
C H A P T E R 12

Object-oriented Design

What we desire from an abstraction is a mechanism which permits the expression of relevant
details and the suppression of irrelevant details. In the case of programming, the use which
may be made of an abstraction is relevant; the way in which the abstraction is implemented
is irrelevant.

Barbara Liskov
Programming with Abstract Data Types (1974)

Our problem solving strategy to this point has focused on the decomposition of a
problem into smaller subproblems, each viewed as a functional abstraction. We

design algorithms, and then write functions, for these subproblems, and combine
them to solve our overall problem.

An alternative design strategy, called object-oriented design, instead focuses on the
data, or objects, in a problem. To solve a problem, we identify the objects involved,
design abstract data types for them, and then implement them as classes.

Recall that an ADT is defined by the information it can store, called attributes,
and a set of operations that can access that information. We have used a variety
of ADTs, such as turtles, strings, lists, and dictionaries, each implemented as a
class in Python. A class serves as a blueprint for a category of data. An object is a
particular instance of a class. In Section 2.1, we described this difference by analogy
to a species and the organisms that belong to that species. The species description
is like a class; it describes a category of organisms but is not an organism itself. The
individual organisms belonging to a species are like objects from the same class.

The attributes of a class are assigned to a set of variables called instance variables .
The operations of a class are special functions called methods. Instance variables
remain hidden to a programmer using the class, and are only accessed or modified

469

Copyright Taylor and Francis, 2021

470 � 12 Object-oriented Design

indirectly through methods. For example, the Turtle class contains several hidden
instance variables that store each Turtle object’s position, color, heading, and
whether its tail is up or down. The Turtle class also defines several familiar methods,
such as forward/backward, left/right, speed, and up/down that we can call to
indirectly interact with these instance variables. When we create the two new Turtle

objects named george and diego below, although they belong to the same class,
they maintain independent identities because each instance (object) has its own
copies of the Turtle instance variables.

george = turtle.Turtle()
diego = turtle.Turtle()

In this chapter, we will use object-oriented design to solve problems with new custom
classes that behave the same way the built-in classes do. We will start by designing
an object-oriented simulation of an epidemic virus. Then we will implement a more
utilitarian class to illustrate all of the ways in which a class can be made to behave
like the standard classes that you have been using all along. Then we will explore a
more advanced simulation of flocking birds and the design of two new ADTs.

12.1 SIMULATING AN EPIDEMIC
Simulations are widely used to facilitate planning for large-scale epidemics, or a
pandemic like COVID-19. These simulations can generally take one of two forms: a
population model or an agent-based model. A population model treats a population
as a group of identical individuals and is only concerned with the populations’ sizes.
The SIR model that you may have seen in Section 4.4 is the basis of most population
models for viral epidemics like COVID-19. In contrast, an agent-based simulation
contains a set of independent individuals (the agents) that interact with each other
in some way over time. Schelling’s model of racial segregation from Project 8.1 is a
simple example of an agent-based simulation.

In this section, we will write an agent-based simulation of a viral epidemic using an
object-oriented design. The main objects in the simulation are the agents (in our
case, people) and a two-dimensional “world” in which the agents move. The world
will also act as the glue that binds the agents together and drives the simulation by
repeating the following simple algorithm for some length of time:

Algorithm Epidemic simulation step

1 repeat for each person in the world:
2 move the person one step forward
3 if the person is infected, then:
4 probabilistically infect every non-infected person within some distance

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 471

Object design
The first step in writing this simulation is to design the two objects as abstract
data types, analogous to how we start a functional design by writing algorithms in
pseudocode. When we design an ADT or write an algorithm, we are free to focus
on the problem at hand, unencumbered by the requirements of the programming
language. After this design phase, we will implement each of the ADTs as a class.

Reflection 12.1 Based on the simulation algorithm above, what attributes and operations
does a person object need?

You can probably think of many possible attributes for a person in this simulation,
but we will keep it simple at first. Every Person object will at least need a world to
live in, a position and heading as they move in the world, and a variable that tracks
whether they are infected with the virus.

Instance Variable Description

world the world inhabited by the person
position, heading the person’s current position and heading in the world
infected whether the person is currently infected (Boolean)

Based on the simulation algorithm, every person will need the ability to move around
(randomly) in the world and become infected if they come too close to an infected
person. We will also need to be able to access attributes of people, such as their
position, whether they are infected, and whether they are too close to another
infected person. The following six operations will handle these basic needs.

Method Arguments Description

create world, infected create a new person with random position and
heading in world and infect if infected is true

get position — return the person’s position as a tuple
is infected — return whether the person is infected
within person, distance return true if a given person is within distance

of my position, false otherwise

infect infection probability set infected to true with the given probability
step — take one step in the simulation

You may notice that these methods fall into three categories:

1. A constructor creates a new instance of an ADT.

2. An accessor reads the attributes of an instance and returns information derived
from them, but does not modify the attributes’ values.

3. A mutator modifies the values of the attributes of an instance.

Copyright Taylor and Francis, 2021

472 � 12 Object-oriented Design

Reflection 12.2 To which category does each of the six Person methods belong?

The first operation we defined is the constructor because it creates a new Person
instance. The next three operations are accessors because they give information
derived from the attributes of an instance without modifying it. Finally, infect and
step are mutators because they may change the attributes of an instance.

Before we implement the Person class, let’s also lay out the structure of the World
ADT. The world will need dimentions, a list of the people in the world, the probability
that a person becomes infected if they come into contact with an infected person, and
the number of people infected. These are maintained in the following five attributes.

Instance Variable Description

width, height the width and height of the world
infection probability the probability that a person becomes infected if they come

into contact with an infected person
people a list of people in the world
number infected the number of infected people

In addition, based on the simulation algorithm, we know that the World will need
to able to infect people who come too close to an already-infected person, and run
one step of the main simulation loop, which we call step all. We will also need some
accessor methods to get attributes of the world when needed.

Method Arguments Description

create width, height,
infection probability,
population size

create a new world with the given
dimensions and infection probability,
and populate it with one infected per-
son and population size − 1 uninfected
people

get width, get height — return the width and height
get number infected — return number infected
infect neighbors person infect neighbors of an infected person

with probability = infection probability
step all — move all inhabitants one step and

spread the infection

Person class
Let’s begin our implementation by designing a class that implements a simplified
version of the Person ADT, one that is not tied to any World. This will allow us
to experiment and get a better feel for how classes work, before we dive into the
complete simulation.

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 473

The constructor

The definition of a new class begins with the keyword class followed by the name
of the class and, of course, a colon. The class’ methods are indented below.

The constructor of a class is named __init__ (with two underscore characters at
both the beginning and the end). The beginning of the SimplePerson class, with
its constructor, is shown below.

class SimplePerson:
"""A simple person class."""

_STEP = 5 # class variable (constant)

def __init__(self, infected):
"""Create a new, possibly infected, person with random heading."""

self._infected = infected
self._turtle = turtle.Turtle()
self._turtle.setheading(random.randrange(360))

if self._infected:
self._turtle.color('red')

else:
self._turtle.color('blue')

The constructor is implicitly called when we create a new object by calling the
function bearing the name of the class. For example, when we created the two
Turtle objects above, we implicitly invoked the Turtle constructor twice. To invoke
the constructor of the SimplePerson class to create a new, uninfected SimplePerson

object, we could call

someone = SimplePerson(False)

The first parameter of the __init__ method, named self, is an implicit reference to
the object on which the method is being called. In the assignment statement above,
self is assigned to the new object being created. This same object is returned by
the constructor and assigned to someone. We never explicitly pass anything in for
self. The additional constructor parameter infected is a Boolean value used to
initialize the object’s infection status.

The SimplePerson class has two instance variables named self._infected and
self._turtle. The former is a Boolean value indicating whether the person is
currently infected with the virus and the latter is a visual representation of the
person in the simulation. We will also use self._turtle to implicitly store each
person’s position and heading (since it will do that anyway).

Every instance variable name is preceded by self to signify that it belongs to the
particular instance (object) of the class assigned to self. For example, since self is
assigned to the new object created by the constructor, the assignment statement

someone = SimplePerson(False)

Copyright Taylor and Francis, 2021

474 � 12 Object-oriented Design

is creating a new SimplePerson object named someone and assigning values to
someone._infected and someone._turtle.

The underscore (_) character before each instance variable name is a Python conven-
tion that indicates that the instance variables should be private, i.e., never accessed
from outside the class.1 We want instance variables to be private so they can only be
changed by methods of the class, and not in unintended ways outside the class. For
example, we do not want a simulation using our class to incorrectly move a person’s
turtle or change their infection status in ways that might mess up the simulation.
This idea, which is a key characteristic of object-oriented programming, is called
encapsulation . Encapsulation also refers more generally to the practice of bundling
instance variables and methods together in a class.

The scope of an instance variable is the entire object. This means that we can access
and change the value of any instance variable in any method of the class. In contrast,
variable names defined inside a method that are not preceded by self, such as the
infected parameter in the constructor, are just normal local variables with scope
limited to the method.

Just before the constructor above is a class variable named _STEP, which will act
as a constant move distance for all people turtles. A class variable is shared by all
objects in a class. Since _STEP is a constant, it doesn’t make sense to have a separate
copy for every object; instead, all objects will share this one copy.

Accessor methods

Now let’s add the three accessor methods to the SimplePerson class.

def getPosition(self):
"""Return the person's position as a tuple.

Parameter:
self: the Person object

Return value: position of self as a tuple
"""

return self._turtle.position()

def isInfected(self):
"""Return whether the person is infected.

Parameter:
self: the Person object

Return value: Boolean indicating whether self is infected
"""

return self._infected

1Python does not actually enforce this, but some other languages do.

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 475

def within(self, otherPerson, distance):
"""Return True if otherPerson is within distance

of my position, False otherwise.

Parameters:
self: the Person object
otherPerson: another Person object
distance: a number

Return value: Boolean indicating whether otherPerson's position
is within distance of self's position

"""

myPosition = self.getPosition()
otherPosition = otherPerson.getPosition()
diffX = myPosition[0] - otherPosition[0]
diffY = myPosition[1] - otherPosition[1]
return math.sqrt(diffX ** 2 + diffY ** 2) <= distance

The getPosition method uses the position method of self._turtle to return a
tuple containing the current position. The only parameter to this method is self.
If we called someone.getPosition(), the object someone is implicitly passed in
for the parameter self, even though it is not passed in the parentheses following
the name of the method. Similarly, the isInfected method simply returns the
value of self._infected. The within method computes the distance between self

and another SimplePerson object and returns a Boolean value indicating whether
they are within the given distance of each other. Notice that the method calls the
getPosition method of both self and otherPerson to get tuples of their positions.
When we call a method of the class from within another method, we still need to
preface the name of the method with self or another object, just as we do with
instance variables.

Mutator methods

To round out the class, we will add the following two mutator methods.

def infect(self, infectionProbability):
"""Infect self with the given probability.

Parameters:
self: the Person object
infectionProbability: probability of infection

Return value: Boolean indicating whether infection happened
"""

if not self._infected and random.random() < infectionProbability:
self._infected = True
self._turtle.color('red')
return True

return False

Copyright Taylor and Francis, 2021

476 � 12 Object-oriented Design

def step(self):
"""Advance self one step in the simulation.

Parameter:
self: the Person object

Return value: None
"""

if random.random() < 0.1:
self._turtle.left(random.randrange(-90, 90))

self._turtle.forward(self._STEP)

The infect method infects the person, if they are not already infected, with the
given probability. If the person is infected, the method returns True to signify
“success.” If the object is not infected, it returns False. In the step method, we
simulate a person’s movement by normally (90% of the time) moving forward along
their current heading, and occasionally (10% of the time) turning to the left or right
by some random angle.

When we write classes, we will store each one in its own file. By convention, the
names of our classes will be capitalized, but the filenames will be in lowercase.

Reflection 12.3 Create a new file named simpleperson.py containing the SimplePerson

class. (You will also need to import some modules at the top.)

After saving the SimplePerson class in simpleperson.py, we can create a new,
uninfected SimplePerson object with

>>> import simpleperson
>>> someone = simpleperson.SimplePerson(False)

or

>>> from simpleperson import *
>>> someone = SimplePerson(False)

Reflection 12.4 Create a new SimplePerson object in a Python shell with one of the
options above. Or you can write a short program in the same directory as simpleperson.py
if you have trouble importing from the shell. What happens when create the object?

When you create a new SimplePerson object, a turtle graphics window should open
and display a blue turtle facing in a random direction in the center of the screen.
This is someone._turtle, the Turtle object inside the someone object. Now call
the getPosition method, followed by a few calls to step.

>>> someone.getPosition()
(0.00,0.00)
>>> someone.step()
>>> someone.step()
>>> someone.getPosition()
(9.21,-3.91) # your result will differ

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 477

Each time you call step, you are invoking the step method on the SimplePerson

object named someone, which moves someone’s turtle a little. You can see how this
has changed someone’s _turtle instance variable when you call getPosition again.
Since step moves the turtle so little, try calling it in a loop:

>>> for count in range(50):
someone.step()

Initially, someone is not infected with the virus (because we passed False into the
constructor), which you can verify by calling the isInfected method.

>>> someone.isInfected()
False

Now try infecting someone with probability 0.5. You may have to try a few times
until it is successful. Then verify that it worked by calling isInfected again.

>>> someone.infect(0.5)
False
>>> someone.infect(0.5)
True
>>> someone.isInfected()
True

After someone becomes infected, you should notice that the turtle turns red. Next
create another, uninfected SimplePerson object and move them a bit.

>>> someoneElse = SimplePerson(False)
>>> someoneElse.isInfected()
False
>>> for count in range(50):

someoneElse.step()

If we want to know if this new person is within some distance of the infected someone,
we can call the within method.

>>> someoneElse.within(someone, 10)
False
>>> someoneElse.within(someone, 500)
True

When you call the within method in this way, someoneElse is passed in for self

and someone is passed in for otherPerson. Chances are, they are not very close to
each other but if you keep trying larger distances, the method should eventually
return True.

Reflection 12.5 Does calling someone.within(someoneElse, 500) do the same thing?
In this case, which object is assigned to self and which is assigned to otherPerson?

Augmenting the Person class
Now that you are a more comfortable with the mechanics of classes, let’s flesh out
the full Person class that we will use in our simulation. The Person class will be
identical to the SimplePerson class, except for edits and additions to two methods.
The first changes are to the constructor, highlighted below.

Copyright Taylor and Francis, 2021

478 � 12 Object-oriented Design

class Person:
"""A person in an epidemic simulation."""

_STEP = 5 # class variable (constant)

def __init__(self, myWorld, infected):
"""Create a person with random position/heading in myWorld."""

self._world = myWorld
self._infected = infected

self._turtle = turtle.RawTurtle(self._world._screen)
self._turtle.speed(0)
self._turtle.up()
self._turtle.resizemode('user')
self._turtle.shape('circle')
self._turtle.shapesize(0.5)

self._turtle.setheading(random.randrange(360))
x = random.randrange(self._world.getWidth())
y = random.randrange(self._world.getHeight())
self._turtle.goto(x, y)

if self._infected:
self._turtle.color('red')

else:
self._turtle.color('blue')

First, we added a myWorld parameter that will serve as the World object to which the
Person belongs. (We will implement World next.) We have also assigned _turtle

to a RawTurtle object instead of a normal Turtle object. RawTurtle is just like
Turtle, but it will allow us to do some fancier graphical interface things later.
The TurtleScreen object named self._world._screen that we pass into the
RawTurtle constructor is an instance variable of the World class. Its purpose is to
make sure that every Person turtle draws in the same window. We also added some
turtle formatting that will make each person a small circle. Finally, we give each
person a random starting position, using the soon-to-be-implemented getWidth and
getHeight methods of the World class to set the bounds of the position.

The second edit is to the step method as highlighted below.

def step(self):
""" (docstring omitted) """

if random.random() < 0.1:
self._turtle.left(random.randrange(-90, 90))

self._turtle.forward(self._STEP)

wrap around to the other side of the world if necessary
newX = self._turtle.xcor() % self._world.getWidth()
newY = self._turtle.ycor() % self._world.getHeight()
if self._turtle.position() != (newX, newY):

self._turtle.goto(newX, newY)

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 479

This addition guards against a person stepping off the edge of the world. When this
happens, rather than have them “bounce” back, we wrap them around to the other
side by using modular arithmetic. In this way, the world is treated like a torus.

Reflection 12.6 Create a new file named person.py containing the Person class. Start
from the SimplePerson class and make the highlighted changes.

World class
The constructor of the World class will take five parameters, in addition to self.

from person import *

class World:
"""A two-dimensional world class."""

_INFECT_DISTANCE = 6 # class variable (constant)

def __init__(self, width, height, infectProb, popSize, screen):
"""Create a new world with the given dimensions and infection

probability, and populate it with one infected person and
popSize - 1 uninfected people."""

self._width = width
self._height = height
self._infectionProbability = infectProb
self._screen = screen

self._numberInfected = 1
self._people = [Person(self, True)] # one infected person

for index in range(popSize - 1): # uninfected people
person = Person(self, False)
self._people.append(person)

At the top of the file, we need to import the Person class so that we can create
new people in the constructor. Just before the constructor is a class variable named
_INFECT_DISTANCE which is how close someone needs to be to an infected person to
become infected themselves.

Reflection 12.7 How many instance variables does the World class have?

The class has six instance variables. The first four, self._width, self._height,
self._infectionProbability and self._screen, are initialized by parameters.
The _screen instance variable is the name of the TurtleScreen object on which
all of the Person turtles will be drawn. It will be created by the main program.
The remainder of the constructor populates the world by creating a list named
self._people containing one infected person and popSize - 1 uninfected people.
The Person constructor is called to create each person.

Copyright Taylor and Francis, 2021

480 � 12 Object-oriented Design

In addition to the constructor, the World class will have the following three accessor
methods.

def getWidth(self):
""" (docstring omitted) """

return self._width

def getHeight(self):
""" (docstring omitted) """

return self._height

def getNumberInfected(self):
""" (docstring omitted) """

return self._numberInfected

As in the Person class, these methods simply return the values of instance variables
so that the instance variables are never accessed directly from outside the class. The
getWidth and getHeight methods are used in the step method of the Person class,
and the getNumberInfected method will be used by our main program to plot the
number of infected individuals over the course of the simulation.

Finally, the World class is rounded out by two mutator methods.

def infectNeighbors(self, infectedPerson):
""" (docstring omitted) """

for otherPerson in self._people:
if not otherPerson.isInfected() and \
otherPerson.within(infectedPerson, self._INFECT_DISTANCE):
if otherPerson.infect(self._infectionProbability):

self._numberInfected = self._numberInfected + 1

def stepAll(self):
""" (docstring omitted) """

for person in self._people:
person.step()
if person.isInfected():

self.infectNeighbors(person)

The infectNeighbors method takes an infected person as a parameter and then
iterates over everyone in the world, infecting anyone within self._INFECT_DISTANCE

with probability self._infectionProbability. If a person is successfully infected,
the value of self._numberInfected is incremented. The stepAll method imple-
ments each step of the simulation, as we laid out at the beginning of the section.

Reflection 12.8 Create another new file named world.py containing the World class.

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 481

The simulation
With our classes created, the following program will drive the simulation.

import turtle
from world import *

WIDTH = 600 # width of the world
HEIGHT = 600 # height of the world
NUM_PEOPLE = 200 # number of people to simulate
INFECTION_PROB = 0.5 # probability that someone gets infected

def main():
worldScreen = turtle.Screen() # a screen for the turtles
worldScreen.setup(WIDTH, HEIGHT) # set window size
worldScreen.setworldcoordinates(0, 0, WIDTH - 1, HEIGHT - 1)
worldScreen.tracer(0) # turn off screen updates

world = World(WIDTH, HEIGHT, INFECTION_PROB, NUM_PEOPLE, worldScreen)

while world.getNumberInfected() < NUM_PEOPLE: # until all infected
world.stepAll() # advance all people one step
worldScreen.update() # manually update screen after each step

worldScreen.exitonclick()

main()

The main function creates a Screen object named worldScreen on which the turtles
representing people can live. This is passed in as the last parameter of the World

constructor. Then the program iterates until the number of infected people is equal
to the total number of people. In each iteration, the simulation is advanced one step
by calling world.stepAll(). A screenshot of the finished simulation is shown on
the lefthand side of Figure 12.1.

Reflection 12.9 Augment the main function so that it plots the number of in-
fected people over the course of the simulation. Display your plot just before
worldScreen.exitonclick(). It should look similar to the plot on the righthand side of
Figure 12.1.

On the book website you can find an augmented version of this program that
incorporates sliders for the number of people and infection probability, and plots the
number infected as the simulation is running. A screenshot is shown in Figure 12.2.
This program also demonstrates how to use the graphics framework underlying turtle
graphics, called Tkinter, to add graphical user interface elements to programs. Later
in this chapter, we will design a more sophisticated agent-based simulation of flying
birds in which each bird interacts with other birds in the flock, resulting in emergent
flocking behavior.

Copyright Taylor and Francis, 2021

482 � 12 Object-oriented Design

0 100 200 300 400 500
Simulation steps

0

25

50

75

100

125

150

175

200

Nu
m

be
r i

nf
ec

te
d

Figure 12.1 On the left is a screenshot midway through the epidemic simulation with

200 people and infection probability 0.5. On the right is a plot of the number infected.

Figure 12.2 A screenshot midway through the augmented epidemic simulation.

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 483

Exercises
12.1.1* Name two accessor methods and two mutator methods in the Turtle class.

12.1.2. Name two accessor methods and two mutator methods in the list class.

12.1.3. Add a new method

allInfected(self)

to the World class that returns True if everyone in the world is infected, and
False otherwise. Show how to use this new method in the while loop of the
main simulation.

12.1.4* Add a new method

add(self, person)

to the World class that adds a new Person object named person to the world.
If the person is infected, increment the value of self._numberInfected.

12.1.5. Add a new method

distance(self, otherPerson)

to the Person class that returns the distance between the Person objects self
and otherPerson. Show how to use your new method to simplify the within

method.

12.1.6. In this exercise, you will modify the epidemic simulation so that some people
stay at home during the epidemic.

(a) Add a new instance variable to the Person class named self._home,
initialized to False, which will indicate whether the person is sheltered
at home.

(b) Add a method named stayHome to the Person class that sets
self._home to True.

(c) Modify the infect method of the Person class so that a person at home
cannot become infected.

(d) Modify the step method of the Person class so that the person does
not move if they are at home.

(e) Add a parameter to the constructor of the World class that defines the
probability that a person will stay home. In the loop that populates the
world, call person.stayHome() with that probability.

(f) Run the simulation with these modifications. You will need to modify
the loop in the main function so that it runs for a particular number of
iterations (say, 1000) since now the entire population is unlikely to get
infected all at once. What do you notice from the plot? (This assumes
you have completed Reflection 12.9.)

12.1.7. In this exercise, you will modify the epidemic simulation so that infected people
can recover and become immune after a specified number of simulation steps.

(a) Add two new instance variables to the Person class named
self._infectedSteps and self._immune. The former counts the num-
ber of simulation steps that have elapsed since the person has been

Copyright Taylor and Francis, 2021

484 � 12 Object-oriented Design

infected. The second is a Boolean value indicating whether the person is
immune to the virus.

(b) Add a method named isImmune to the Person class that returns the
value of self._immune.

(c) Modify the infect method of the Person class so that a person cannot
become infected if they are immune.

(d) Add a method named isRecovered to the Person class that checks if
the person is infected and, if so, checks whether self._infectedSteps
is equal to a constant class variable named _INFECTION_PERIOD. If
this is the case, the person becomes infected so set the person’s
self._infected and self._immune instance variables appropriately
and their turtle’s color to yellow. If the person is infected but has not
yet been so for self._INFECTION_PERIOD steps, the method should in-
crement the value of self._infectedSteps. The method should return
True if the person becomes newly immune or False otherwise.

(e) Modify the stepAll method of the World class so that it calls
isRecovered for every infected person in each iteration of the
loop. If isRecovered returns True, then decrement the value of
self._numberInfected.

(f) Run the simulation with your modifications and the class variable
_INFECTION_PERIOD set to 100. You will need to modify the loop as
specified in part (f) of the previous exercise. What do you notice from
the plot? (This assumes you have completed Reflection 12.9.)

12.1.8. Design a research question you would like to investigate using the original
epidemic simulation or the modified simulations from the previous two exercises.
Run the simulation with various parameters to answer your question.

12.1.9* (a) Write a BankAccount class that has a single instance variable (the
available balance), a constructor that takes the initial balance as a
parameter, and methods getBalance (which should return the amount
left in the account), deposit (which should deposit a given amount into
the account), and withdraw (which should remove a given amount from
the account).

(b) Using your BankAccount class from part (a), write a program that
prompts for an initial balance, creates a BankAccount object with this
balance, and then repeatedly prompts for deposits or withdrawals. After
each transaction, it should update the BankAccount object and print
the current balance. For example:

Initial balance? 100

(D)eposit, (W)ithdraw, or (Q)uit? d

Amount = 50

Your balance is now $150.00

(D)eposit, (W)ithdraw, or (Q)uit? w

Amount = 25

Your balance is now $125.00

(D)eposit, (W)ithdraw, or (Q)uit? q

Copyright Taylor and Francis, 2021

12.1 SIMULATING AN EPIDEMIC � 485

12.1.10. (a) Write a class that represents a U.S. president. The class should include
instance variables for the president’s name, party, home state, religion,
and age when he or she took office. The constructor should initialize the
president’s name to a parameter value, but initialize all other instance
variables to default values (empty strings or zero). Write accessor and
mutator methods for all five instance variables.

(b) On the book website is a tab-separated file containing a list of all
U.S. presidents with the five instance variables from part (a). Write
a function that reads this information and returns a list of president
objects representing all of the presidents in the file. Also, write a function
that, given a list of president objects and an age, prints a table with all
presidents who where at least that old when they took office, along with
their ages when they took office.

12.1.11. Write a Movie class that has as instance variables the movie title, the movie
year, and a list of actors (all of which are initialized in the constructor). Write
accessor and modifier functions for all the instance variables and an addActor

method that adds an actor to the list of actors in the movie. Finally, write a
method that takes as a parameter another movie object and checks whether
the two movies have any common actors.

There is a program on the book website with which to test your class. The
program reads actors from a movie file (like those used in Project 11.3), and
then prompts for movie titles. For each movie, you can print the actors, add an
actor, and check whether the movie has actors in common with another movie.

12.1.12. (a) Write a class representing a U.S. senator. The Senator class should
contain instance variables for the senator’s name, political party, home
state, and a list of committees on which they serve. The constructor
should initialize all of the instance variables to parameter values, except
for the list of committees, which should be initialized to an empty list.
Add accessor methods for all four instance variables, plus a mutator
method that adds a committee to a senator’s list of committees.

(b) On the book website is a function that reads a list of senators from
a file and returns a list of senator objects, using the Senator class
that you wrote in the previous exercise. Write a program that uses
this function to create a list of Senator objects, and then iterates over
the list of Senator objects, printing each senator’s name, party, and
committees. Then your program should prompt repeatedly for the name
of a committee, and print the names and parties of all senators who are
on that committee.

12.1.13. Write a class named Student that has the following instance variables: student
name, exam grades, quiz grades, lab grades, and paper grades. The constructor
should only take the student name as a parameter, but initialize all the other
instance variables (to empty lists). Write an accessor method for the name and
methods to add grades to the lists of exam, quiz, paper, and lab grades. Next,
write methods for returning the exam, quiz, paper, and lab averages. Finally,
write a method to compute the final grade for the course, assuming the average
exam grade is worth 50%, the average quiz grade is worth 10%, and the average
lab and paper grades are worth 20% each.

Copyright Taylor and Francis, 2021

486 � 12 Object-oriented Design

12.1.14* Write a class that represents a set of numerical data from which simple de-
scriptive statistics can be computed. The class should contain five methods,
in addition to the constructor: add a new value to the data set, return the
minimum and maximum values in the data set, return the average of the values
in the data set, and return the size of the data set. Think carefully about the
instance variables needed for this class. It is not actually necessary for the class
to include a list of all of the values that have been added to it.

12.1.15. This exercise assumes you read Section 6.8. Write a Sequence class to represent a
DNA, RNA, or amino acid sequence. The class should store the type of sequence,
a sequence identifier (or accession number), and the sequence itself. Identify
and implement at least three useful methods, in addition to the constructor.

12.2 OPERATORS AND POLYMORPHISM
Suppose you are on the planning commission for your local town, and are evaluating
possible locations for a new high school. One consideration is how central the new
school will be with respect to homes within the district. If you know the location
of each home, then you can compute the most central location, called the centroid ,
with respect to the homes. The centroid is the point whose x and y coordinates are
the average of the x and y coordinates of the homes. (You may recall centroids from
Section 7.7.)

For example, the five black points below might represent five houses, each with
(x, y) coordinates representing the east-west and north-south distances (in km),
respectively, from the point (0,0). The centroid of these points is shown in blue.

(0, 0)

If the points are represented by a list of tuples like

homes = [(0.5, 5), (3.5, 2), (4, 3.5), (5, 2), (7, 1)]

then the following function can be used to return the centroid. (We will use abbrevi-
ated docstrings to save space.)

Copyright Taylor and Francis, 2021

12.2 OPERATORS AND POLYMORPHISM � 487

def centroid(points):
"""Compute the centroid of a list of points stored as tuples."""

n = len(points)
if n == 0:

return None

sumX = 0
sumY = 0
for point in points:

sumX = sumX + point[0]
sumY = sumY + point[1]

return (sumX / n, sumY / n)

Calling centroid(homes) returns the tuple (4, 2.7).

We can simplify working with points by designing a new, general-purpose ordered
pair class. In addition to a geographic location, we could use this class to represent
the (x,y) position of a particle, a (row, column) position in a grid, or a vector in two
dimensions. The goal of this design will be to create a new utility class that behaves
as if it was one of the standard Python classes. To that end, we want to be able to
do arithmetic with pairs, print them, compare them, and even using indexing to
access the individual elements.

Designing a Pair ADT
Let’s begin by designing an ADT for this class. The obvious attributes are the two
numbers, which we will simply name a and b.

Instance Variable Description

a the pair’s first value
b the pair’s second value

Reflection 12.10 What methods do we need for our pair ADT if we want to use it to
compute centroids?

The centroid function added points and divided by a scalar value, so we at least need
those two operations. We will also need a constructor, and we should include methods
to access and change the numbers in the pair. These operations are summarized in
the table below.

Copyright Taylor and Francis, 2021

488 � 12 Object-oriented Design

Method Arguments Description

create a and b create a new pair instance (a, b)

getFirst — return the first value of the pair
getSecond — return the second value of the pair
get — return a tuple (a, b) representing the pair
add pair 2 return a new pair that is the sum of this pair and pair 2
set a and b set new a and b values of the pair
scale a number multiply the values of a and b in the pair by number

Pair class
Let’s now implement the Pair abstract data type as a class. We will start with the
constructor and four other straightforward methods.

class Pair:
"""An ordered pair class."""

def __init__(self, a = 0, b = 0):
"""Create a new Pair object initialized to (a, b)."""

self._a = a # the pair's first value
self._b = b # the pair's second value

def getFirst(self):
""" (docstring omitted) """

return self._a

def getSecond(self):
""" (docstring omitted) """

return self._b

def get(self):
""" (docstring omitted) """

return (self._a, self._b)

def set(self, a, b):
""" (docstring omitted) """

self._a = a
self._b = b

Reflection 12.11 Create a new file pair.py containing this class.

The = 0 following each of the a and b parameters in the constructor is specifying a
default argument . This allows us to call the constructor with either no arguments,

Copyright Taylor and Francis, 2021

12.2 OPERATORS AND POLYMORPHISM � 489

in which case 0 will be assigned to a and b, or with explicit arguments for a and b

that will override the default arguments. If we supply only one argument, then a

will be assigned to it, and 0 will be assigned to b. For example:

pair1 = Pair() # pair1 will represent (0, 0)
pair2 = Pair(3) # pair2 will represent (3, 0)
pair3 = Pair(3, 14) # pair3 will represent (3, 14)

Reflection 12.12 How would you create a new Pair object with value (0,18)?

Arithmetic methods
We define the sum of two pairs (a, b) and (c, d) as the pair (a+ c, b+d). For example,
(3,8) + (4,5) = (7,13). If we represented pairs as tuples, then an addition function
would look like this:

def add(pair1, pair2):
"""Return a tuple representing the sum of tuples pair1 and pair2."""

return (pair1[0] + pair2[0], pair1[1] + pair2[1])

To use this function to find (3, 8) + (4, 5), we could do the following:

duo1 = (3, 8)
duo2 = (4, 5)
sumPair = add(duo1, duo2) # sumPair is assigned (7, 13)
print(sumPair) # prints "(7, 13)"

In an analogous add method for the Pair class, one of the points will be assigned to
self and the other will be assigned to a parameter, as shown below.

def add(self, pair2):
"""Return a new Pair that is the sum of Pairs self and pair2."""

sumA = self._a + pair2._a
sumB = self._b + pair2._b
return Pair(sumA, sumB)

Notice that the method creates and returns a new Pair object. To find the sum of
two Pair objects named duo1 and duo2, we could call this method as follows:

duo1 = Pair(3, 8)
duo2 = Pair(4, 5)
sumPair = duo1.add(duo2) # sumPair is assigned Pair(7, 13)
print(sumPair.get()) # prints "(7, 13)"

When the add method is called, duo1 is assigned to self and duo2 is assigned to
pair2.

Reflection 12.13 Add the add method to your Pair class. Then, define two new Pair

objects in a main function and compute their sum. Because you may wish to import this
module in the future, be sure to call main like this:

Copyright Taylor and Francis, 2021

490 � 12 Object-oriented Design

if __name__ == '__main__':
main()

Reflection 12.14 Using the add method as a template, write a subtract method that
subtracts another Pair object from self.

In contrast to add, the scale method, as we defined it above, will modify the existing
object rather than create a new one:

def scale(self, scalar):
"""Multiply the values in self by a scalar value."""

self.set(self._a * scalar, self._b * scalar)

The scale method takes a numerical value (called a scalar in mathematics) as a
parameter and uses the set method to multiply it by the values of self._a and
self._b.

Reflection 12.15 How could you write the scale method without calling self.set?

Reflection 12.16 Add the scale method to your class and use it on some Pair objects
in your main function.

Let’s now revisit the centroid function, but modify it to handle a list of Pair

objects instead of a list of tuples. The changes are highlighted below in red.

def centroid(points):
"""Compute the centroid of a list of Pair objects."""

n = len(points)
if n == 0:

return None

sumPair = Pair() # sumPair is the Pair (0, 0)
for point in points:

sumPair = sumPair.add(point) # sumPair = sumPair + point
sumPair.scale(1 / n) # divide sumPair by n
return sumPair

We have replaced the two sumX and sumY variables with a single sumPair variable,
initialized to the pair (0, 0). Inside the for loop, each value of point, which is now
a Pair object, is added to sumPair using the add method. After the loop, we use
the scale method to multiply the point by 1 / n which, of course, is the same as
dividing by n.

To use this function on the homes list from earlier, we would need to assign homes

to be a list of Pair objects instead of tuples.

homes = [Pair(0.5, 5), Pair(3.5, 2), Pair(4, 3.5), Pair(5, 2), Pair(7, 1)]
central = centroid(homes) # central is a Pair object
print(central.get())

Copyright Taylor and Francis, 2021

12.2 OPERATORS AND POLYMORPHISM � 491

Printing the value of the centroid is slightly more cumbersome because we have to
convert it to a tuple first with the get method, but we will fix that shortly.

Reflection 12.17 Add the code above to your main function. What is the value of the
centroid?

Special methods
The centroid method would be even more elegant if we could simply add Pair

objects with the + operator. We have already seen how the + operator can be used with
a variety of different classes, including numbers, strings and lists, so why not Pair
objects too? The ability to define operators differently for different classes is called
operator overloading . Operator overloading is an example of polymorphism , a
feature of object-oriented programming languages in which methods and operators
respond differently to objects of different classes. For example, consider the following
list of different objects:

>>> things = [42, 'eggs ', [1, 2, 3], 3.14]

If we multiply every item in this list by 2, the multiplication operator will act
differently for each item, appropriate to its class:

>>> for item in things:
print(item * 2)

84
eggs eggs
[1, 2, 3, 1, 2, 3]
6.28

When the + operator is used, a special method named __add__ is implicitly called
(like how __init__ is implicitly called by the constructor). In other words, an
assignment statement like

name = first + last

is identical to

name = first.__add__(last)

The ability to define this special method for each class is what allows us to use the +

operator in different ways on different objects. We can implement the + operator on
Pair objects by simply changing the name of our add method to __add__:

def __add__(self, pair2):
""" (docstring omitted) """

sumA = self._a + pair2._a
sumB = self._b + pair2._b
return Pair(sumA, sumB)

With this special method defined, we can carry out our previous example as follows:

duo1 = Pair(3, 8)
duo2 = Pair(4, 5)
sumPair = duo1 + duo2 # sumPair is assigned Pair(7, 13)
print(sumPair.get()) # prints "(7, 13)"

Copyright Taylor and Francis, 2021

492 � 12 Object-oriented Design

Reflection 12.18 Incorporate the __add__ method into your Pair class and experiment
with adding Pair objects.

Reflection 12.19 The behavior of the - operator is similarly defined by the __sub__

method. Modify your subtract method so that it is called when the - operator is used
with Pair objects.

Similarly, we can define the * and / operators to implement multiplication and
division with Pair objects. The methods corresponding to these operators are
named __mul__ and __truediv__, respectively. (Recall that / is called true division
in Python while // is called floor division. The // operator is defined by the
__floordiv__ method.) Defining multiplication of a Pair object by a scalar quantity
is similar to the scale method, but we return a new Pair instead.

def __mul__(self, scalar):
"""Return a new Pair representing self multiplied by scalar."""

return Pair(self._a * scalar, self._b * scalar)

Reflection 12.20 How is the __mul__ method different from scale? What does each
return?

With this new method, we can easily scale pairs of numbers in one statement:

bets = Pair(150, 100)
double = bets * 2 # double is assigned Pair(300, 200)

This assignment statement is equivalent to

double = bets.__mul__(2)

(but we would never call it that way).

Reflection 12.21 Why would typing double = 2 * bets instead give an error?

Reflection 12.22 Using the __mul__ operator as a template, write the __truediv__

method to divide a Pair object by a scalar value.

Applying the new addition and (true) division operators to our centroid function
makes the code much more elegant!

def centroid(points):
"""Compute the centroid of a list of Pair objects."""

n = len(points)
if n == 0:

return None

sumPair = Pair()
for point in points:

sumPair = sumPair + point
return sumPair / n

You may have already noticed that printing a Pair object is not very helpful:

Copyright Taylor and Francis, 2021

12.2 OPERATORS AND POLYMORPHISM � 493

>>> myPair = Pair(5, 7)
>>> print(myPair)
<__main__.Pair object at 0x1063551d0>

This is a default string representation of an object; it tells us that myPair is a Pair

object in the __main__ namespace, located in memory at address 1063551d0 (in
hexadecimal notation). To override the default printing behavior for a Pair, we need
to define another special method named __str__. The __str__ method is called
implicitly whenever we call the str function on an object. In other words, calling

str(myPair)

is identical to calling

myPair.__str__()

Since the print function implicitly calls str on an object, defining the __str__

method also dictates how print behaves. The following __str__ method for the
Pair class returns a string representing the pair in parentheses (like a tuple).

def __str__(self):
"""Return an '(a, b)' string representation of self."""

return '(' + str(self._a) + ', ' + str(self._b) + ')'

With this method added to the class, if we want to include a string representation
of a Pair object in a larger string, we can do something like this:

print('The current values are ' + str(myPair) + '.')

Also, just calling print(myPair) will now print (5, 7).

Reflection 12.23 Add the __str__ method to your Pair class. Then print some of the
Pair objects in your main function.

Comparison operators
We can also overload the comparison operators ==, <, <=, etc. using the following
special methods.

Operator == != < <= > >=

Method __eq__ __ne__ __lt__ __le__ __gt__ __ge__

We will start by defining how the == operator behaves by defining the special method
__eq__. It is natural to say that two pairs are equal if their corresponding values
are equal, as the following method implements.

def __eq__(self, pair2):
"""Return whether self and pair2 have the same values."""

return (self._a == pair2._a) and (self._b == pair2._b)

Copyright Taylor and Francis, 2021

494 � 12 Object-oriented Design

Let’s also override the < operator. If duo1 and duo2 are two Pair objects, then duo1

< duo2 should return True if duo1._a < duo2._a, or if duo1._a == duo2._a and
duo1._b < duo2._b. Otherwise, it should return False.

def __lt__(self, pair2):
"""Return whether self < pair2."""

return (self._a < pair2._a) or \
((self._a == pair2._a) and (self._b < pair2._b))

Suppose we store the number of wins and ties in a Pair object for each of three
teams. If a team is ranked higher when it has more wins, and the number of ties is
used to rank teams with the same number of wins, then the comparison operators
we defined can be used to decide rankings.

wins1 = Pair(6, 2) # 6 wins, 2 ties
wins2 = Pair(6, 4) # 6 wins, 4 ties
wins3 = Pair(6, 2) # 6 wins, 2 ties

print(wins1 < wins2) # prints "True"
print(wins2 < wins3) # prints "False"
print(wins1 == wins3) # prints "True"

With the __eq__ and __lt__ methods defined, Python will automatically deduce
the outcomes of the other four comparison operators. However, we will still leave
their implementations to you as practice exercises.

Reflection 12.24 Add these two new methods to your Pair class. Experiment with some
comparisons, including those we did not implement, in your main function.

Indexing
When an element in a string, list, tuple, or dictionary is accessed with indexing, a
special method named __getitem__ is implicitly called. For example, if maxPrices
and minPrices are lists, then

priceRange = maxPrices[0] - minPrices[0]

is equivalent to

priceRange = maxPrices.__getitem__(0) - minPrices.__getitem__(0)

Similarly, when we use indexing to change the value of an element in a sequence, a
method named __setitem__ is implicitly called. For example,

temperatures[1] = 18.9

is equivalent to

temperatures.__setitem__(1, 18.9)

In the Pair class, we can use indexing with __getitem__ as an alternative to the
getFirst and getSecond methods to access the individual values in a Pair object.

Copyright Taylor and Francis, 2021

12.2 OPERATORS AND POLYMORPHISM � 495

def __getitem__(self, index):
"""Return the first (index 0) or second (index 1) value in self.

For other index values, return None."""

if index == 0:
return self._a

if index == 1:
return self._b

return None

The __getitem__ method returns the value of self._a or self._b if index is 0 or
1, respectively. If index is anything else, it returns None.

Reflection 12.25 Is this behavior consistent with what happens when you use an erroneous
index with a list?

When we use an erroneous index with an object from one of the built-in classes, we
get a IndexError. We will look at how to implement this alternative behavior in
Sections 12.4 and 12.5.

As an example, suppose we have a Pair object defined as follows:

counts = Pair(12, 15)

With the new __getitem__ method, we can retrieve the individual values in counts

with

first = counts[0]
second = counts[1]

as these statements are equivalent to

first = counts.__getitem__(0)
second = counts.__getitem__(1)

Next, we can implement the __setitem__ method as follows.

def __setitem__(self, index, value):
"""Set the first (index 0) or second (index 1) item to value."""

if index == 0:
self._a = value

elif index == 1:
self._b = value

The __setitem__ method assigns self._a or self._b to the given value if index
is 0 or 1, respectively.

Reflection 12.26 What does the __setitem__ method do if index is not 0 or 1?

With the new __setitem__ method, we can assign a new value to counts with

counts[0] = 14
counts[1] = 16
print(counts) # prints "(14, 16)"

With these indexing methods defined, we can now also use indexing within other
methods, as convenient. For example, we can use indexing in the __add__ method
to get the individual values and in the set method to assign new values.

Copyright Taylor and Francis, 2021

496 � 12 Object-oriented Design

def __add__(self, pair2):
""" (docstring omitted) """

sumA = self[0] + pair2[0]
sumB = self[1] + pair2[1]
return Pair(sumA, sumB)

def set(self, a, b):
""" (docstring omitted) """

self[0] = a
self[1] = b

Reflection 12.27 Add the two indexing methods to your Pair class. Then modify the
__lt__ method so that it uses indexing to access values of self._a and self._b instead.

You can find a summary of these and other special methods in Appendix A.9.

Exercises
12.2.1* Add a method to the Pair class named round that rounds the two values to

the nearest integers.

12.2.2* Suppose you are tallying the votes in an election between two candidates. Write
a program that repeatedly prompts for additional votes for both candidates,
stores these votes in a Pair object, and then adds this Pair object to a running
sum of votes, also stored in Pair object. For example, your program output
may look like this:

Enter votes (q to quit): 1 2
Enter votes (q to quit): 2 4
Enter votes (q to quit): q

Candidate 1: 3 votes
Candidate 2: 6 votes

12.2.3* Suppose you are writing code for a runner’s watch that keeps track of a list of
split times and total elapsed times. While the timer is running, and the split
button is pressed, the time elapsed since the last split is recorded in a Pair

object along with the total elapsed time so far. For example, if the split button
were pressed at 65, 67, and 62 second intervals, the list of (split, elapsed) pairs
would be [(65, 65), (67, 132), (62, 194)] (where a tuple represents a
Pair object). Write a function that is meant to be called when the split button
is pressed to update this list of Pair objects. Your function should take two
parameters: the current list of Pair objects and the current split time.

12.2.4. A data logging program for a jetliner periodically records the time along with
the current altitude in a Pair object. Write a function that takes such a list of
Pair objects as a parameter and plots the data using matplotlib.

12.2.5. Write a function that returns the distance between two two-dimensional points,
each represented as a Pair object.

12.2.6. Write a function that returns the average distance between a list of points, each
represented by a Pair object, and a given site, also represented as a Pair object.

Copyright Taylor and Francis, 2021

12.2 OPERATORS AND POLYMORPHISM � 497

12.2.7. The file africa.txt, available on the book website, contains (longitude, latitude)
locations for cities on the African continent. The following program reads this
file into a list of Pair objects, find the closest and farthest pairs of points
in the list, and then plot all of the points using turtle graphics, coloring the
closest pair blue and farthest pair red. Finish this program by adding a method
named draw(self, tortoise, color) to the Pair class that plots a Pair

object as an (x,y) point, and writing the functions named closestPairs and
farthestPairs.

import turtle

class Pair:
FILL IN THE CLASS HERE FROM THE TEXT

def draw(self, tortoise, color):
pass

def closestPairs(points):
pass

def farthestPairs(points):
pass

def main():
points = []
inputFile = open('africa.txt', 'r', encoding = 'utf-8')
for line in inputFile:

values = line.split()
longitude = float(values[0])
latitude = float(values[1])
p = Pair(longitude, latitude)
points.append(p)

cpoint1, cpoint2 = closestPairs(points)
fpoint1, fpoint2 = farthestPairs(points)

george = turtle.Turtle()
screen = george.getscreen()
screen.setworldcoordinates(-37, -23, 37, 58)
george.hideturtle()
george.speed(0)
screen.tracer(10)
for point in points:

point.draw(george, 'black')
cpoint1.draw(george, 'blue')
cpoint2.draw(george, 'blue')
fpoint1.draw(george, 'red')
fpoint2.draw(george, 'red')
screen.update()
screen.exitonclick()

main()

Copyright Taylor and Francis, 2021

498 � 12 Object-oriented Design

12.2.8. Rewrite the Pair class so that it stores its two values in a two-element list
instead. The way in which the class’ methods are called should remain exactly
the same. In other words, the way someone uses the class (the ADT specification)
must remain the same even though the implementation changes.

12.2.9* Implement alternative __mul__ and __truediv__ methods for the Pair class
that multiply two Pair objects. The product of two Pair objects pair1 and
pair2 is a Pair object in which the first value is the product of the first values
of pair1 and pair2, and the second value is the product of the second values
of pair1 and pair2. Division is defined similarly.

12.2.10. Implement the remaining four comparison operators (!=, <=, >, >=) for the Pair

class.

12.2.11. Rewrite your linearRegression function from Exercise 7.6.1 so that it takes a
list of Pair objects as a parameter.

12.2.12. Add a __str__ method to the president class that you wrote in Exercise 12.1.10.
The method should return a string containing the president’s name and political
party, for example, 'Kennedy (D)'. Also, write a function that, given a list
of president objects and a state abbreviation, prints the presidents in this list
(indirectly using the new __str__ method) that are from that state.

12.2.13. Add a __lt__ method to the president class that you wrote in Exercise 12.1.10.
The method should base its results on a comparison of the presidents’ ages.

12.2.14. Add a __str__ method to the Senator class from Exercise 12.1.12 that
prints the name of the senator followed by their party, for example,
'Brown, Sherrod (D)'. Also modify your program from part (b) so that it
uses the new __str__ method.

12.2.15. Rewrite the distance function from Exercise 12.2.5 so that it uses indexing to
get the first and second values from each pair.

12.2.16. Write a class that represents a rational number (i.e., a number that can be
represented as a fraction). The constructor for your class should take a numerator
and denominator as parameters. In addition, implement the following methods
for your class:

• arithmetic: __add__, __sub__, __mul__, __truediv__

• comparison: __lt__, __eq__, __le__

• __str__

When you are done, you should be able to perform calculations like the following:

a = Rational(3, 2) # 3/2
b = Rational(1, 3) # 1/3
total = a + b
print(total) # should print 11/6
print(a < b) # should print False

*12.3 A FLOCKING SIMULATION
This section is available on the book website.

Copyright Taylor and Francis, 2021

12.6 SUMMARY AND FURTHER DISCOVERY � 499

*12.4 A STACK ADT
This section is available on the book website.

*12.5 A DICTIONARY ADT
This section is available on the book website.

12.6 SUMMARY AND FURTHER DISCOVERY
When we design an algorithm using an object-oriented approach, we begin by
identifying the main objects in our problem, and then define abstract data types for
them. When we design a new ADT, we need to identify the data that the ADT will
contain and the operations that will be allowed on that data. These operations are
generally organized into three categories: constructors, accessors, and mutators.

In an object-oriented programming language like Python, abstract data types are
implemented as classes. A Python class contains a set of functions called methods
and a set of instance variables whose names are preceded by self within the class.
The name self always refers to the object on which a method is called. Bundling
instance variables and methods together in a class, and restricting public access to
the instance variables, is known as encapsulation, a key feature of object-oriented
programming.

A class can also define the meaning of several special methods that dictate how
operators and built-in functions behave on the class. These special methods partially
implement another feature of object-oriented languages called polymorphism, which
refers to the ability of a programming language to do different things when the same
method is called on objects from different classes.

The manner in which a class implements the specification given by the abstract data
type is called a data structure. There may be many different data structures that
one can use to implement a particular abstract data type. For example, the Pair
ADT from the beginning of this chapter may be implemented with two individual
variables, a list of length two, a two-element tuple, or a dictionary with two entries.

To illustrate how classes are used in larger programs, we designed an agent-based
simulation that simulates a viral epidemic in the first section and then a more
complex simulation of flocking birds or schooling fish later on. These simulations
consist of two main classes that interact with each other: an agent class and a
class for the world that the agents inhabit. Agent-based simulations can be used
in a variety of disciplines including sociology, biology, economics, and the physical
sciences.

Finally, we designed two collection classes, a Stack and a Dictionary, to demonstrate
how more complex classes can be implemented in Python.

Copyright Taylor and Francis, 2021

500 � 12 Object-oriented Design

Notes for further discovery
This chapter’s epigraph is from one of the first papers written by Barbara Liskov,
in 1974 [35]. In 1968, Dr. Liskov was one of the first women to earn a Ph.D. in
computer science in the United States. She has taught computer science at MIT
since 1972, and was honored with the Turing Award in 2008.

The boids model was created by Craig Reynolds [54]. For more information on
agent-based simulations, we suggest looking at The Computational Beauty of Nature
by Gary Flake [17], Think Complexity by Allen Downey [13], Agent-based Models
by Nigel Gilbert [19], and Introduction to Computational Science by Angela Shiflet
and George Shiflet [61].

*12.7 PROJECTS
This section is available on the book website.

Copyright Taylor and Francis, 2021

