remainder.
In this example, dividing 14 by 3 gives a quotient of 4 and a remainder of 2 because 14
is equal to 4 ⋅3+2. The operator to get the remainder is called the “modulo” operator.
In mathematics, this operator is denoted mod, e.g., 14 mod 3 = 2; in Python it is
denoted %.

>>> 14 % 3
2

To see why the // and % operators might be useful, think about how you would
determine whether an integer is odd or even. An integer is even if it is evenly divisible
by 2; i.e., when you divide it by 2, the remainder is 0. So, to decide whether an
integer is even, we can “mod” the number by 2 and check the answer.
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>>> 14 % 2
0
>>> 15 % 2
1

Modular arithmetic is also useful when we need a sequence of numbers to “wrap
around,” like minutes ticking on a clock. To simulate a clock, instead of just incre-
menting the minutes with minutes = minutes + 1, we want to increment and then
“mod” by 60:

>>> minutes = 0
>>> minutes = (minutes + 1) % 60
>>> minutes
1
>>> minutes = (minutes + 1) % 60
>>> minutes
2

⋮
>>> minutes = (minutes + 1) % 60
>>> minutes
59
>>> minutes = (minutes + 1) % 60
>>> minutes
0
>>> minutes = (minutes + 1) % 60
>>> minutes
1

When minutes is between 0 and 58, (minutes + 1) % 60 gives the same result
as minutes + 1 because minutes + 1 is less than 60. But when minutes is 59,
(minutes + 1) % 60 equals 60 % 60, which is 0.

Complex numbers
Although we will not use them in this book, it is worth pointing out that Python
can also handle complex numbers. A complex number has both a real part and an
imaginary part involving the imaginary unit i, which has the property that i2 = −1.
In Python, a complex number like 3.2 + 2i is represented as 3.2 + 2j. (The letter
j is used instead of i because in some fields, such as electrical engineering, i has
another well-established meaning that could lead to ambiguities.) Most of the normal
arithmetic operators work on complex numbers as well. For example,

>>> (5 + 4j) + (-4 + -3.1j)
(1+0.8999999999999999j)
>>> (23 + 6j) / (1 + 2j)
(7-8j)
>>> (1 + 2j) ** 2
(-3+4j)
>>> 1j ** 2
(-1+0j)

The last example illustrates the definition of i: i2 = −1.
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Exercises
3.3.1* The earth is estimated to be 4.54 billion years old. The oldest known fossils of

anatomically modern humans are about 200,000 years old. What fraction of the
earth’s existence have humans been around? Use Python’s scientific notation to
compute this.

3.3.2. In 2012, the birth rate in the United States was 13.42 per 1,000 people and the
total population was estimated to be 313.9 million. How many babies were born
in 2012? Use Python’s scientific notation to compute this.

3.3.3. The earth is about 4.54 billion years old. How many days are in the age of the
earth, taking into account a leap year every four years? Use Python’s scientific
notation to compute this.

3.3.4* If you counted at an average pace of one number per second, how many years
would it take you to count to 4.54 billion? Use Python’s scientific notation to
compute this.

3.3.5. Suppose the internal clock in a modern computer can “count” about 2.8 billion
ticks per second. How long would it take such a computer to tick 4.54 billion
times?

3.3.6. The floor division and modulo operators also work with negative numbers. Try
some examples, and try to infer what is happening. What are the rules governing
the results?

3.3.7. What is the value of each of the following Python expressions? Make sure you
understand why in each case.

(a) 15 * 3 - 2

(b) 15 - 3 * 2

(c) 15 * 3 // 2

(d) 15 * 3 / 2

(e) 15 * 3 % 2

(f) 15 * 3 / 2e0

3.3.8* Every cell in the human body contains about 6 billion base pairs of DNA (3
billion in each set of 23 chromosomes). The distance between each base pair is
about 3.4 angstroms (3.4 × 10−10 meters). Uncoiled and stretched, how long is
the DNA in a single human cell? There are about 50 trillion cells in the human
body. If you stretched out all of the DNA in the human body end to end, how
long would it be? How many round trips to the sun is this? The distance to the
sun is about 149,598,000 kilometers. Write Python statements to compute the
answer to each of these three questions. Assign variables to hold each of the
values so that you can reuse them to answer subsequent questions.

3.3.9* Suppose the variable number refers to an integer. Design a single arithmetic
expression that assigns number to be number - 1 if number is odd, or leaves
number the same if it is even.
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3.3.10. Given a variable number that refers to an integer value, show how to extract
the individual digits in the ones, tens and hundreds places, and assign those
values to three variables named ones, tens, and hundreds. For example, if
number = 123, ones, tens, and hundreds should be assigned to 1, 2, and 3,
respectively. (Use the // and % operators.)

3.3.11. Compute the very small values 2.0 ** -1074 and 2.0 ** -1075. Explain the
results.

3.3.12. Compute the very large values 2.0 ** 1023 and 2.0 ** 1024. Explain the
results.

3.3.13. Contrast and explain the results of computing 2.0 ** 1024 and 2 ** 1024.

3.3.14* See how closely you can represent the decimal number 0.1 in binary using
six places to the right of the binary point. What is the actual value of your
approximation?

3.3.15. Approximate the decimal value 1/3 in binary using six places to the right of the
binary point. What is the actual value of your approximation?

3.3.16. Try executing the following statements:

number = 1.0
for count in range(10):

number = number - 0.1

What is the final value of number? What should it be and why is it incorrect?

*3.4 BINARY ARITHMETIC
This section is available on the book website.

3.5 THE UNIVERSAL MACHINE
The advantages of computing in binary would be useless if we could not actually use
binary to compute everything we want to compute. In other words, we need binary
computation to be universal . But is such a thing really possible? And what do we
mean by any computable problem? Can we really perform any computation—a web
browser, a chess-playing program, Mars rover software—just by converting it to
binary and using the and, or, and not operators to get the answer?

Perhaps surprisingly, the answer is yes, when we combine the Boolean operators with
a sufficiently large memory and a simple controller called a finite state machine
(FSM) to route the correct bits through the correct operators at the correct times. A
finite state machine consists of a finite set of states, along with transitions between
states. A state represents the current value of some object or the degree of progress
made toward some goal. For example, a simple three-level elevator can be represented
by the finite state machine below.
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Figure 3.3 A schematic representation of a Turing machine.
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The states, representing floors, are circles and the transitions, representing movement
between floors, are arrows between circles. In this elevator, there are only up and
down buttons (no ability to choose your destination floor when you enter). The label
on each transition represents the button press event that causes that transition to
occur. For example, when we are on the ground floor and the down button is pressed,
we stay on the ground floor. But when the up button is pressed, we transition to
the first floor. Many other simple systems, such as vending machines, subway doors,
traffic lights and toll booths, can also be represented by finite state machines. A
computer’s finite state machine coordinates the fetch and execute cycle, as well as
various intermediate steps involved in executing machine language instructions.

The question of whether a computational system is universal has its roots in the
very origins of computer science itself. In 1936, Alan Turing proposed an abstract
computational model, now called a Turing machine , that he proved could compute
any problem considered to be mathematically computable. As illustrated in Figure 3.3,
a Turing machine consists of a control unit containing a finite state machine that
can read from and write to an infinitely long tape. The tape contains a sequence of
“cells,” each of which can contain a single character. The tape is initially inscribed
with some sequence of input characters, and a pointer attached to the control unit
is positioned at the beginning of the input. In each step, the Turing machine reads
the character in the current cell. Then, based on what it reads and the current state,
the finite state machine decides whether to write a character in the cell and whether
to move its pointer one cell to the left or right. Not unlike the fetch and execute
cycle in a modern computer, the Turing machine repeats this simple process as long
as needed, until a designated final state is reached. The output is the final sequence
of characters on the tape.

The Turing machine still stands as our modern definition of computability. The
Church-Turing thesis states that a problem is computable if and only if it can be
computed by a Turing machine. Any mechanism that can be shown to be equivalent
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 Does algorithm A 
ever halt with the 

given inputs?
algorithm A and 

inputs for A yes or no

Figure 3.4 The halting problem.

in computational power to a Turing machine is considered to be computationally
universal, or Turing complete . A modern computer, based on Boolean logic and a
finite state machine, falls into this category.

Almost every problem that we would want to compute is, thankfully, computable,
even if it takes an extraordinarily long time to compute. There are, however, problems
that are not computable. The most famous is called the halting problem , illustrated
in Figure 3.4. An algorithm for the halting problem, if it were to exist, would need
to take another algorithm and an input for that algorithm as inputs and then decide
whether that algorithm ever halts with the correct answer. But it can be proven that
there are algorithms for which the halting problem cannot give an answer. Since an
algorithm must be correct for every possible input, this means that there cannot
exist a correct algorithm for the halting problem. This is not just an academic
problem. In practice, this means that it is impossible to ever create program that
can verify whether other programs are correct! So errors in programs are here to
stay, unfortunately.

Exercises
3.5.1* Design a finite state machine that represents a highway toll booth controlling

a single gate. First, think about what the states should be. Then design the
transitions between states.

3.5.2. Design a finite state machine that represents a vending machine. Assume that the
machine only takes quarters and vends only one kind of drink, for 75 cents. First,
think about what the states should be. Then design the transitions between
states.

3.6 SUMMARY AND FURTHER DISCOVERY
In this chapter, we took a peek under the hood to glimpse what a computer is
really doing when it executes our programs. We saw that a computer system is
itself a complex layering of abstractions. We are isolated from a lot of these details,
thankfully, by the interpreter, which transparently translates our programs into
machine language. A machine language program may yet need to request that the
operating system do things on its behalf (e.g., saving a file or allocating more memory).
Below that, each instruction in the resulting computation will be implemented using
Boolean logic, controlled by a finite state machine. Knowing this should make you
quite thankful that all of these layers of abstraction exist, and that we are able to
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high-level program

algorithm

problem

solve

implement

compile or interpret

machine language program

computation on processors
 using Boolean logic

execute or “run”

Figure 3.5 Top-to-bottom view of how an algorithm becomes a computation.

solve problems at a much higher layer! This top-to-bottom view of the process of
turning an algorithm into a computation is summarized in Figure 3.5.

Notes for further discovery
There are several excellent books available that give overviews of computer science
and how computers work. In particular, we recommend The Pattern on the Stone by
Danny Hillis [23], Algorithmics by David Harel [22], Digitized by Peter Bentley [7],
and CODE: The Hidden Language of Computer Hardware and Software by Charles
Petzold [49].

A list of the world’s fastest supercomputers is maintained at http://top500.org.
You can learn more about IBM’s Deep Blue supercomputer at

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/

and IBM’s Watson at

https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/.

To learn more about high performance computing in general, we recommend looking
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at the website of the National Center for Supercomputing Applications (NCSA)
at the University of Illinois, one of the first supercomputer centers funded by the
National Science Foundation, at http://www.ncsa.illinois.edu/about/faq.

There are also several good books available on the life of Alan Turing, the father of
computer science. The definitive biography, Alan Turing: The Enigma, was written
by Andrew Hodges [25].
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