
C H A P T E R 2

Visualizing Abstraction

We have seen that computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and especially because it
produces objects of beauty. A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it better.

Donald E. Knuth
Turing Award Lecture (1974)

We may say most aptly that the Analytical Engine weaves algebraical patterns just as the
Jacquard-loom weaves flowers and leaves.

Ada Lovelace
Notes (1843)

V isualizing large quantities of information can often provide insights that raw
data cannot. Compare the following partial list of earthquake epicenters in

(longitude, latitude) format with the visualization of these same data in Figure 2.1.

(−78.6,19.3), (144.8,19.1), (145.9,43.5), (26.6,45.7), (39.3,38.4), (90.8,26.3), . . .

Simply plotting the points on an appropriate background provides immediate insight
into recent seismic activity. A picture really is worth a thousand words, especially
when we are faced with a slew of data.

This image was created with turtle graphics. To draw in turtle graphics, we create
an abstraction called a “turtle” in a window and move it with directional commands.
As a turtle moves, its “tail” leaves behind a trail, as shown in Figure 2.2. If we lift a
turtle’s tail up, it can move without leaving a trace. In this chapter, in the course of
learning about turtle graphics, we will also explore how abstractions can be created,
used, and combined to solve problems.

49

Copyright Taylor and Francis, 2021

50 � 2 Visualizing Abstraction

Figure 2.1 One month of magnitude 4.5+ earthquakes plotted.

+x-x

+y

-y

Figure 2.2 A turtle graphics window containing two turtles. The blue turtle moved

forward, turned left 45○, and then moved forward again. The red turtle turned left

120○, moved forward, turned left again 90○, and then moved forward again.

Copyright Taylor and Francis, 2021

2.1 DATA ABSTRACTION � 51

2.1 DATA ABSTRACTION
The description of a turtle in turtle graphics is an example of an abstract data
type (ADT). Just as a functional abstraction describes how to use a function or
process without specifying how it works, an abstract data type describes how to
use a category of things without necessarily specifying how they work. An ADT is
composed of two parts:

(a) the types of information, called attributes , that we need to maintain about the
things, and

(b) the operations that we are allowed to use to access or modify that information.

In Python, an abstract data type is implemented with a class . In a class, attributes
are maintained in a set of instance variables and the operations that can access
these attributes are special functions called methods.

The Python class that implements the Turtle ADT is named Turtle. The Turtle

class contains several instance variables, some of which are listed below.

Instance Variable Description

position the turtle’s current (x,y) position
heading the turtle’s current heading (in degrees)
color the turtle’s current drawing color
width the turtle’s current pen width
tail position whether the turtle’s tail is up or down

But we will never actually see or manipulate any of these instance variables directly.
Instead, we will indirectly access and/or modify their values by calling the Turtle

methods below.

Method Argument Description

forward distance move the turtle forward in its current direction
backward distance move the turtle opposite to its current direction
right, left angle turn the turtle clockwise or counterclockwise
setheading angle set the turtle’s heading
goto (x, y) move the turtle to the given position

up, down — put the turtle’s tail up or down
pensize width set the turtle’s pen width
pencolor color set the turtle’s pen color

position — return the turtle’s (x,y) position
xcor, ycor — return the turtle’s x or y coordinate
heading — return the turtle’s heading

If the method requires an argument as input, that is listed in the second column of

Copyright Taylor and Francis, 2021

52 � 2 Visualizing Abstraction

the table. The first group of methods move the turtle, the second group change its
other attributes, and the third group return information about its attributes. More
Turtle methods are listed in Appendix A.2.

The Turtle class is defined inside a module named turtle (notice the different
capitalization). A module is an existing Python program that contains predefined
values and functions that you can use. To access the contents of a module, we use
the import keyword.

>>> import turtle

After a module has been imported, we can access classes and functions in the module
by preceding the name of thing we want with the name of the module, separated by
a period (.). To confirm the existence of the Turtle class, try this:

>>> turtle.Turtle
<class 'turtle.Turtle'>

Just as a blueprint describes the structure of a house, but is not actually a house,
the Turtle class describes the structure (i.e., attributes and methods) of a drawing
turtle, but is not actually a drawing turtle. Actual turtles in turtle graphics, like
those pictured in Figure 2.2, are called turtle objects. An object is also called an
instance of a class, hence the term instance variable. When we create a new turtle
object belonging to the Turtle class, the turtle object is endowed with its own
independent values of orientation, position, color, and so on, as described in the class
definition. For this reason, there can be more than one turtle object, as illustrated
in Figure 2.2.

The distinction between a class and an object can also be loosely described by
analogy to animal taxonomy. A species, like a class, describes a category of animals
sharing the same general (morphological and/or genetic) characteristics. An actual
living organism is an instance of a species, like an object is an instance of a class. For
example, the species of Galápagos giant tortoise (Chelonoidis nigra) is analogous to
a class, while Lonesome George, the famous Galápagos giant tortoise who died in
2012, is analogous to an object of that class. Super Diego, another famous Galápagos
giant tortoise, is a member of the same species but, like another object of the same
class, is a distinct individual with his own unique attributes.

Reflection 2.1 Can you think of another analogy for a class and its associated objects?

Virtually any consumer product can also be thought of an object belonging to a class
of products. For example, a pair of headphones is an object belonging to the class of
all headphones with that particular make and model. The ADT or class specification
is analogous to the user manual since the user manual tells you how to use the
product without necessarily giving any information about how it works or how it is
made. A course assignment is also analogous to an ADT because it describes the
requirements for the assignment. When a student completes the assignment, she is
creating an object that (hopefully) adheres to those requirements.

Copyright Taylor and Francis, 2021

2.1 DATA ABSTRACTION � 53

Turtle graphics
To create a turtle object in Python, we call a function with the class’s name, preceded
by the name of the module in which the class resides.

>>> george = turtle.Turtle()

The empty parentheses indicate that we are calling a function with no arguments.
The Turtle() function returns a reference to a new Turtle object, which is then
assigned to the name george. You should also notice that a window appears on your
screen with a little arrow-shaped “turtle” in the center, facing east. The center of
the window has coordinates (0,0) and is called the origin. In Figure 2.2, the axes are
superimposed on the window in light gray to orient you to the coordinate system.
We can confirm that george is a Turtle object by printing the object’s value.

>>> george
<turtle.Turtle object at 0x100522f10>

The odd-looking “0x100522f10” is the address in memory where this Turtle object
resides. The address is displayed in hexadecimal, or base 16, notation. The 0x at the
front is a prefix that indicates hexadecimal; the actual hexadecimal memory address
is 100522f10. If you’re curious, see Tangent 3.3 in the next chapter for more about
how hexadecimal works.

To call a method belonging to an object, we precede the name of the method with
the name of the object, separated by a period. For example, to ask george to move
forward 200 units, we write

>>> george.forward(200)

Since the origin has coordinates (0,0) and george is initially pointing east (toward
positive x values), george has moved to position (200,0); the forward method
silently changed george’s hidden position attribute to reflect this, which you can
confirm by calling george’s position method.

>>> george.position()
(200.00,0.00)

Notice that we did not change the object’s position attribute directly. Indeed, we do
not even know the name of that attribute because the class definition remains hidden
from us. This is by design. By interacting with objects only through their methods,
and not tinkering directly with their attributes, we maintain a clear separation
between the ADT specification and the underlying implementation. This allows for
the possibility that the underlying implementation may change, to make it more
efficient, for example, without affecting programs that use it. The formal term for
this is encapsulation , something we will discuss in more detail in Chapter 12.

Exercises
2.1.1. Explain the difference between an abstract data type and a Python class.

2.1.2* Design an ADT for a pair of wireless headphones using the same format we
used to describe the Turtle ADT. Include attributes that describe the state of

Copyright Taylor and Francis, 2021

54 � 2 Visualizing Abstraction

the headphones at any given time and the operations that you can perform to
change or get information about those attributes. You do not need to explain
how to perform an operation, just what it does.

2.1.3. Choose an object from your everyday life and design an ADT for it using the
format we used to describe the Turtle ADT.

2.1.4. Give another analogy for the difference between a class and an object. Explain.

2.1.5. Why do we use methods to change the state of a Turtle object instead of
directly changing the values of its attributes?

2.1.6* In the Python shell, create a new turtle named ada and then turn ada 90 degrees
clockwise like this:

>>> ada.right(90)

Use the heading method to show how the heading attribute of ada changed.

2.1.7. Create a new turtle named gracie and then move gracie like this:

>>> gracie.left(75)
>>> gracie.forward(200)
>>> gracie.right(150)
>>> gracie.forward(200)
>>> gracie.backward(80)
>>> gracie.right(105)
>>> gracie.forward(70)

How did these statements change the position and heading attributes of the
turtle? Use the position and heading methods to find out.

2.1.8* Create two Turtle objects like this:

>>> thing1 = turtle.Turtle()
>>> thing2 = turtle.Turtle()

(a) What are the positions and headings of thing1 and thing2? Use the
position and heading methods.

(b) Using the right and forward methods, cause thing2 to turn right 30
degrees and then move forward 50 units.

(c) What are the positions and headings of thing1 and thing2 now? Explain
the values for each turtle and why they are different.

2.1.9. The following statements draw the red turtle in Figure 2.2.

>>> redTurtle = turtle.Turtle()
>>> redTurtle.pencolor('red')
>>> redTurtle.left(120)
>>> redTurtle.forward(100)
>>> redTurtle.left(90)
>>> redTurtle.forward(50)

Using this as an example and referring to the methods on page 51, create and
draw the blue turtle in Figure 2.2 in the same window.

2.1.10. What is the difference between the statements alice = turtle.Turtle and
bob = turtle.Turtle()? Which is the correct way to create a new Turtle

object?

Copyright Taylor and Francis, 2021

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES � 55

Figure 2.3 A garden of geometric flowers.

bloom stem

flower

growFlower

flower garden

Figure 2.4 Functional decomposition of

the flower garden problem.

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES
Before we look at how to plot the earthquakes in Figure 2.1, let’s have some fun
drawing flowers. Our ultimate goal, which we will complete in the next section,
will be to plant a virtual garden of geometric “flowers” like those in Figure 2.3. To
do this, we will implement the functional decomposition tree shown in Figure 2.4.
An algorithm for the flower garden problem at the root of the tree will repeatedly
call upon the growFlower algorithm to plant flowers at particular locations. The
growFlower algorithm will choose the flower’s size and color, and then call upon the
flower algorithm to actually draw the flower. The flower algorithm is decomposed
into two subproblems: one to draw the flower bloom and another to draw the stem.
In our bottom-up implementation of this design, we will work our way up from the
leaves of the tree toward the root, starting with the bloom subproblem, which will
draw geometric flower bloom in Figure 2.5.

To start the bloom, we can use the line we drew in the last section as the lower
horizontal line segment in the figure. Before we draw the next segment, we need to
ask george to turn left 135 degrees. This line is highlighted below, following the
three steps from the last section, in case you need to type them again.

>>> import turtle
>>> george = turtle.Turtle()
>>> george.forward(200)
>>> george.left(135)

With this method call, we have changed george’s hidden heading attribute, which
we can confirm by calling the heading method.

>>> george.heading()
135.0

To finish the drawing, we just have to repeat the previous forward and left calls
seven more times! (Hint: see IDLE help for how retrieve previous statements.)

Copyright Taylor and Francis, 2021

56 � 2 Visualizing Abstraction

Figure 2.5 A simple geometric flower bloom drawn with turtle graphics.

>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)

That was tedious. But before we look at how to avoid similar tedium in the future,
we are going to transition out of the Python shell. This will allow us to save our
programs so that we can easily modify them or fix mistakes, and then re-execute
them without retyping everything. In IDLE, we can create a new, empty program
file by choosing New Window from the File menu.1 In the new window, retype (or
copy and paste) the work we have done so far, plus the four additional highlighted
lines, shown below. (If you copy and paste, be sure to remove the >>> characters.)

import turtle

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)

1If you are using a different text editor, the steps are probably very similar.

Copyright Taylor and Francis, 2021

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES � 57

george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)

screen = george.getscreen()
screen.exitonclick()

The two highlighted statements after the first assignment statement hide george

and speed up the drawing a bit. (The argument to the speed method is a number
from 0 to 10, with 1 being slow, 10 being fast, and 0 being fastest.) The second to
last statement assigns to the variable screen an object of the class Screen, which
represents the drawing area in which george lives. The last statement calls the
Screen method exitonclick which will close the window when we click on it. These
last two lines are only necessary if your programming environment closes the turtle
graphics window when the program is done. If it does not, you can omit these lines
and close the window yourself when you are finished. In the future, we will generally
leave these lines out, but feel free to include them in your programs as desired.

When you are done, save your file by selecting Save As. . . from the File menu. The
file name of a Python program must always end with the extension .py, for example,
george.py. To execute your new program in IDLE, select Run Module from the Run
menu. If IDLE prompts you to save your file again, just click OK. After the program
draws the flower, click on the turtle graphics window to dismiss it.

Iteration
Recall from Chapter 1 that we can use loops in algorithms to repeat statements
multiple times, a process called iteration .

Reflection 2.2 In pseudocode, how could we use a loop to simplify this long sequence of
statements?

Since we have eight identical pairs of calls to the forward and left methods, we
can replace these sixteen drawing statements with a loop that repeats one pair eight
times. In pseudocode, this would look something like this:

repeat the following eight times:
george.forward(200)

george.left(135)

Copyright Taylor and Francis, 2021

58 � 2 Visualizing Abstraction

In Python, we can use a for loop, inserted into our program below.

1 import turtle

2 george = turtle.Turtle()
3 george.hideturtle()
4 george.speed(6)

5 for count in range(8):
6 george.forward(200)
7 george.left(135)

8 screen = george.getscreen()
9 screen.exitonclick()

This for loop, in lines 5–7, repeats the indented statements, called the body of the
loop, eight times. After the loop is done, the next non-indented statement on line 8
is executed.

Reflection 2.3 What happens if you forget the colon at the end of line 5? (Try it.)

It is easy to forget the colon. If you do, you will be notified by a syntax error, like
the following, that points to the end of the line containing the for keyword.

for count in range(8)
^

SyntaxError: invalid syntax

In the for loop syntax, for and in are Python keywords, and count is called the
index variable. The name of the index variable can be anything we want, but it
should be descriptive of its role in the program. In this case, we chose the name
count because it is counting the number of line segments that are being drawn. The
part after the in keyword is a sequence of some kind:

for count
´¹¹¹¹¹¸¹¹¹¹¹¶

index variable

in range(8)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sequence

:

At the beginning of each iteration of the loop, the next value in the sequence is
assigned to the index variable, and then the statements in the body of the loop are
executed. In this case, range(8) represents the sequence of eight integers from 0 to
7. So this for loop is saying

For each number in the range from 0 to 7, assign the number to count,
and then execute the body of the loop.

The following trace table shows the execution of the program in more detail. The
value of george is represented in the trace table by an image of what has been
drawn so far in the program.

Copyright Taylor and Francis, 2021

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES � 59

Trace

Step Line george count Notes

1–4 1–4 — initialize george

5 5 ” 0 count = 0

6 6 ” george.forward(200)

7 7 ” george.left(135)

8 5 ” 1 count = 1

9 6 ” george.forward(200)

10 7 ” george.left(135)

11 5 ” 2 count = 2

12 6 ” george.forward(200)

13 7 ” george.left(135)

⋮

26 5 ” 7 count = 7

27 6 ” george.forward(200)

28 7 ” george.left(135)

29 8 ” ” screen = george.getscreen()

30 9 — ” screen.exitonclick()

After the program initializes the turtle graphics window in lines 1–4, the for loop
is reached on line 5. In the first iteration, count is assigned the first value in the
range of numbers from 0 to 7. Then the body of the loop in lines 6–7 is executed.
Once the body of the loop is complete, we return to line 5 (step 8) to execute the
second iteration of the loop. This time, count is assigned 1 and the body of the loop
is executed again. This continues for six more iterations since there are six more
values in the range from 0 to 7 for count to be assigned. After all eight iterations of
the loop are complete, the last two lines in the program are executed.

Copyright Taylor and Francis, 2021

60 � 2 Visualizing Abstraction

Tangent 2.1: Defining colors

The most common way to specify an arbitrary color is to specify its red, green, and
blue (RGB) components individually. Each of these components is often described by
an integer between 0 and 255. (These are the values that can be represented by 8 bits.
Together then, a color is specified by 24 bits. If you have heard a reference to “24-bit
color,” now you know its origin.) Alternatively, each component can be described by a
real number between 0 and 1.0. In Python turtle graphics, call screen.colormode(255)
or screen.colormode(1.0), where screen is a turtle’s Screen object, to choose the
desired representation.

A higher value for a particular component represents a brighter color. So, at the
extremes, (0,0,0) represents black, and (255,255,255) and (1.0,1.0,1.0) both represent
white. Other common colors include (255,255,0) for yellow, (127,0,127) for purple,
and (153,102,51) for brown. So, assuming george is a Turtle object and screen has
been assigned george’s Screen object,

screen.colormode(255)
george.pencolor((127, 0, 127))

would make george purple. So would

screen.colormode(1.0)
george.pencolor((0.5, 0, 0.5))

Reflection 2.4 Try different values between 1 and 10 in place of 8 in range(8). Can you
see the connection between the value and the picture?

Another way to see what is happening in this loop is to print the value of count in
each iteration. To do this, add print(count) to the body of the for loop:

for count in range(8):
george.forward(200)
george.left(135)
print(count)

Now, in each iteration, george is drawing a line segment and turning left, and then
the current value of count is printed. As you run the program, you should notice
that the numbers 0 through 7 are printed in the shell as the eight line segments are
drawn in the turtle graphics window.

Reflection 2.5 Try changing count to some other name. Did changing the name change
the behavior of the program? If you changed the name only in the for loop and not in the
print statement, you will get an error because count will no longer exist! You need to
change it to the same thing in both places because the variable in the print statement
refers to the index variable in the for loop.

Adding some color

To finish up the bloom, let’s add some color. To set the color that the turtle draws
in, we use the pencolor method. Insert

george.pencolor('red')

Copyright Taylor and Francis, 2021

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES � 61

Figure 2.6 A simple geometric flower bloom, outlined in red and filled in yellow.

before the for loop, and run your program again. A color can be specified in one of
two ways. First, common colors can be specified with strings such as 'red', 'blue',
and 'yellow'. Remember that a string must be enclosed in quotes to distinguish it
from a variable or function name. A color can also be defined by explicitly specifying
its red, green, and blue (RGB) components, as explained in Tangent 2.1.

Finally, we will specify a color with which to fill the “flower” shape. The fill color is
set by the fillcolor method. The statements that draw the area to be filled must
be contained between calls to the begin_fill and end_fill methods. To color our
flower yellow, precede the for loop with

george.fillcolor('yellow')
george.begin_fill()

and follow the for loop with

george.end_fill()

Be sure to not indent the call to george.end_fill() in the body of the for loop
since we want that statement to execute just once after the loop is finished. Your
flower should now look like Figure 2.6, and the complete flower bloom program
should look like the following:

import turtle

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

george.pencolor('red')
george.fillcolor('yellow')
george.begin_fill()
for count in range(8):

george.forward(200)
george.left(135)

george.end_fill()

screen = george.getscreen()
screen.exitonclick()

Copyright Taylor and Francis, 2021

62 � 2 Visualizing Abstraction

Reflection 2.6 Can you figure out why the shape was filled this way?

In the next section, we will put some finishing touches on our flower bloom and flesh
out the decomposition tree in Figure 2.4. But first, let’s return to the earthquake
visualization from Figure 2.1 at the beginning of the chapter.

Data visualization
To create the earthquake visualization, we want to draw a dot at each earthquake
location in a list, so our pseudocode algorithm might look like this:

repeat for each earthquake location in a list:
draw a dot at the location

In Python, drawing a dot is actually a two step process. First, we have to move the
turtle to the location and then draw a dot there. The moving part is accomplished
by the goto method. For example,

george.goto(150, 30)

moves george to the coordinates (150, 30) in the turtle graphics window. Once there,
we can draw a dot with

george.dot()

To implement the loop in Python, we will use a for loop that iterates over a list of
earthquake locations like (-78.6, 19.3) rather than over a range of numbers. The
first value in each ordered pair is the earthquake’s longitude and the second value is
the latitude. A list of these locations looks like this:

quakes = [(-78.6, 19.3), (144.8, 19.1), (145.9, 43.5), (26.6, 45.7)]

The variable quakes is being assigned a list of ordered pairs.2 A list in Python is
always surrounded by square brackets ([]). This list only contains the locations of
four earthquakes; the full program with a longer list is available on the book website.
To iterate over this list, we use a for loop with the list quakes as the sequence:

for location
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

index variable

in quakes
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
sequence

:

In the body of the for loop, we will pass the index variable location to the goto

method and then draw a dot with the dot method. The full program follows, with
some extra pretty formatting. The core plotting statements are highlighted.

2Each ordered pair is actually called a tuple in Python. We will see tuples in more detail in
Chapter 7.

Copyright Taylor and Francis, 2021

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES � 63

1 import turtle

2 george = turtle.Turtle()
3 screen = george.getscreen()
4 screen.setup(1024, 512)
5 screen.bgpic('oceanbottom.gif')
6 screen.setworldcoordinates(-180, -90, 180, 90)

7 george.speed(0)
8 george.hideturtle()
9 george.up()

10 george.color('yellow')

11 quakes = [(-78.6, 19.3), (144.8, 19.1), (145.9, 43.5), (26.6, 45.7)]

12 for location in quakes:
13 george.goto(location)
14 george.dot()

As with the flower for loop, we can illustrate what is happening in more detail with
a trace table. We represent the value of george with an image of what the screen
looks like at each point in the program.

Trace

Step Line george location Notes
1–10 1–10 — initialize george and the window
11 11 ” — quakes = a list of ordered pairs
12 12 ” (-78.6, 19.3) location = (-78.6, 19.3)

13 13 ” george.goto((-78.6, 19.3))

14 14 ” george.dot()

15 12 ” (144.8, 19.1) location = (144.8, 19.1)

16 13 ” george.goto((144.8, 19.1))

17 14 ” george.dot()

18 12 ” (145.9, 43.5) location = (145.9, 43.5)

19 13 ” george.goto((145.9, 43.5))

20 14 ” george.dot()

21 12 ” (26.6, 45.7) location = (26.6, 45.7)

22 13 ” george.goto((26.6, 45.7))

23 14 ” george.dot()

The first ten lines set up the drawing window with a background picture of the earth.
The Screen method setworldcoordinates is used to set the coordinate system
inside the window to match geographical coordinates: longitude values run from

Copyright Taylor and Francis, 2021

64 � 2 Visualizing Abstraction

−180 to 180 and latitude values run from −90 to 90. The first two arguments set the
bottom left corner of the window to be (−180,−90) and the last two arguments set
the top right corner to be (180,90). We encourage you to consult Appendix A.3 to
learn what the other methods do.

In the first iteration of the for loop on line 12, the index variable location

is assigned the first pair in the list quakes, which is (-78.6, 19.3). Next,
george.goto(location) is executed; since location was assigned (-78.6, 19.3),
this is equivalent to george.goto((-78.6, 19.3)). Then a dot is drawn at that
location. Once the first iteration is complete, we return to line 12 for the second itera-
tion, where location is assigned the second pair in the list, which is (144.8, 19.1).
Lines 13–14 are executed again, which draws a dot at this location. This process
continues for two more iterations since there are two more pairs remaining in the
list.

Reflection 2.7 What is the significance of george.up() in the program? What happens
if you omit it?

You can download oceanbottom.gif and this complete program with more earth-
quake locations from the book website.

Exercises
Write a short program to answer each of the following questions. Submit each as a separate
python program file with a .py extension (e.g., picture.py).

2.2.1. Write a program using turtle graphics that draws a national or state flag of
your choice. You might want to consult https://en.wikipedia.org/wiki/

Gallery_of_sovereign_state_flags for ideas and Appendices A.2 and A.3
for additional drawing methods.

2.2.2. Write a program that draws the following three shapes (resembling street signs)
using turtle graphics.

(a)* (b) (c)

2.2.3. Draw an interesting picture using turtle graphics. Consult Appendices A.2 and
A.3 for a list of methods. You might want to draw your picture on graph paper
first.

2.2.4. Modify the for loop in the flower bloom program so that it draws a flower with
18 line segments, using an angle of 100○.

2.2.5* Write a program that uses a for loop to draw a square with side length 200.

2.2.6. Write a program that uses a for loop to draw a rectangle with length 200 and
width 100.

Copyright Taylor and Francis, 2021

https://en.wikipedia.org/wiki/Gallery_of_sovereign_state_flags
https://en.wikipedia.org/wiki/Gallery_of_sovereign_state_flags

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES � 65

2.2.7. Write a program that instructs a turtle to repeat the following 180 times: draw
forward 200, return to the origin, turns 2 degrees left.

2.2.8* Suppose you have the coordinates of discovered artifacts from a 9 meter × 9
meter plot during an archaeological dig. The coordinates extend from (0,0) in
the bottom left corner of the plot to (9,9) in the upper right corner. Write a
program that plots a list of these coordinates to detect any patterns in their
locations. The list of coordinates is available on the book website.

2.2.9. Write a program that uses turtle graphics to draw a line graph of the world
population from 1950 to 2050 (projected). The data is stored in a list of (year,
population) pairs, available on the book website. The population is recorded
in billions, e.g., 2.5 represents 2.5 billion. Use setworldcoordinates to set the
bottom left corner of the window to be (1945,0) and the top right corner to be
(2055,10). You can draw vertical lines to mark the years in your plot with the
following loop:

for year in range(1950, 2051, 10):
george.up()
george.goto(year, 0)
george.write(str(year))
george.down()
george.goto(year, 10)

This range is equivalent to the list
1950,1960, . . . ,2050. As year is as-
signed to each of these values in the
loop, a vertical line is drawn from
bottom to top. The write method
prints the year, converted to a string,
at the bottom of each line. Using this
as a model, also draw horizontal lines
to mark each billion. Your final graph
should look like that to the right.

2.2.10. Suppose an ant is moving in a straight line toward its nest three meters away.
A hungry fly, exactly one meter above the ant, starts to fly directly toward it
at exactly the same speed. Will the fly catch the ant? If not, how close will it
come?

We can write a turtle graphics simulation of this scenario by modeling each
insect as a turtle. The ant turtle starts at position (0,0) and the fly turtle starts
at position (0,1), directly above the ant. At each step, the fly moves one step
directly toward the ant and the ant moves one step forward. The length of each
step is the distance to the nest divided by the total number of steps that we
want the insects to take. The more steps they take, the closer the simulation
becomes to a continuous real-life scenario.

Implement this simulation, based on the following pseudocode algorithm.

Copyright Taylor and Francis, 2021

66 � 2 Visualizing Abstraction

Algorithm The ant and the fly

Input: none
1 nest distance ← 3
2 total steps ← 300
3 step length ← nest distance ÷ total steps
4 create the ant at position (0,0)
5 create the fly and move it to position (0,1)
6 repeat total steps times:
7 turn the fly toward the ant
8 move the fly forward step length
9 move the ant forward step length

Output: the final distance between the ant and the fly

In your program, before you move any turtles, use setworldcoordinates to
set the bottom left corner of the window to be (0,0) and the top right corner to
be (nest distance,1) so that you can see what is happening much more clearly.
Also, there are two new Turtle methods that will make your job easier. The
methods towards and distance return the angle and distance, respectively,
between the turtle and another turtle. For example, fly.towards(ant) will
return the angle between the fly turtle and the ant turtle (assuming you have
named them fly and ant, of course). The distance method works similarly.
At the end of your program, print the final distance between the two insects.
Does the result surprise you?

2.2.11. A random walk simulates a particle, or person, randomly moving in a two-
dimensional space. At each step, the particle turns in a random direction and
walks a fixed distance (e.g., 10 units) in the current direction. If this step is
repeated many times, it can simulate Brownian motion or animal foraging
behavior.

Write a program that uses turtle graph-
ics to draw a 1000-step random walk. To
randomly choose an angle in each step, use

angle = random.randrange(360)

You will need to import the random module
to use this function. (We will talk more
about random numbers and random walks
in Chapter 5.) One particular 1000-step
random walk is shown to the right.

2.3 FUNCTIONAL ABSTRACTION
To draw the garden of flowers from Figure 2.3, each with a different color and
size, we are going to need to repeat our flower bloom code many times. We could
do this by copying the drawing statements and changing method arguments to

Copyright Taylor and Francis, 2021

2.3 FUNCTIONAL ABSTRACTION � 67

alter the sizes and colors. However, this strategy is a very bad idea. First, it is very
time-consuming and error-prone; when you repeatedly copy and paste, it is very
easy to make mistakes. Second, it makes your program unnecessarily long and hard
to read. Third, it is difficult to correctly make changes. For example, what if you
copied enough to draw twenty flowers, and then decided that you wanted to give all
of them six petals instead of eight?

Instead, we want to create a self-contained functional abstraction that will draw a
flower bloom when called upon to do so. In Python, we do this by creating a new
function. Functions are like our pseudocode algorithms in that they can take inputs,
produce outputs, and can be called upon by other algorithms to perform tasks. To
create a function in Python, we use the def keyword, followed by the function name
and, for now, empty parentheses (we will come back to those shortly). As with a
for loop, the def line must end with a colon (:).

def bloom():

The body of the function is then indented relative to the def line. The body of our
new function will consist of the flower bloom code. Insert this new function into your
program from the last section after the import statement:

import turtle

def bloom():
george.pencolor('red')
george.fillcolor('yellow')
george.begin_fill()
for count in range(8):

george.forward(200)
george.left(135)

george.end_fill()

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

bloom()

screen = george.getscreen()
screen.exitonclick()

The def construct only defines the new function; it does not execute it. We need to
call the function for it to execute. As we saw earlier, a function call consists of the
function name, followed by a list of arguments. Since this function does not have
any arguments (yet), and does not return a value, we can call it with

bloom()

inserted, at the outermost indentation level, where the flower bloom code used to be
(as shown above).

Copyright Taylor and Francis, 2021

68 � 2 Visualizing Abstraction

Reflection 2.8 Try running the program with and without the bloom() function call.
What happens in each case?

Before continuing, let’s take a moment to look closely at what the program is doing.
As illustrated below, execution begins at the top, labeled “start.” After that, there
are seven labeled steps, explained below.

2.3 Functional abstraction ⌅ 77

def bloom():

The body of the function is then indented relative to the def line. The body of our
new function will consist of the flower bloom code. Insert this new function after the
import statement:

import turtle

def bloom():

george.pencolor('red')
george.fillcolor('yellow')
george.begin_fill()

for count in range(8):

george.forward(200)

george.left(135)

george.end_fill()

george = turtle.Turtle()

george.hideturtle()

george.speed(6)

bloom()

screen = george.getscreen()

screen.exitonclick()

The def construct only defines the new function; it does not execute it. We need to
call the function for it to execute. As we saw earlier, a function call consists of the
function name, followed by a list of arguments. Since this function does not have
any arguments (yet), and does not return a value, we can call it with

bloom()

inserted, at the outermost indentation level, where the flower bloom code used to be
(as shown above).

Reflection 2.9 Try running the program with and without the bloom() function call.
What happens in each case?

Before continuing, let’s take a moment to look closely at what the program is doing.
As illustrated below, execution begins at the top, labeled “start.” After that, there
are seven labeled steps, explained below.

1
start

4

5

6

7

end

2

3

1. Import the turtle module.

2. Define the bloom function. Note that the function is not executed yet; Python
is just learning of its existence so that it can be called later.

3. The next three statements are executed. They define a new Turtle object
named george, hide the turtle, and speed it up a bit.

4. Next, the bloom() function is called, which causes execution to jump up to
the beginning of the function.

5. The statements in the function then draw the flower.

6. When the function is complete, execution continues with the statement after
the function call.

7. And the program ends.

Copyright Taylor and Francis, 2021

2.3 FUNCTIONAL ABSTRACTION � 69

Function parameters
The bloom function is not as useful as it could be because it always draws the same
yellow flower with segment length 200. We can generalize the function by accepting
the fill color and the segment length as arguments, as depicted below.

bloomcolor, length None

We do this by adding parameters to the function definition. A parameter is the
name of an input, like the inputs in our pseudocode algorithms. In the highlighted
lines of the new version below, we have defined two parameters in parentheses after
the function name to represent the fill color and the segment length, and replaced
the old constants ’yellow’ and 200 with the names of these new parameters.

import turtle

def bloom(color, length):
george.pencolor('red')
george.fillcolor(color)
george.begin_fill()
for count in range(8):

george.forward(length)
george.left(135)

george.end_fill()

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

bloom('yellow', 200)

screen = george.getscreen()
screen.exitonclick()

To replicate the old behavior, we added two arguments to the function call:

bloom('yellow', 200)

When this function is called, the value of the first argument 'yellow' is assigned to
the first parameter color and the value of the second argument 200 is assigned to the
second parameter length. Then the body of the function executes. Whenever color
is referenced, it is replaced with 'yellow', and whenever length is referenced, it
is replaced with 200. (Parameters and arguments are also called formal parameters
and actual parameters, respectively.)

Reflection 2.9 After making these changes, run the program again. Then try running it a
few more times with different arguments passed into the bloom function call. For example,
try bloom('orange', 50) and bloom('purple', 350). What happens if you switch the
order of the arguments in one these function calls?

Copyright Taylor and Francis, 2021

70 � 2 Visualizing Abstraction

We are going to make one more change to this function before moving on, motivated
by the following question.

Reflection 2.10 Look at the variable name george that is used inside the bloom function.
Where is it defined?

When the bloom function executes, the Python interpreter encounters the variable
name george in the first line, but george has not been defined in that function.
Realizing this, Python looks for the name george outside the function. This behavior
is called a scoping rule . The scope of a variable name is the part of the program
where the name is defined, and hence can be used.

The scope of a variable name that is defined inside a function, such as count in
the bloom function, is limited to that function. Such a variable is called a local
variable . If we tried to refer to count outside of the the bloom function, we would
get an error. We will look at local variables in more detail in Section 2.6.

A variable name that is defined at the outermost indentation level can be accessed
from anywhere in the program, and is called a global variable . In our program,
george and screen are global variable names. It is generally a bad idea to have any
global variables at all in a program, a topic that we will further discuss in the next
sections. But even aside from that issue, we should be concerned that our function
is tied to one specific turtle named george that is defined outside our function. It
would be much better to make the turtle a parameter to the function, so that we
can call it with any turtle we want, as illustrated below:

bloomtortoise, color, length None

Replacing george with a parameter named tortoise gives us the following modified
function:

def bloom(tortoise, color, length):
tortoise.pencolor('red')
tortoise.fillcolor(color)
tortoise.begin_fill()
for count in range(8):

tortoise.forward(length)
tortoise.left(135)

tortoise.end_fill()

We also need to update the function call by passing george as the first argument,
to be assigned to the first parameter, tortoise.

bloom(george, 'yellow', 200)

Now that the bloom is finished, we need to create a function that draws a stem. Our
stem-drawing function will take two parameters: tortoise, which is the name of
the turtle object, and length, the length of the stem.

Copyright Taylor and Francis, 2021

2.3 FUNCTIONAL ABSTRACTION � 71

Figure 2.7 A simple geometric “flower” with a stem.

stemtortoise, length None

In the following function, notice all the places, highlighted in red, where the parame-
ters are being used.

1 def stem(tortoise, length):
2 tortoise.pencolor('green')
3 tortoise.pensize(length / 20)
4 tortoise.up()
5 tortoise.forward(length / 2)
6 tortoise.down()
7 tortoise.right(90)
8 tortoise.forward(length)

For convenience, we assume that the stem length is the same as the length of a
segment in the associated flower. Since the bloom function nicely returns the turtle
to the origin, pointing east, we will assume that tortoise is in this state when stem

is called. We start the function by setting the pen color to green, and thickening
the turtle’s tail by calling the method pensize. Notice that the pen size on line 3 is
based on the parameter length, so that it scales properly with different size flowers.
Next, in lines 4–6, we move halfway across the flower to start drawing the stem. So
that we do not draw over the existing flower, we put the turtle’s tail up with the up

method before we move, and return it to its resting position again with down when
we are done. Finally, in lines 7–8, we turn to the south and move the turtle forward
to draw a thick green stem.

To draw a stem for our yellow flower, insert this function in your program after
where the bloom function is defined, and then call it with

stem(george, 200)

after the call to the bloom function. When you run your program, the flower should
look like Figure 2.7.

Copyright Taylor and Francis, 2021

72 � 2 Visualizing Abstraction

We now have functions—functional abstractions—that implement the two subprob-
lems of the flower problem from our decomposition in Figure 2.4. So we are ready
to use these to create a function (another functional abstraction) that draws a flower,
as depicted below.

bloom stem

flowertortoise, color, length None

None None

tortoise, color, length tortoise, length

Because the bloom and stem functions together require a turtle, a fill color and a
length, and we want to be able to customize our flower in these three ways, these
are the parameters to our flower function. We pass all three of these parameters
through to the bloom function, and then we pass two of them to the stem function.
In Python, our function looks like this:

def flower(tortoise, color, length):
bloom(tortoise, color, length)
stem(tortoise, length)

A complete program incorporating these functions is shown in Figure 2.8.

Exercises 2.3.6–2.3.8 below challenge you to implement the remaining layers of the
decomposition tree to create a full garden of flowers, as illustrated in Figure 2.3.

Exercises
Write a short program to answer each of the following questions. Submit each as a separate
python program file with a .py extension (e.g., picture.py).

2.3.1. Modify the program in Figure 2.8 so that it calls the flower function three
times to draw three flowers, each with a different color and size. You will want
to move the turtle and reset its pen size and heading to their original values
before drawing each flower so that they are drawn correctly and not on top of
each other.

2.3.2* Modify the bloom function so that it draws 10 petals instead of 8. In each
iteration of the loop, the turtle will need to turn 108 degrees instead of 135.

2.3.3. Modify the bloom function so that it can draw any number of petals. The revised
function will need to take an additional parameter:

bloom(tortoise, color, length, petals)

The original function with eight petals has the turtle turn 1080/8 = 135 degrees
so that it travels a total of 1080 degrees, a multiple of 360. When you generalize
the number of petals, the sum of all of the angles that tortoise turns must

Copyright Taylor and Francis, 2021

2.3 FUNCTIONAL ABSTRACTION � 73

import turtle

def bloom(tortoise, color, length):
tortoise.pencolor('red')
tortoise.fillcolor(color)
tortoise.begin_fill()
for count in range(8):

tortoise.forward(length)
tortoise.left(135)

tortoise.end_fill()

def stem(tortoise, length):
tortoise.pencolor('green')
tortoise.pensize(length / 20)
tortoise.up()
tortoise.forward(length / 2)
tortoise.down()
tortoise.right(90)
tortoise.forward(length)

def flower(tortoise, color, length):
bloom(tortoise, color, length)
stem(tortoise, length)

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

flower(george, 'yellow', 200)

screen = george.getscreen()
screen.exitonclick()

Figure 2.8 The final flower program.

still be a multiple of 360 (like 1080). Are there any values of petals for which
your function does not work? Why?

2.3.4. Enhance the stem function so that it also draws a green leaf
one third of the way up the stem, as shown to the right. One
half of a pointed leaf can be drawn by repeatedly moving
and turning the turtle small distances in a loop until it has
turned a total of 90 degrees. The other half of the leaf can
then be drawn by turning 90 degrees and repeating the same
process.

Copyright Taylor and Francis, 2021

74 � 2 Visualizing Abstraction

2.3.5* Modify the flower function so that it creates a daffodil-like
double bloom like the one to the right. The revised function
will need two fill color parameters:

flower(tortoise, color1, color2, length)

It might help to know that the distance between any two
opposite points of a bloom is about 1.08 times the segment
length.

2.3.6. Write a function

growFlower(x, y, flowerColor, flowerLength)

that creates a turtle and then calls the flower function to draw a flower with
that turtle at a particular (x,y) location. Test your new function by calling it
from the flower program in Figure 2.8 in place of calling the flower function.

2.3.7. In this exercise, you will modify the growFlower function from the previous
exercise so that it takes only x and y as parameters, and assigns flowerColor

and flowerLength to random values in the body of the function. To do this,
utilize two functions from the random module, which we will discuss more in
Chapter 5. First, the random.randrange function returns a randomly chosen
integer between its two arguments. To generate a random integer between 20
and 199 for the flower’s size, call

flowerLength = random.randrange(20, 200)

Second, the random.choice function returns a randomly chosen item from a
list. To generate a random color for the flower, call

flowerColor = random.choice(['yellow', 'pink', 'red', 'purple'])

Test your modified function as you did in the previous exercise. You will also
need to import the random module at the top of your program.

2.3.8. In this exercise, you will implement the complete garden-drawing program from
Figure 2.4 by modifying the program you wrote in the previous exercise so that
it draws random flowers wherever you click in the drawing window. This will be
accomplished by the following two methods of the Screen class:

screen.onclick(growFlower)
screen.mainloop()

Then the mainloop method repeatedly checks for mouse clicks and key presses,
and calls designated functions when they happen. The onclick method indicates
that mainloop should call growFlower(x, y) every time the mouse is clicked
in the window at coordinates (x,y). To incorporate this functionality into your
program, simply replace screen.exitonclick() in your program with these
two statements.

2.3.9. Write a program that draws the word “CODE,” as
shown to the right. Use the circle method to draw the
arcs of the “C” and “D.” The circle method takes two
arguments: the radius of the circle and the extent of the
circle in degrees. For example, george.circle(100,
180) would draw half of a circle with radius 100. Mak-
ing the extent negative draws the arc in the reverse
direction.

Copyright Taylor and Francis, 2021

2.3 FUNCTIONAL ABSTRACTION � 75

2.3.10. Rewrite your program from Exercise 2.3.9 so that each letter is drawn by its
own function. Then use your functions to draw “DECODE.” (Call your “D”
and “E” functions twice.)

2.3.11. Write a function

drawSquare(tortoise, width)

that uses the turtle named tortoise to draw a square with the given width.
This function generalizes the code you wrote for Exercise 2.2.5 so that it can
draw a square with any width. Use a for loop.

2.3.12. Write a function

drawRectangle(tortoise, length, width)

that uses the turtle named tortoise to draw a rectangle with the given length

and width. This function generalizes the code you wrote for Exercise 2.2.6 so
that it can draw a rectangle of any size. Use a for loop.

2.3.13. Write a function

drawPolygon(tortoise, sideLength, numSides)

that uses the turtle named tortoise to draw a regular polygon with the given
number of sides and side length. This function is a generalization of your
drawSquare function from Exercise 2.3.11. Use the value of numSides in your
for loop and create a new variable for the turn angle that depends on numSides.
The turtle will need to travel a total of 360 degrees over the course of the loop.

2.3.14. Write a function

drawCircle(tortoise, radius)

that calls your drawPolygon function from Exercise 2.3.13 to approximate a
circle with the given radius.

2.3.15* Write a function

horizontalCircles(tortoise)

that draws ten non-overlapping circles, each with radius 50, that run horizontally
across the graphics window. Use a for loop.

2.3.16. Write a function

diagonalCircles(tortoise)

that draws ten non-overlapping circles, each with radius 50, that run diagonally,
from the top left to the bottom right, of the graphics window. Use a for loop.

2.3.17. Write a function

drawRow(tortoise)

that draws one row of an 8 × 8 red/black checkerboard. Use a for loop and the
drawSquare function you wrote in Exercise 2.3.11.

2.3.18. Write a function

drawRow(tortoise, color1, color2)

that draws one row of an 8 × 8 checkerboard in which the colors of the
squares alternate between color1 and color2. The parameters color1

and color2 are both strings representing colors. For example, calling
drawRow(george, 'red', 'black') should draw a row that alternates be-
tween red and black.

Copyright Taylor and Francis, 2021

76 � 2 Visualizing Abstraction

2.3.19. Write a function

checkerBoard(tortoise)

that draws an 8 × 8 red/black checkerboard, using a for loop and the function
you wrote in Exercise 2.3.18.

2.3.20. Interesting flower-like shapes can also be drawn by repeatedly drawing polygons
that are rotated some number of degrees each time. Write a new function

polyFlower(tortoise, sideLength, numSides, numPolygons)

that calls the drawPolygon function from Exercise 2.3.13
to draw an interesting flower design. The function will re-
peatedly call drawPolygon a number of times equal to the
parameter numPolygons, rotating the turtle each time to
make a flower pattern. You will need to figure out the
rotation angle based on the number of polygons drawn.
For example, the image to the right was drawn by calling
drawFlower(george, 40, 12, 7).

2.3.21. Rewrite your program from Exercise 2.2.8 so that all of the drawing is done
inside a function

plotSites(sites)

that takes the list of sites as a parameter. In other words, modify your program
so that it looks like this:

import turtle

def plotSites(sites):
drawing statements here...

sites = [(1.45, 7.31), (2.99, 7.55), (7.58, 6.29), (2.17, 4.71),
(1.07, 5.56), ...]

plotSites(sites)

2.3.22. Rewrite your program from Exercise 2.2.9 so that all of the drawing is done
inside a function

plotPopulation(population)

that takes the population list as a parameter. In other words, modify your
program so that it looks like this:

import turtle

def plotPopulation(population):
drawing statements here...

population = [(1950, 2.557), (1951, 2.594), (1952, 2.636),
(1953, 2.681), (1954, 2.73), (1955, 2.782), ...]

plotPopulation(population)

2.3.23. Write a function

randomWalk(steps)

Copyright Taylor and Francis, 2021

2.4 PROGRAMMING IN STYLE � 77

that generalizes your random walk code from Exercise 2.2.11 so that it draws a
random walk for the given number of steps.

The following additional exercises ask you to write functions that do not involve turtle
graphics. Test each one by calling it with both common and boundary case arguments, as
described on page 38, and document your test cases. Use a trace table on at least one test
case.

2.3.24. Write a function

basketball(fieldGoals, threePointers)

that prints your team’s basketball score if the numbers of two pointers and three
pointers are given in the parameters fieldgoal and threePointers.

2.3.25. Write a function

age(birthYear)

that prints a person’s age when given his or her birth year as a parameter. You
can assume that this function only works this year and that the person has not
had his or her birthday yet this year.

2.3.26. Write a function

cheer(teamName)

that takes as a parameter a team name and prints “Go” followed by the team
name. For example, if the function is called as cheer('Buzzards'), it should
print the string 'Go Buzzards' to the screen.

2.3.27. Write a function

sum(number1, number2)

that prints the sum of number1 and number2 to the screen.

2.3.28. Write a function

printTwice(word)

that prints its parameter twice on two separate lines.

2.3.29. Write a function

printMyName()

that uses a for loop to print your name 100 times.

2.4 PROGRAMMING IN STYLE
Programming style and writing style share many of the same concerns. When we
write an essay, we want the reader to clearly understand our thesis and the arguments
that support it. We want it to be clear and concise, and have a logical flow from
beginning to end. Similarly, when we write a program, we want to help collaborators
understand our program’s goal, how it accomplishes that goal, and how it flows from
beginning to end. Even if you are the only one to ever read your program, good
style will pay dividends both while you are working through the solution, and in the
future when you try to reacquaint yourself with your work. We can accomplish these
goals by organizing our programs neatly and logically, using descriptive variable and

Copyright Taylor and Francis, 2021

78 � 2 Visualizing Abstraction

function names, writing programs that accomplishes their goal in a non-obfuscated
manner, and documenting our intentions within the program.

Program structure
Let’s return to the program that we wrote in the previous section (Figure 2.8), and
reorganize it a bit to reflect better programming habits. As shown in Figure 2.9,
every program should begin with documentation that identifies the program’s author
and its purpose. This type of documentation, which starts and ends with three
double quotes ("""), is called a docstring ; we will look more closely at docstrings
and other types of documentation shortly.

We follow this with our import statements. Putting these at the top of our program
both makes our program neater and ensures that the imported modules are available
anywhere later on.

Next, we define all of our functions. Because programs are read by the interpreter
from top to bottom, you need to define your functions above where you call them.
For example, if we tried to call the bloom function at the very top of the program,
before it was defined, we would generate an error message.

At the end of the flower-drawing program in Figure 2.8, there are six statements
at the outermost indentation level. The first and fifth of these statements define
global variable names that are visible and potentially modifiable anywhere in the
program. When the value assigned to a global variable is modified in a function,
it is called a side effect . In large programs, where the values of global variables
can be potentially modified in countless different places, errors in their use become
nearly impossible to find. For this reason, we should get into the habit of never using
them, unless there is a very good reason, and these are pretty hard to come by. See
Tangent 2.2 for more information on how global names are handled in Python.

To prevent the use of global variables, and to make programs more readable, we will
move statements at the global level of our programs into a function named main,
and then call main as the last statement in the program, as shown at the end of the
program in Figure 2.9. With this change, the call to the main function is where the
action begins in this program. (Remember that the function definitions above only
define functions; they do not execute them.) The main function sets up a turtle, then
calls our flower function, which then calls the bloom and stem functions. Getting
used to this style of programming has an additional benefit: it is very similar to the
style of other common programming languages (e.g., C, C++, Java) so, if you go on
to use one of these in the future, it should seem relatively familiar.

The functions in a program are generally determined by how the problem was
decomposed during the top-down design process. Even so, identifying functions can
be as much an art as a science, so here are a few guidelines to keep in mind:

1. A function should accomplish something relatively small, and make sense
standing on its own.

Copyright Taylor and Francis, 2021

2.4 PROGRAMMING IN STYLE � 79

program docstring

import statements

function
definitions

main function

main function call

92 ⌅ 2 Visualizing abstraction

"""

Purpose: Draw a flower

Author: Ima Student

Date: September 15, 2020

CS 111, Fall 2020

"""

import turtle

def bloom(tortoise, color, length):

"""Draws a geometric flower bloom.

Parameters:

tortoise: a Turtle object with which to draw the bloom.

color: a color string to use to fill the bloom.

length: the length of each segment of the bloom.

Return value:

None

"""

tortoise.pencolor('red') # set tortoise's pen color to red

tortoise.fillcolor(color) # and fill color to fcolor

tortoise.begin_fill()

for segment in range(8): # draw a filled 8-sided

tortoise.forward(length) # geometric flower bloom

tortoise.left(135)

tortoise.end_fill()

other functions omitted...

def main():

"""Draws a yellow flower with segment length 200, and

waits for a mouse click to exit.

"""

george = turtle.Turtle()

george.hideturtle()

george.speed(6)

flower(george, 'yellow', 200)

screen = george.getscreen()

screen.exitonclick()

main()

Figure 2.9 An overview of a program’s structure.

2. Functions should be written for subproblems that are called upon frequently,
perhaps with different arguments. If you find yourself duplicating some part of
a program, write a function for it instead.

3. A function should generally fit on a page or, in many cases, less.

4. The main function should be short, generally serving only to set up the program
and call other functions that carry out the work.

Documentation
Python program documentation comes in two flavors: docstrings and comments.
A docstring is meant to articulate everything that someone needs to know to use a
program or module, or to call a function. Comments, on the other hand, are used to

Copyright Taylor and Francis, 2021

80 � 2 Visualizing Abstraction

Tangent 2.2: Global variables

The Python interpreter handles global names inside functions differently, depending on
whether the name’s value is being read or the name is being assigned a value. When
the Python interpreter encounters a name that needs to be evaluated (e.g., on the
righthand side of an assignment statement), it first looks to see if this name is defined
inside the scope of this function. If it is, the name in the local scope is used. Otherwise,
the interpreter successively looks at outer scopes until the name is found. If it reaches
the global scope and the name is still not found, we see a “name error.”

On the other hand, if we assign a value to a name, that name is always considered to
be local, unless we have stated otherwise by using a global statement. For example,
consider the following program:

spam = 13

def func1():
spam = 100

def func2():
global spam
spam = 200

func1()
print(spam)
func2()
print(spam)

The first print will display 13 because the assignment statement that is executed in
func1 defines a new local variable; it does not modify the global variable with the same
name. But the second print will display 200 because the global statement in func2

indicates that spam should refer to the global variable with that name, causing the
subsequent assignment statement to change the value assigned to the global variable.
This convention prevents accidental side effects because it forces the programmer to
explicitly decide to modify a global variable. In any case, using global is strongly
discouraged.

document individual program statements or groups of statements. In other words, a
docstring explains what a program or function does, while comments explain how it
works; a docstring describes an abstraction while comments describe what happens
inside the black box. The Python interpreter ignores both docstrings and comments
while it is executing a program; both are intended for human eyes only.

Docstrings

A docstring is enclosed in a matching pair of triple double quotes ("""), and may
occupy several lines. We use a docstring at the beginning of every program to identify

Copyright Taylor and Francis, 2021

2.4 PROGRAMMING IN STYLE � 81

the program’s author and its purpose, as shown at the top of Figure 2.9.3 We also
use a docstring to document each function that we write, to ensure that the reader
understands what it does. A function docstring should articulate everything that
someone needs to know to call the function: the overall purpose of the function, and
descriptions of the function’s parameters and return value.

The beginning of a function’s docstring is indented on the line immediately following
the def statement. Programmers prefer a variety of different styles for docstrings; we
will use one that closely resembles the style in Google’s official Python style guide.
Docstrings for the three functions from Figure 2.8 are shown below. (The bodies of
the functions are omitted.)

def bloom(tortoise, color, length):
"""Draws a geometric flower bloom.

Parameters:
tortoise: a Turtle object with which to draw the bloom
color: a color string to use to fill the bloom
length: the length of each segment of the bloom

Return value:
None

"""

def stem(tortoise, length):
"""Draws a flower stem.

Parameters:
tortoise: a Turtle object, initially at the bloom starting

position
length: the length of the stem and each segment of the bloom

Return value:
None

"""

def flower(tortoise, color, length):
"""Draws a flower.

Parameters:
tortoise: a Turtle object with which to draw the flower
color: a color string to use to fill the bloom
length: the length of each segment of the bloom

Return value:
None

"""

3Your instructor may require a different format, so be sure to ask.

Copyright Taylor and Francis, 2021

82 � 2 Visualizing Abstraction

In the first line of the docstring, we succinctly explain what the function does. This is
followed by a parameter section that lists each parameter with its intended purpose
and the class to which it should belong. If there are any assumptions made about
the value of the parameter, these should be stated also. For example, the turtle
parameter of the stem function is assumed to start at the origin of the bloom. Finally,
we describe the return value of the function. We did not have these functions return
anything, so they return None. We will look at how to write functions that return
values in Section 2.5.

Another advantage of writing docstrings is that Python can automatically produce
documentation from them, in response to calling the help function. For example,
try this short example in the Python shell:

>>> def printName(first, last):
"""Prints a first and last name.

Parameters:
first: a first name
last: a last name

Return value:
None

"""

print(first + ' ' + last)

>>> help(printName)
Help on function printName in module __main__:

printName(first, last)
Prints a first and last name.

Parameters:
first: a first name
last: a last name

Return value:
None

You can also use help with modules and built-in functions. For example, try this:

>>> import turtle
>>> help(turtle.color)

Comments

A comment is anything between a hash symbol (#) and the end of the line. As with
docstrings, the Python interpreter ignores comments. Comments should generally
be neatly lined up to the right of the statements they document. However, there are
times when a longer comment is needed to explain a complicated section. In this
case, you might want to precede that section with a comment on one or more lines
by itself.

Copyright Taylor and Francis, 2021

2.4 PROGRAMMING IN STYLE � 83

There is a fine line between under-commenting and over-commenting. As a general
rule, you want to supply high-level descriptions of what your code intends to do.
You do not want to literally repeat what each individual line does, as this is not at
all helpful to someone reading your code. Doing so tends to clutter it up and make
it harder to read! Here are examples of good comments for the body of the bloom

function.

tortoise.pencolor('red') # set tortoise's pen color
tortoise.fillcolor(color) # and fill color
tortoise.begin_fill()
for count in range(8): # draw a filled 8-sided

tortoise.forward(length) # geometric flower bloom
tortoise.left(135)

tortoise.end_fill()

Notice that the five lines that draw the bloom are commented together, just to note
the programmer’s intention. In contrast, the following comments illustrate what not
to do. The following comments are both hard to read and uninformative.

tortoise.pencolor('red') # set tortoise's pen color to red
tortoise.fillcolor(color) # set tortoise's fill color to color
tortoise.begin_fill() # begin to fill a shape
for count in range(8): # for count = 0, 1, 2, ..., 7

tortoise.forward(length) # move tortoise forward length
tortoise.left(135) # turn tortoise left 135 degrees

tortoise.end_fill() # stop filling the shape

Notice that these comments never actually explain the purpose of the for loop; they
just repeat each line. Instead, as above, you want to step back and explain the
purpose of the code and, only if it is not obvious, how it is accomplished. We leave
the task of commenting the other functions in this program as an exercise.

Self-documenting code
As we discussed in Section 1.3, using descriptive variable names is a very important
step in making your program’s intentions clear. The variable names in the flower
program are already in good shape, so let’s look at a different example. Consider
the following statements.

x = 462
y = (3.95 - 1.85) * x - 140

Without any context, it is impossible to infer what this is supposed to represent.
However, if we rename the two variables, as follows, the meaning becomes clearer.

cupsSold = 462
profit = (3.95 - 1.85) * cupsSold - 140

Now it is clear that this code is computing the profit generated from selling cups of
something. But the meaning of the numbers is still a mystery. These are examples of
magic numbers, so-called in programming parlance because they seem to appear
out of nowhere. There are at least two reasons to avoid magic numbers. First, they
make your code less readable and obscure its meaning. Second, they make it more

Copyright Taylor and Francis, 2021

84 � 2 Visualizing Abstraction

difficult and error-prone to change your code, especially if you use the same value
multiple times. By assigning these numbers to descriptive variable names, the code
becomes even clearer.

cupsSold = 462
pricePerCup = 3.95
costPerCup = 1.85
fixedCost = 140
profit = (pricePerCup - costPerCup) * cupsSold - fixedCost

We now have self-documenting code . Since we have named all of our variables
and values with descriptive names, just reading the code is enough to deduce its
intention. These same rules, of course, apply to function names and parameters. By
naming our functions with descriptive names, we make their purposes clearer and we
contribute to the readability of the functions from which we call them. This practice
will continue to be demonstrated in the coming chapters.

In this book, we use a naming convention that is sometimes called camelCase,
in which the first letter is in lowercase and then the first letters of subsequent
words are capitalized. But other programmers prefer different styles. For example,
some programmers prefer snake_case, in which an underscore character is placed
between words (cupsSold would be cups_sold). Unless you are working in an
environment with a specific mandated style, the choice is yours, as long as it results
in self-documenting code.

Exercises
2.4.1* Incorporate all the changes we discussed in this section into your flower-drawing

program, and finish commenting the bodies of the remaining functions.

2.4.2. Reorganize the earthquake plotting program from page 63 so that it follows all
of the style guidelines from this section, and the actual drawing is encapsulated
in a function plotQuakes(tortoise, earthquakes). A main function should
create a turtle, assign the list of earthquakes to a variable, and then call your
function with these two arguments.

2.4.3* Rewrite this simple program so that it adheres to the guidelines in this section.
All of the drawing should happen in a new function that takes the name of a
turtle as its parameter. The main function should create a turtle and pass it
into the drawing function. Be sure to include docstrings and comments.

import turtle

beth = turtle.Turtle()

beth.hideturtle()

beth.speed(9)

beth.fillcolor('blue')
beth.begin_fill()

beth.pencolor('red')
for count in range(8):

beth.circle(75)

beth.left(45)

beth.forward(10 * 1.414) # 10 * sqrt(2)

beth.end_fill()

Copyright Taylor and Francis, 2021

2.4 PROGRAMMING IN STYLE � 85

2.4.4. Run the following program to see what it does and then edit it to make it
more understandable. Give all of the variables more descriptive names and add
appropriate docstrings and comments.

import turtle

import math # math module (more in the next chapter)

def doSomething(z):

a = turtle.Turtle()

b = turtle.Turtle()

c = a.getscreen()

c.setworldcoordinates(-z - 1, -z - 1, z + 1, z + 1)

a.hideturtle()

b.hideturtle()

a.up()

b.up()

a.goto(-z, 0)

b.goto(-z, 0)

a.down()

b.down()

for d in range(-z, z + 1):

a.goto(d, math.sqrt(z ** 2 - d ** 2)) # sqrt is square root

b.goto(d, -math.sqrt(z ** 2 - d ** 2))

def main():

doSomething(100)

main()

2.4.5* Write a program that prompts for a person’s age and then prints the equivalent
number of days. All of the statements should be in a main function.

2.4.6. Write a program that prompts for a person’s favorite color and the last thing
they ate. Then print the concatenation of these as their rock band name. All of
the statements should be in a main function. For example:

Your favorite color? pink

Your last meal? burrito

Your band name is The pink burritos!

2.4.7. Write a function that implements your Mad Lib from Exercise 1.3.22, and then
write a complete program (with main function) that calls it. Your Mad Lib
function should take the words needed to fill in the blanks as parameters. Your
main function should get these values with calls to the input function, and then
pass them to your function. Include docstrings and comments in your program.
For example, here is a new version of the example in Exercise 1.3.22 (without
docstrings or comments).

Copyright Taylor and Francis, 2021

86 � 2 Visualizing Abstraction

def party(adj1, noun1, noun2, adj2, noun3):

print('How to Throw a Party')
print()

print('If you are looking for a/an', adj1, 'way to')
print('celebrate your love of', noun1 + ', how about a')
print(noun2 + '-themed costume party? Start by')
print('sending invitations encoded in', adj2, 'format')
print('giving directions to the location of your', noun3 + '.')

def main():

firstAdj = input('Adjective: ')
firstNoun = input('Noun: ')
secondNoun = input('Noun: ')
secondAdj = input('Adjective: ')
thirdNoun = input('Noun: ')
party(firstAdj, firstNoun, secondNoun, secondAdj, thirdNoun)

main()

2.4.8. Study the following program (also available on the book website), and then
reorganize it with a main function that calls one or more other functions. Your
main function should only create a turtle and call your functions. Document
your program with appropriate docstrings and comments.

import turtle

george = turtle.Turtle()

george.setposition(0, 100)

george.pencolor('red')
george.fillcolor('red')
george.begin_fill()

george.circle(-100, 180)

george.right(90)

george.forward(200)

george.end_fill()

george.up()

george.right(90)

george.forward(25)

george.right(90)

george.forward(50)

george.left(90)

george.down()

george.pencolor('white')
george.fillcolor('white')
george.begin_fill()

george.circle(-50, 180)

george.right(90)

george.forward(100)

george.end_fill()

Copyright Taylor and Francis, 2021

2.5 A RETURN TO FUNCTIONS � 87

2.4.9. The following program (also available on the book website) draws a truck. Edit
it so that it conforms to all of the guidelines discussed in this section. Include
all code in appropriate functions and replace duplicate code with appropriate
function calls.

import turtle

truck = turtle.Turtle()
truck.speed(5)
truck.hideturtle()

truck.fillcolor('red')
truck.begin_fill()
truck.forward(300)
truck.left(90)
truck.forward(75)
truck.left(45)
truck.forward(25)
truck.left(45)
truck.forward(100)
truck.right(45)
truck.forward(100)
truck.left(45)
truck.forward(75)
truck.left(90)
truck.forward(70.71)
truck.right(90)
truck.forward(200)
truck.left(90)
truck.forward(92.677)
truck.left(90)
truck.forward(167.677)
truck.end_fill()

truck.up()
truck.forward(220)
truck.right(90)
truck.forward(50)
truck.left(90)
truck.down()

truck.fillcolor('black')
truck.begin_fill()
truck.circle(50)
truck.end_fill()
truck.up()
truck.right(90)
truck.backward(25)
truck.left(90)
truck.down()
truck.fillcolor('lightgray')
truck.begin_fill()
truck.circle(25)
truck.end_fill()

truck.up()
truck.right(90)
truck.forward(25)
truck.left(90)
truck.backward(300)
truck.down()
truck.fillcolor('black')
truck.begin_fill()
truck.circle(50)
truck.end_fill()

truck.up()
truck.right(90)
truck.backward(25)
truck.left(90)
truck.down()
truck.fillcolor('lightgray')
truck.begin_fill()
truck.circle(25)
truck.end_fill()

2.5 A RETURN TO FUNCTIONS
We previously described a function as a computation that takes one or more inputs,
called parameters , and produces an output, called a return value. But, up until now,
very few of the functions we have used, and none of the functions we have written,
have had return values. In this section, we will remedy that.

Copyright Taylor and Francis, 2021

88 � 2 Visualizing Abstraction

The math module
The math module contains a rich set of functions that return useful mathematical
quantities. For example, to take the square root of 5, we can use math.sqrt:

>>> import math
>>> result = math.sqrt(5)
>>> result
2.23606797749979

Function calls with return values can also be used in longer expressions, and as
arguments of other functions. In this case, it is useful to think about a function call
as equivalent to the value that it returns. For example, we can use the math.sqrt

function in the computation of the volume of a tetrahedron with edge length h = 7.5,
using the formula V = h3/(6

√
2).

>>> height = 7.5
>>> volume = height ** 3 / (6 * math.sqrt(2))
>>> volume
49.71844555217912

In the parentheses, the value of math.sqrt(2) is computed first, and then multiplied
by 6. Finally, height ** 3 is divided by this result, and the answer is assigned
to volume. If we wanted the rounded volume, we could use the entire volume
computation as the argument to the round function:

>>> volume = round(height ** 3 / (6 * math.sqrt(2)))
>>> volume
50

We illustrate below the complete sequence of events in this evaluation:

round(height ** 3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

421.875

/(6 * math.sqrt(2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1.4142...

)

´¹¹¹¸¹¹¶
8.4852...

)

´¹¹¹¸¹¹¹¶
49.7184...

´¹¹¹¸¹¹¶
50

Now suppose we wanted to find the cosine of a 52○ angle. We can use the math.cos

function to compute the cosine, but the Python trigonometric functions expect
their arguments to be in radians instead of degrees. (360 degrees is equivalent to
2π radians.) Fortunately, the math module also provides a function named radians

that converts degrees to radians. So we can find the cosine of a 52○ angle like this:

>>> math.cos(math.radians(52))
0.6156614753256583

The function call math.radians(52) is evaluated first, giving the equivalent of 52○

in radians, and this result is used as the argument to the math.cos function:

math.cos(math.radians(52)
´¹¹¹¸¹¹¶

0.9075...

)

´¹¹¸¹¹¶
0.6156...

Copyright Taylor and Francis, 2021

2.5 A RETURN TO FUNCTIONS � 89

Other commonly used functions from the math module are listed in Appendix A.1.
The math module also contains two commonly used constants: pi and e. Our sphere
volume computation earlier would have been more accurately computed with:

>>> radius = 20
>>> volume = (4 / 3) * math.pi * (radius ** 3)
>>> volume
33510.32163829113

Notice that, since pi and e are variable names, not functions, there are no parentheses
after their names.

Writing functions with return values
When we computed Flesch-Kincaid grade levels back in Section 1.3, they looked like
this:

>>> averageWords = 16
>>> averageSyllables = 1.78
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print(readingLevel)
11.654

The problem with this approach is that, if we want the reading level of a different
text, we need to type the whole thing again. For example,

>>> averageWords = 4.8
>>> averageSyllables = 1.9
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print(readingLevel)
8.702000000000002

This is obviously tedious and error-prone, analogous to building a new microwave
oven from scratch every time we want to pop a bag of popcorn. Instead, we want
to define a function that takes the average words per sentence and the average
syllables per word as inputs and returns the reading level as output. Once we have
this function in hand, we can get the reading levels of as many books as we want
just by passing in different arguments. Back in Chapter 1, we visualized the problem
as a black box like this:

average words,
average syllables

reading level of the textFlesch-Kincaid
grade level score

And we wrote the algorithm in pseudocode like this:

Algorithm Flesch Kincaid

Input: average words, average syllables
1 reading level ← 0.39 × average words + 11.8 × average syllables − 15.59

Output: reading level

Copyright Taylor and Francis, 2021

90 � 2 Visualizing Abstraction

In Python, these translate into the following function definition.

def fleschKincaid(averageWords, averageSyllables):
"""Computes the reading level of a text using the Flesch-Kincaid

reading level formula.

Parameters:
averageWords: average number of words per sentence in a text
averageSyllables: average number of syllables per word in a text

Return value: the Flesch-Kincaid reading level score
"""

return 0.39 * averageWords + 11.8 * averageSyllables - 15.59

The return statement defines the output of the function. Remember that the
function definition by itself does not compute anything. We must call the function
for it to be executed. For example, to get the two reading levels above, we can call
the function twice like this:

def main():
readingLevel1 = fleschKincaid(16, 1.78)
readingLevel2 = fleschKincaid(4.8, 1.9)

print('The reading level of book 1 is ' + str(readingLevel1) + '.')
print('The reading level of book 2 is ' + str(readingLevel2) + '.')
print('The difference in reading level is ' +

str(readingLevel1 - readingLevel2) + '.')

main()

When each assignment statement is executed, the righthand side calls the function
fleschKincaid with two arguments. Then the function fleschKincaid is executed
with the two arguments assigned to its two parameters. Next, the value after the
return statement is computed and returned by the function. In main, this return
value is assigned to the variable on the left of the assignment statement. So when
this program is run, it prints:

The reading level of book 1 is 11.654.
The reading level of book 2 is 8.702000000000002.
The difference in reading level is 2.951999999999998.

The return value becomes the value associated with the function call itself. For
example, the first print statement could be changed to

print('The reading level of book 1 is ' + str(fleschKincaid(6, 2.2)) + '.')

In addition to defining a function’s return value, the return statement also causes
the function to end and return this value back to the function call. So the return

statement actually does two things:

Copyright Taylor and Francis, 2021

2.5 A RETURN TO FUNCTIONS � 91

1. defines the function’s return value, and

2. causes the function to end.

This second point is important to remember because it means that any statements
we add to a function after the return statement will never be executed.

Reflection 2.11 Add the statement

print('This will never, ever be printed.')

to the fleschKincaid function after the return statement. What does it do?

Functions can have many statements in them before the return statement. The
following function gets characteristics about a text by prompting for them, then
calls our new fleschKincaid function and returns the result.

def fleschKincaid2():
"""Prompt for characteristics about a text and then return the

text's reading level according to the Flesch-Kincaid formula.

Parameters: none

Return value: the Flesch-Kincaid reading level score
"""

averageWords = float(input('Average words per sentence: '))
averageSyllables = float(input('Average syllables per word: '))

readingLevel = fleschKincaid(averageWords, averageSyllables)

return readingLevel

By defining functions that return values, we can also add to the existing palette
of mathematical functions supplied by Python. For example, our familiar sphere
volume computation looks like this as a Python function:

import math

def volumeSphere(radius):
"""Computes the volume of a sphere.

Parameter:
radius: radius of the sphere

Return value: volume of a sphere with the given radius
"""

return (4 / 3) * math.pi * (radius ** 3)

Now suppose we want to approximate the volume of the earth’s mantle, which is
the layer between the earth’s core and its crust. This is the same as computing the

Copyright Taylor and Francis, 2021

92 � 2 Visualizing Abstraction

difference of two volumes: the volume of the earth and the volume of the earth’s
core, as illustrated below.

6371 km
3485 km

core

mantle

earthRadius = 6371 # km
coreRadius = 3485 # km
mantleVolume = volumeSphere(earthRadius) - volumeSphere(coreRadius)
print("The volume of the mantle is " + str(mantleVolume) + ' cubic km.')

Notice how we used two function calls in an arithmetic expression, exactly like we
previously used the int and math.sqrt functions. This expression is evaluated from
the inside out, just as one would expect:

mantleVolume = volumeSphere(earthRadius
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

6371

)

´¹¹¸¹¹¹¶
1083206916845.7535

- volumeSphere(coreRadius
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3485

)

´¹¹¹¸¹¹¹¶
177295191309.51987

´¹¹¹¸¹¹¹¶
905911725536.2336

Return vs. print
A common beginner’s mistake is to forget the return statement or end a function
with a print instead of a return. For example, suppose we replaced the return

with print in the volumeSphere function:

def fleschKincaid(averageWords, averageSyllables):
""" (docstring omitted) """

print(0.39 * averageWords + 11.8 * averageSyllables - 15.59) # WRONG!

Reflection 2.12 Make this modification to your fleschKincaid function and then run
your program again. Did you get the correct answer?

When you run your program now, you will see something puzzling:

11.654
8.702000000000002
The reading level of book 1 is None.
The reading level of book 2 is None.
TypeError: unsupported operand type(s) for -: 'NoneType' and 'NoneType'

The first two lines where the reading levels are printed are coming from the print

Copyright Taylor and Francis, 2021

2.5 A RETURN TO FUNCTIONS � 93

in the fleschKincaid function. Because there is no return in the function, the
return value is None, which is assigned to readingLevel1 and readingLevel2, and
printed in the third and fourth lines. The fifth line is the error generated by trying to
compute readingLevel1 - readingLevel2, which is None - None, a nonsensical
operation.

Reflection 2.13 A similar problem will arise if you replace the last statement in
fleschKincaid function with

readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59

and omit a return statement. Try it. What happens and why?

Before continuing, be sure to fix your function so that it has a proper return

statement.

Exercises
The following exercises ask you to write functions that return (not print) values. When
a program is called for, be sure to follow the guidelines in the previous section. Test each
function with both common and boundary case arguments, as described on page 38, and
document these test cases.

2.5.1* The geometric mean of two numbers is the square root of their product. Write
a function

geometricMean(value1, value2)

that returns the geometric mean of the two values. Use your function to compute
the geometric mean of 18 and 31.

2.5.2. If you have P (short for principal) dollars in a savings account that will pay
interest rate r, compounded at a frequency of n times per year, then after t
years, you will have

P (1 + r

n
)
nt

dollars in your account. If the interest were compounded continuously (i.e., with
n approaching infinity), you would instead have

Pert

dollars after t years, where e is Euler’s number, the base of the natural logarithm.
Write a function

compoundDiff(principal, rate, frequency, years)

that returns the difference in your savings between compounding at the given
frequency and continuous compounding. (Use the math.exp function.)

Suppose you have P = $10,000 in an account paying 1% interest (r = 0.01),
compounding monthly. Use your function to determine how much more money
will you have after t = 10 years if the interest were compounded continuously.

2.5.3. Write a program that prompts for a principal, rate, compounding frequency, and
number of years, and then uses your function from Exercise 2.5.2 to display how
much more money will you have if the interest were compounded continuously.

Copyright Taylor and Francis, 2021

94 � 2 Visualizing Abstraction

2.5.4* Write a function

quadratic(a, b, c)

that uses the quadratic formula to return the two solutions to the equation
ax2 + bx + c = 0. Your function can return two values like this:

return x1, x2

Show how to use your function to find the solutions to 3x2 + 4x − 5 = 0.

2.5.5. Write a program that prompts for values of a, b, and c using the input function,
calls your function from Exercise 2.5.4 to find the solutions to the quadratic
equation ax2 + bx + c = 0, and then prints the results.

2.5.6* Suppose we have two points (x1, y1) and (x2, y2). The distance between them
is equal to √

(x1 − x2)2 + (y1 − y2)2.
Write a function

distance(x1, y1, x2, y2)

that returns the distance between points (x1,y1) and (x2,y2).

2.5.7. A parallelepiped is a three-dimensional box in which the six sides are parallelo-
grams. The volume of a parallelepiped is

V = abc
√

1 + 2 cos(x) cos(y) cos(z) − cos(x)2 − cos(y)2 − cos(z)2

where a, b, and c are the edge lengths, and x, y, and z are the angles between
the edges, in radians. Write a function

ppdVolume(a, b, c, x, y, z)

that returns the volume of a parallelepiped with the given dimensions.

2.5.8. Repeat the previous exercise, but now assume that the angles passed into the
function are in degrees.

2.5.9. Write a function

total(number1, number2)

that returns the sum of number1 and number2. Also write a complete program
(with a main function) that gets these two values using the input function,
passes them to your total function, and then prints the value returned by the
total function.

2.5.10* Write a function

power(base, exponent)

that returns the value baseexponent. Also write a complete program (with a main

function) that gets these two values using the input function, passes them to
your power function, and then prints the returned value of baseexponent.

2.5.11* Write a function

football(touchdowns, fieldGoals, safeties)

that returns your team’s football score if the number of touchdowns (worth 7
points), field goals (worth 3 points), and safeties (worth 2 points) are passed
as parameters. Then write a complete program (with main function) that gets
these three values using the input function, passes them to your football

function, and then prints the score.

Copyright Taylor and Francis, 2021

2.5 A RETURN TO FUNCTIONS � 95

2.5.12. The ideal gas law states that PV = nRT where

• P = pressure in atmospheres (atm)

• V = volume in liters (L)

• n = number of moles (mol) of gas

• R = gas constant = 0.08 L atm / mol K

• T = absolute temperature of the gas in Kelvin (K)

Write a function

moles(V, P, T)

that returns the number of moles of an ideal gas in V liters contained at pressure
P and T degrees Celsius. (Be sure to convert Celsius to Kelvin in your function.)
Also write a complete program (with a main function) that gets these three
values using the input function, passes them to your moles function, and then
prints the number of moles of ideal gas.

2.5.13. Suppose we have two containers of an ideal gas. The first contains 10 L of gas at
1.5 atm and 20 degrees Celsius. The second contains 25 L of gas at 2 atm and
30 degrees Celsius. Show how to use two calls to your function in the previous
exercise to compute the total number of moles of ideal gas in the two containers.

Now replace the return statement in your moles function with a call to print

instead. (So your function does not contain a return statement.) Can you still
compute the total number of moles in the same way? If so, show how. If not,
explain why not.

2.5.14* Most of the world is highly dependent upon groundwater for survival. Therefore,
it is important to be able to monitor groundwater flow to understand potential
contamination threats. Darcy’s law states that the flow of a liquid (e.g., water)
through a porous medium (e.g., sand, gravel) depends upon the capacity of the
medium to carry the flow and the gradient of the flow:

Q =Kdh

dl

where

• K is the hydraulic conductivity of the medium, the rate at which the
liquid can move through it, measured in area/time

• dh/dl is the hydraulic gradient

• dh is the drop in elevation (negative for flow down)

• dl is the horizontal distance of the flow

Write a function

darcy(K, dh, dl)

that computes the flow with the given parameters.

Use your function to compute the amount of groundwater flow inside a hill
with hydraulic conductivity of 130 m2/day, and a 50 m drop in elevation over a
distance of 1 km.

Copyright Taylor and Francis, 2021

96 � 2 Visualizing Abstraction

2.5.15. A person’s Body Mass Index (BMI) is calculated by the following formula:

BMI = w

h2
⋅ 703

where w is the person’s weight in pounds and h is the person’s height in inches.
Write a function

bmi(weight, height)

that uses this formula to return the corresponding BMI.

2.5.16* When you (or your parents) rip songs from a CD, the digital file is created by
sampling the sound at some rate. Common rates are 128 kbps (128 × 210 bits
per second), 192 kbps, and 256 kbps. Write a function

songs(capacity, bitrate)

that returns the number of 4-minute songs someone can fit locally on his or her
music player. The function’s two parameters are the capacity of the music player
in gigabytes (GB) and the sampling rate in kbps. A gigabyte is 230 bytes and
a byte contains 8 bits. Also write a complete program (with a main function)
that gets these two values using the input function, passes them to your songs
function, and then prints the number of songs.

2.5.17. The speed of a computer is often (simplistically) expressed in gigahertz (GHz),
the number of billions of times the computer’s internal clock “ticks” per second.
For example, a 2 GHz computer has a clock that “ticks” 2 billion times per
second. Suppose that a single computer instruction requires 3 “ticks” to execute.
Write a function

time(instructions, gigahertz)

that returns the time in seconds required to execute the given number
of instructions on a computer with clock rate gigahertz. For example,
time(10 ** 9, 3) should return 1 (second).

2.5.18* Exercise 1.3.8 asked how to swap the values in two variables. Can we write a
function to swap the values of two parameters? In other words, can we write a
function

swap(a, b)

and call it like

x = 10
y = 1
swap(x, y)

so that after the function returns, x has the value 1 and y has the value 10?
(The function should not return anything.) If so, write it. If not, explain why
not.

2.5.19. Given an integer course grade from 0 to 99, we convert it to the equivalent grade
point according to the following scale: 90–99: 4, 80–89: 3, 70–79: 2, 60–69: 1,
< 60: 0. Write a function

gradePoint(score)

that returns the grade point (i.e., GPA) equivalent to the given score.

Copyright Taylor and Francis, 2021

2.6 SCOPE AND NAMESPACES � 97

2.5.20. The function time.time() (in the time module) returns the current time in
seconds since January 1, 1970. Write a function

year()

that uses this function to return the current year as an integer value.

2.5.21* Write a function

twice(text)

that uses the string concatenation operator * to return the string text repeated
twice, with a space in between. For example, twice('bah') should return the
string 'bah bah'.

2.5.22. Write a function

repeat(text, n)

that returns a string that is n copies of the string text. For example,
repeat('AB', 3) should return the string 'ABABAB'.

2.6 SCOPE AND NAMESPACES
We have been using local variables inside functions for a few sections now, relying
on somewhat informal explanations for how they work. In this section, we will look
more formally at scoping rules for variables so that you better understand how to use
them and can hopefully prevent difficult-to-find errors in the future. As an example,
let’s consider the wind chill computation from Exercise 1.3.14, implemented as a
function that is called from a main function.

def windChill(temperature, windSpeed):
"""Gives the North American metric wind chill equivalent

for the given temperature and wind speed.

Parameters:
temperature: temperature in degrees Celsius
windSpeed: wind speed at 10m in km/h

Return value:
equivalent wind chill in degrees Celsius, rounded to
the nearest integer

"""

chill = 13.12 + 0.6215 * temperature \
+ (0.3965 * temperature - 11.37) * windSpeed ** 0.16

temperature = round(chill)
return temperature

def main():
temp = -3
wind = 13
chilly = windChill(temp, wind)
print('The wind chill is ' + str(chilly) + ' degrees Celsius.')

main()

Copyright Taylor and Francis, 2021

98 � 2 Visualizing Abstraction

(The “backslash” (\) character above is the line continuation character . It indicates
that the line that it ends is continued on the next line. This is sometimes handy for
splitting very long lines of code.) Notice that we have introduced a variable inside
the windChill function named chill to break up the computation a bit. Because
we created chill inside the function windChill, its scope is local to the function.
If we tried to refer to chill anywhere outside of the function windChill (e.g., in
the main function), we would get the following error:

NameError: name 'chill' is not defined

Because chill has a local scope, it is called a local variable. The parameters
temperature and windSpeed are also local variables and have the same local scope
as chill.

Local namespaces
Let’s look more closely at how local variable and parameter names are managed
in Python. In this program, just after we call the windChill function, but just
before the values of the arguments temp and wind are assigned to the parameters
temperature and windSpeed, we can visualize the situation like this:

-3 13

windChillmain

temperature windSpeedtemp wind

The box around temp and wind represents the scope of the main function, and the
box around temperature and windSpeed represents the scope of the windChill

function. In each case, the scope defines what names have been defined, or have
meaning, in that function. In the picture, we are using arrows instead of affixing the
“Sticky notes” directly to the values to make clear that the names, not the values,
reside in their respective scopes. The names are references to the memory cells in
which their values reside.

The scope corresponding to a function in Python is managed with a namespace . A
namespace of a function is simply a list of names that are defined in that function,
together with references to their values. We can view the namespace of a particular
function by calling the locals function from within it. For example, insert the
following statement into the main function, just before the call to windChill:

print('Local namespace in main before windChill is\n\t', locals())

(The \n\t represents a newline and tab character.) When we run the program, we
will see

Copyright Taylor and Francis, 2021

2.6 SCOPE AND NAMESPACES � 99

1 def windChill(temperature, windSpeed):
2 """ (docstring omitted) """
3

4 print('Local namespace at the start of windChill is\n\t', locals())
5 chill = 13.12 + 0.6215 * temperature \
6 + (0.3965 * temperature - 11.37) * windSpeed ** 0.16
7 temperature = round(chill)
8 print('Local namespace at the end of windChill is\n\t', locals())
9 return temperature

10

11 def main():
12 temp = -3
13 wind = 13
14 print('Local namespace in main before windChill is\n\t', locals())
15 chilly = windChill(temp, wind)
16 print('Local namespace in main after windChill is\n\t', locals())
17 print('The wind chill is ' + str(chilly) + ' degrees Celsius.')
18

19 main()

Figure 2.10 The complete wind chill program, with calls to the locals function.

Local namespace in main before windChill is

{'temp': -3, 'wind': 13}

The wind chill is -8 degrees Celsius.

This is showing us that, at that point in the program, the local namespace in the
main function consists of two names: temp, which is assigned the value -3, and wind,
which is assigned the value 13, just as we visualized above. The curly braces ({ })
around the namespace representation indicate that the namespace is a dictionary ,
another abstract data type in Python. We will explore dictionaries in more detail in
Chapter 7.

Returning to the program, when windChill is subsequently called from main, it is
implicitly assigning temperature = temp and windSpeed = wind, so the picture
changes to this:

-3 13

windChillmain

temperature windSpeedtemp wind

To see all of the namespace changes in the program, insert three more calls to the

Copyright Taylor and Francis, 2021

100 � 2 Visualizing Abstraction

locals function, as shown in Figure 2.10. Now when we run the program, we see
(line numbers added):

1 Local namespace in main before windChill is

{'temp': -3, 'wind': 13}

3 Local namespace at the start of windChill is

{'temperature': -3, 'windSpeed': 13}

5 Local namespace at the end of windChill is

{'temperature': -8, 'windSpeed': 13, 'chill': -7.676796032159553}

7 Local namespace in main after windChill is

{'temp': -3, 'wind': 13, 'chilly': -8}

9 The wind chill is -8 degrees Celsius.

Line 3 above, which corresponds to the preceding “sticky note” illustration, shows
us that, at the beginning of the windChill function (line 4 in Figure 2.10), the only
visible names are temperature and windSpeed, which have been assigned the values
of temp and wind, respectively. Notice, however, that temp and wind do not exist
inside windChill, and there is no direct connection between temp and temperature,
or between wind and windSpeed; rather they are only indirectly connected through
the values to which they are both assigned.

Lines 5–6 in the windChill function insert the new name chill into the local
namespace, assign it the result of the wind chill computation, and reassign the local
parameter temperature to the rounded wind chill value:

-3 13

windChillmain

 -7.67… -8

temperature windSpeedtemp wind chill

This corresponds to line 5 of the output above.

After the windChill function returns −8, the namespace of windChill, and all of
the local names in that namespace, cease to exist, leaving temp and wind untouched
in the main namespace. However, as shown below and in line 7 of the output above,
a new name, chilly, is created in the main namespace and assigned the return value
of the windChill function:

-3 13

main

-8

temp wind chilly

Copyright Taylor and Francis, 2021

2.6 SCOPE AND NAMESPACES � 101

When the main function ends, its local namespace also disappears.

The global namespace
The namespace in which global variable names reside is called the global namespace .
We can view the contents of the global namespace by calling the globals function.
For example, add the following call to globals to the end of main in our program:

print('The global namespace is\n\t', globals())

The result will be something like the following (some names are not shown):

The global namespace is

{'__name__': '__main__', '__doc__': None, ...,

'__builtins__': <module 'builtins' (built-in)>, ...,

'windChill': <function windChill at 0x10dde8b80>,

'main': <function main at 0x10dde8c10>}

Notice that the only global names that we created are the names of our two
functions, windChill and main. We can think of each of these names as referring
to the functions’ respective namespaces, as illustrated below (references for some
names are omitted):

__main__

...

builtins

...

-3 13

windChillmain

 -7.67… -8

temperature windSpeedtemp wind chill

print round locals

main windChill __name__ __builtins__

The other names defined in the global namespace are standard names defined in every
Python program. The name __name__ refers to the name of the current module,
which, in this case, is '__main__' (not to be confused with the main function);
__name__ always refers to '__main__' when the program is executed directly by
the Python interpreter (vs. being imported from another program). The name

Copyright Taylor and Francis, 2021

102 � 2 Visualizing Abstraction

__builtins__ refers to an implicitly imported module that contains all of Python’s
built-in functions.

As the illustration suggests, we can think of these namespaces as being nested inside
each other because names that are not located in a local namespace are sought
in enclosing namespaces. For example, when we are in the main function and call
the function print, the Python interpreter first looks in the local namespace for
this function name. Not finding it there, it looks in the next outermost namespace,
__main__. Again, not finding it there, it looks in the builtins namespace.

Each module that we import also defines its own namespace. For example, when
we import the math module with import math, a new namespace is created within
builtins, at the same nesting level as the __main__ namespace, as illustrated below.

__main__

...

builtins

...

math

...

3.14…-3 13

windChillmain

 -7.67… -8

temperature windSpeedtemp wind chill

print round locals
sqrt pi

main windChill __name__ __builtins__

When we preface each of the function names in the math module with math (e.g.,
math.sqrt(7)), we are telling the Python interpreter to look in the math namespace
for the function.

Maintaining a mental model like this should help you manage the names that you
use in your programs, especially as they become longer.

Exercises
2.6.1* When the windChill function in Figure 2.10 is called from main, the value of

the argument temp is assigned to the parameter named temperature. Then, in
the function, temperature is assigned a new value. Does this affect the value of
temp? Use the pictures in this section to explain your answer.

Copyright Taylor and Francis, 2021

2.6 SCOPE AND NAMESPACES � 103

2.6.2* Exercise 2.5.6 asked you to write a distance function to find the distance
between two points. Here is that function in a simple but complete program.

1 import math
2

3 def distance(x1, y1, x2, y2):
4 dist = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
5 return dist
6

7 def main():
8 theDistance = distance(3, 7.25, 9.5, 1)
9 print(theDistance)

10

11 main()

(a) Show how to use the locals function to print all of the local variable
names in the distance function just before the function returns. What
does the namespace look like?

(b) Show how to use the globals function to print the global namespace at
the end of the main function. Which of the names from the program are
in the global namespace?

(c) Insert a statement in the main function between lines 8 and 9 to print
the local variable dist. What happens and why?

2.6.3. Look back at the program in Figure 2.8 on page 73.

(a) In what namespace is the variable george. Why?

(b) In the bloom, stem, and flower functions, we used a turtle parameter
named tortoise instead of george. Would the program still work if we
replaced every instance of tortoise with george? Explain your answer.

(c) If you made the changes in part (b), the name george would exist in
two different namespaces while each of the three functions was executing.
Explain why. While the bloom function is executing, which george is
being used?

2.6.4. Insert a call to the locals function inside the for loop in this program. What
values is the variable line assigned in the loop?

import turtle

def draw(tortoise, numLines):
for line in range(numLines):

tortoise.up()
tortoise.goto(line * 10, 0)
tortoise.down()
tortoise.goto((numLines - line + 1) * 10, 200)

def main():
george = turtle.Turtle()
draw(george, 12)

main()

Copyright Taylor and Francis, 2021

104 � 2 Visualizing Abstraction

2.6.5* Sketch a picture like that on page 100 depicting the namespaces in the program
in the previous exercise just before returning from the draw function. Here is a
picture to get you started:

Turtle
object

tortoise numLines

draw

george

main

line

2.6.6. Consider the following program:

import turtle

def drawStar(tortoise, length):
for count in range(5):

tortoise.forward(length)
tortoise.left(144)

def main():
george = turtle.Turtle()
sideLength = 200
drawStar(george, sideLength)

main()

Sketch a picture like that on page 100 depicting the namespaces in this program
just before returning from the drawStar function. Here is a picture to get you
started:

Turtle
object

tortoise length

drawStar

george

main

countsideLength

2.6.7. In economics, a demand function gives the price a consumer is willing to pay for
an item, given that a particular quantity of that item is available. For example,
suppose that in a coffee bean market the demand function is given by

D(Q) = 45 − 2.3Q

1000
,

where Q is the quantity of available coffee, measured in kilograms, and the
returned price is for 1 kg. So, for example, if there are 5000 kg of coffee beans
available, the price will be 45 − (2.3)(5000)/1000 = 33.50 dollars for 1 kg. The
following program computes this value.

Copyright Taylor and Francis, 2021

2.7 SUMMARY AND FURTHER DISCOVERY � 105

def demand(quantity):
quantity = quantity / 1000
return 45 - 2.3 * quantity

def main():
coffee = 5000
price = demand(coffee)
print(price)

main()

Sketch a picture like that on page 100 depicting the namespaces in this program
just before returning from the demand function and also just before returning
from the main function.

2.6.8. In the program from the previous exercise, change return 45 - 2.3 * quantity

to print(45 - 2.3 * quantity). How does this change your pictures?

2.6.9. Here is a simple program with the fleshKincaid function from the previous
section.

def fleschKincaid(averageWords, averageSyllables):
""" (docstring omitted) """

readingLevel = 0.39 * averageWords \
+ 11.8 * averageSyllables - 15.59

return readingLevel

def main():
theReadingLevel = fleschKincaid(4.0, 1.5)
print('Local namespace:', locals())
print('The reading level is ' + str(theReadingLevel) + '.')

main()

(a) Run this program. What is printed by the highlighted line above? How
does theReadingLevel get this value?

(b) In the fleschKincaid function, replace return readingLevel with
print(readingLevel), and run the program again. Now what is printed
by the highlighted line above? Why?

2.7 SUMMARY AND FURTHER DISCOVERY
In this chapter, we made progress toward writing more sophisticated programs. The
key to successfully solving larger problems is to break the problem into smaller,
more manageable pieces, and then treat each of these pieces as an abstract “black
box” that you can use to solve the larger problem. There are two types of “black
boxes,” those that represent things (i.e., data, information) and those that represent
actions. A “black box” representing a thing is described by an abstract data type
(ADT), which contains both hidden data and a set of functions that we can call
to access or modify that data. In Python, an ADT is implemented with a class,

Copyright Taylor and Francis, 2021

106 � 2 Visualizing Abstraction

and instances of a class are called objects. The class, such as Turtle, to which an
object belongs specifies what (hidden) data the object has and what methods can be
called to access or modify that data. Remember that a class is the “blueprint” for a
category of objects, but is not actually an object. We “built” new Turtle objects
by calling a function with the class’ name:

george = turtle.Turtle()

Once the object is created, we can do things with it by calling its methods, like
george.forward(100), without worrying about how it actually works.

A ”black box” that performs an action is called a functional abstraction. We imple-
ment functional abstractions in Python with functions. Earlier in the chapter, we
designed functions to draw things in turtle graphics, gradually making them more
general (and hence more useful) by adding parameters. We also started using for

loops to create more interesting iterative algorithms. Later in the chapter, we also
looked at how we can add return values to functions, and how to properly think
about all of the names that we use in our programs. By breaking our programs up
into functions, like breaking up a complex organization into divisions, we can more
effectively focus on how to solve the problem at hand.

This increasing complexity becomes easier to manage if you follow the guidelines for
structuring and documenting your programs that we laid out in Section 2.4.

Notes for further discovery
The chapter’s first epigraph is once again from Donald Knuth, specifically his address
after receiving the 1974 Turing award [32]. You can read or watch other Turing
award lectures at http://amturing.acm.org.

The second epigraph is from Ada Lovelace, considered by many to be the first
computer programmer. She was born Ada Byron in England in 1815, the daughter of
the Romantic poet Lord Byron. (However, she never knew her father because he left
England soon after she was born.) In marriage, Ada acquired the title “Countess of
Lovelace,” and is now commonly known simply as Ada Lovelace. She was educated
in mathematics by several prominent tutors and worked with Charles Babbage, the
inventor of two of the first computers, the Difference Engine and the Analytical
Engine. Although the Analytical Engine was never actually built, Ada wrote a set
of “Notes” about its design, including what many consider to be the first computer
program. (The quote is from Note A, page 696.) In her “Notes” she also imagined
that future computers would be able to perform tasks far more interesting than
arithmetic (like make music). Ada Lovelace died in 1852, at the age of 37.

The giant tortoise named Lonesome George was, sadly, the last surviving member of
his subspecies, Chelonoidis nigra abingdonii. The giant tortoise named Super Diego
is a member of a different subspecies, Chelonoidis nigra hoodensis.

The commenting style we use in this book is based on Google’s official Python style
guide at https://google.github.io/styleguide/pyguide.html.

Copyright Taylor and Francis, 2021

http://amturing.acm.org
https://google.github.io/styleguide/pyguide.html

