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Organizing Data

Search is an unsolved problem. We have a good 90 to 95% of the solution, but there is a lot
to go in the remaining 10%.

Marissa Mayer, President and CEO of Yahoo!
Los Angeles Times interview (2008)

In this age of “big data,” we take search algorithms for granted. Without web
search algorithms that sift through billions of pages in a fraction of a second, the

web would be practically useless. Similarly, large data repositories, such as those
maintained by the U.S. Geological Survey (USGS) and the National Institutes of
Health (NIH), would be useless without the ability to search for specific information.
Even the operating systems on our personal computers now supply integrated search
capabilities to help us navigate our increasingly large collections of files.

To enable fast access to these data, they must be organized in an efficient data
structure . Hidden data structures in the implementations of the list and dictionary
abstract data types enable their methods to access and modify their contents quickly.
(The data structure behind a dictionary was briefly explained in Tangent 7.2.) In
this chapter, we will explore one of the simplest ways to organize data—maintaining
it in a sorted list—and the benefits this can provide. We will begin by developing a
significantly faster search algorithm that can take advantage of knowing that the
data is sorted. Then we will design three algorithms to sort data in a list, effectively
creating a sorted list data structure. If you continue to study computer science, you
can look forward to seeing many more sophisticated data structures in the future
that enable a wide variety of efficient algorithms.
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10.1 BINARY SEARCH
The spelling checkers that are built into most word processing programs work by
searching through a list of English words, seeking a match. If the word is found, it
is considered to be spelled correctly. Otherwise, it is assumed to be a misspelling.
These word lists usually contain about a quarter million entries. If the words in
the list are in no particular order, then we have no choice but to search through it
one item at a time from the beginning, until either we happen to find the word we
seek or we reach the end. We previously encountered this algorithm, called a linear
search (or sequential search) because it searches in a linear fashion from beginning
to end, and has linear time complexity.

Now let’s consider the improvements we can make if the word list has been sorted in
alphabetical order, as they always are. If we use a linear search on a sorted list, we
know that we can abandon the search if we reach a word that is alphabetically after
the word we seek. But we can do even better. Think about how we would search a
physical, bound dictionary for the word “espresso.” Since “E” is in the first half of
the alphabet, we might begin by opening the book to a point about 1/4 of the way
through. Suppose that, upon doing so, we find ourselves on a page containing words
beginning with the letter “G.” We would then flip backwards several pages, perhaps
finding ourselves on a page on which the last word is ”eagle.” Next, we would flip a
few pages forward, and so on, continuing to hone in on “espresso” until we find it.

Reflection 10.1 How can we apply this idea to searching a sorted list?

We can search a sorted list in a similar way, except that we usually do not know
much about the distribution of the list’s contents, so it is hard to make that first
guess about where to start. In this case, the best strategy is to start in the middle.
After comparing the target item to the middle item, we continue searching in the
half of the list that must contain the target alphabetically. Because we are effectively
dividing the list into two halves in each step, this algorithm is called binary search.

For example, suppose we wanted to search for the number 70 in the following sorted
list of numbers. (We will use numbers instead of words in our example to save space.)

data[index]:

index: 0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

left rightmid

As we hone in on our target, we will update two variables named left and right

to keep track of the first and last indices of the sublist that we are still considering.
In addition, we will maintain a variable named mid that is assigned to the index of
the middle value of this sublist. (When there are two middle values, we choose the
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Tangent 10.1: Databases

A database is a structured file (or set of files) that contains a large amount of searchable
data. The most common type of database, called a relational database, stores its
data in tables. Each row in a table has a unique key that can be used to search for that
row. For example, the tables below represent a small portion of the earthquake data
that we worked with in Section 7.4. The key in each table is underlined.

Earthquakes Networks

QuakeID Latitude Longitude Mag NetID NetID NetName

nc72076126 40.1333 -123.863 1.8 NC AK Alaska Regional

ak10812068 59.8905 -151.2392 2.5 AK CI Southern California

nc72076101 37.3242 -122.1015 1.8 NC NC Northern California

ci11369570 34.3278 -116.4663 1.2 CI US US National

ci11369562 35.0418 -118.3227 1.4 CI UW Pacific Northwest

ci11369546 32.0487 -115.0075 3.2 CI

The table on the left contains information about individual earthquakes, each of which
is identified with a QuakeID. The last column in the left table contains a two-letter
NetID that identifies the preferred source of information about that earthquake. The
table on the right contains the names associated with each NetID.

Relational databases are queried using a programming language called SQL. A simple
SQL query looks like this:

select Mag from Earthquakes where QuakeID = 'nc72076101'

This query is asking for the magnitude (Mag), from the Earthquakes table, of the
earthquake with QuakeID nc72076101. The response to this query would be the value
1.8. Searching a table quickly for a particular key is facilitated by an index. An index
is data structure that maps keys to rows in a table (similar to a Python dictionary).
The keys in the index can be maintained in sorted order so that any key, and hence
any row, can be found quickly using a binary search. (But database indices are more
commonly maintained in a hash table or a specialized data structure called a B-tree.)

leftmost one.) In each step, we will compare the target item to the item at index mid.
If the target is equal to this middle item, we return mid. Otherwise, we either set
right to be mid - 1 (to hone in on the left sublist) or we set left to be mid + 1

(to hone in on the right sublist).

In the list above, we start by comparing the item at index mid (60) to our target
item (70). Then, because 70 > 60, we decide to narrow our search to the second half
of the list. To do this, we assign left to mid + 1, which is the index of the item
immediately after the middle item. In this case, we assign left to 5 + 1 = 6, as
shown below.
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0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

left rightmid

Then we update mid to be the index of the middle item in this sublist between left

and right, in this case, 8. Next, since 70 is less than the new middle value, 90, we
discard the second half of the sublist by assigning right to mid - 1, in this case,
8 - 1 = 7, as shown below.

0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

left right
mid

Then we update mid to be 6, the index of the “middle” item in this short sublist.
Finally, since the item at index mid is the one we seek, we return the value of mid.

Reflection 10.2 What would have happened if we were looking for a non-existent number
like 72 instead?

If we were looking for 72 instead of 70, all of the steps up to this point would have
been the same, except that when we looked at the middle item in the last step, it
would not have been equal to our target. Therefore, picking up from where we left
off, we would notice that 72 is greater than our middle item 70, so we update left

to be the index after mid, as shown below.

left right
mid

0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

Now, since left and right are both equal to 7, mid must be assigned to 7 as well.
Then, since 72 is less than the middle item, 80, we continue to blindly follow the
algorithm by assigning right to be one less than mid.
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leftright

0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

At this point, since right is to the left of left (i.e., left > right), the sublist
framed by left and right is empty! Therefore, 72 must not be in the list, and we
return −1.

This description of the binary search algorithm can be translated into a Python
function in a very straightforward way:

def binarySearch(keys, target):
"""Find the index of target in a sorted list of keys.

Parameters:
keys: a sorted list of keys
target: a key for which to search

Return value: an index of target in keys or -1 if not found
"""

left = 0
right = len(keys) - 1
while left <= right:

mid = (left + right) // 2
if target < keys[mid]:

right = mid - 1
elif target > keys[mid]:

left = mid + 1
else:

return mid
return -1

Notice that we have named our list parameter keys (instead of the usual data)
because, in real databases (see Tangent 10.1), we typically try to match a unique key
associated with the item we are seeking. For example, if we search for “Cumberbatch”
in a phone directory, we are looking for a directory entry in which the last name
(the key) matches “Cumberbatch;” we are not expecting the entire directory entry
to match “Cumberbatch.” When the search term is found, we return the entire
directory entry that corresponds to this key. In our function, we return the index
at which the key was found which, if we had data associated with the key, might
provide us with enough information to find it in an associated data structure. We
will look at an example of this in Section 10.2.
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Worst case
List length comparisons

n c

1 1
2 2
4 3
8 4
16 5
⋮ ⋮

210 = 1,024 11
⋮ ⋮

220 ≈ 1 million 21
⋮ ⋮

230 ≈ 1 billion 31

Table 10.1 The worst case number of comparisons in a binary search.

Reflection 10.3 Write a main function that calls binarySearch with the list that we
used in our example. Search for 70 and 72.

Reflection 10.4 Insert a statement in the binarySearch function, after mid is assigned
its value, that prints the values of left, right, and mid. Then search for more target
values. Do you see why mid is assigned to the printed values?

Efficiency of iterative binary search
How much better is binary search than linear search? When we analyzed the linear
search in Section 6.7, we counted the worst case number of comparisons between the
target and a list item, so let’s perform the same analysis for binary search. Since the
binary search contains a while loop, we will need to think more carefully this time
about when the worst case happens.

Reflection 10.5 Under what circumstances will the binary search algorithm perform the
most comparisons between the target and a list item?

In the worst case, the while loop will never execute return mid, instead iterating
until left > right, rendering the while loop condition False. This happens when
target is not found in the list.

Suppose we have a very short list with length n = 4. In the worst case, we first look
at the item in the middle of this list, and then are faced with searching a sublist
with length 2. Next, we look at the middle item of this sublist and, upon not finding
the item, search a sublist of length 1. After one final comparison to this single item,
the algorithm will return -1. So we needed a total of 3 comparisons for a list of
length 4.

Reflection 10.6 Now what happens if we double the size of the list to n = 8?

After we compare the middle item in a list with length n = 8 to our target, we
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Figure 10.1 Execution times of linear search and binary search on small sorted lists.

are left with a sublist with length 4. We already know that a list with length 4
requires 3 comparisons in the worst case, so a list with length 8 must require 3+1 = 4
comparisons in the worst case. Similarly, a list with length 16 must require only one
more comparison than a list with length 8, for a total of 5. And so on. This pattern
is summarized in Table 10.1. Notice that a list with over a billion items requires at
most 31 comparisons!

Reflection 10.7 In general, for list of length n, how many comparisons are necessary in
the worst case?

In each row of the table, the length of the list (n) is 2 raised to the power of 1 less
than the number of comparisons (c), or

n = 2c−1.

Therefore, for a list of size n, the binary search requires

c = log2 n + 1

comparisons in the worst case. So binary search is a logarithmic-time algorithm
or, equivalently, an algorithm with O(logn) time complexity. Since the time com-
plexity of linear search is O(n), this means that linear search is exponentially slower
than binary search.

This is a degree of speed-up that is only possible through algorithmic refinement;
a faster computer simply cannot have this kind of impact. Figure 10.1 shows a
comparison of actual running times of both search algorithms on some small lists.
The time required by binary search is barely discernible as the red line parallel to
the x-axis. But the real power of binary search becomes evident on very long lists.
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As suggested by Table 10.1, a binary search takes almost no time at all, even on
huge lists, whereas a linear search, which must potentially examine every item, can
take a very long time.

A spelling checker
Now let’s apply our binary search to the spelling checker problem. We will write a
program that reads an alphabetized word list, and then allows someone to repeatedly
enter a word to see if it is spelled correctly.

A list of English words can be found on computers running Mac OS X or Linux in
the file /usr/share/dict/words, or one can be downloaded from the book website.
This list is already sorted if you consider an uppercase letter to be equivalent to its
lowercase counterpart. (For example, “academy” usually directly precedes “Acadia”
in this file.) However, as we saw in Chapter 6, Python considers uppercase letters
to come before lowercase letters, so we actually still need to sort the list to have it
match Python’s definition of “sorted.” For now, we can use the sort method; in the
coming sections, we will develop our own sorting algorithms.

The following function implements our spelling checker, using the binarySearch

function (highlighted).

def spellcheck():
"""Repeatedly ask for a word to spell-check and print the result.

Parameters: none

Return value: None
"""

dictFile = open('/usr/share/dict/words', 'r', encoding = 'utf-8')
dictionaryWords = [ ]
for word in dictFile:

dictionaryWords.append(word[:-1]) # remove newline before append
dictFile.close()
dictionaryWords.sort()

word = input('Enter a word to spell-check (q to quit): ')
while word != 'q':

index = binarySearch(dictionaryWords, word) # search for word
if index != -1: # word was found

print(word, 'is spelled correctly.')
else: # word was not found

print(word, 'is not spelled correctly.')
print()

word = input('Enter a word to spell-check (q to quit): ')

The function begins by opening the word list file and reading each word (one word
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per line) into a list. After all of the words have been read, we sort the list. Then a
while loop repeatedly prompts for a word until the letter q is entered. Notice that
we ask for a word before the while loop to initialize the value of word, and then
again at the bottom of the loop to set up for the next iteration. In each iteration,
we call the binary search function to check if the word is contained in the list. If the
word is found (index != -1), we assume it is spelled correctly.

Reflection 10.8 Combine the spellcheck function with the binarySearch function in
a program. Run the program to try it out.

Recursive binary search
You may have noticed that the binary search algorithm displays a high degree of
self-similarity. In each step, the problem is reduced to solving a subproblem involving
half of the original list. In particular, the problem of searching for a key between
indices left and right is reduced to the subproblem of searching between left and
mid - 1, or the subproblem of searching between mid + 1 and right. Therefore,
binary search is a natural candidate for a recursive algorithm. In the following
function, we add left and right as parameters because they define the subproblem
that is being solved.

def binarySearch(keys, target, left, right):
"""Recursively find the index of target in a sorted list of keys.

Parameters:
keys: a sorted list of keys
target: a value for which to search

Return value: an index of target in keys or -1 if not found
"""

if left > right: # base case 1: not found
return -1

mid = (left + right) // 2
if target == keys[mid]: # base case 2: found

return mid

if target < keys[mid]: # recursive cases
return binarySearch(keys, target, left, mid - 1) # left half

else:
return binarySearch(keys, target, mid + 1, right) # right half

Like the recursive linear search from Section 9.4, this function needs two base cases.
In the first base case, when the list is empty (left > right), we return -1. In the
second base case, if target == keys[mid], we return mid. If neither of these cases
holds, we solve one of the two subproblems recursively. If the target is less than the
middle item, we recursively call the binary search with right set to mid - 1. Or, if
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the target is greater than the middle item, we recursively call the binary search
with left set to mid + 1.

Reflection 10.9 Repeat Reflections 10.3 and 10.4 with the recursive binary search function.
Does the recursive version “look at” the same values of mid?

*Efficiency of recursive binary search
Like the iterative binary search, this algorithm has logarithmic, or O(logn), time
complexity. But, as with the recursive linear search, we have to derive this result
differently using a recurrence relation. Let T (n) denote the worst case number of
comparisons between the target and a list item in a binary search when the length of
the list is n. In the recursive binarySearch function, there are two such comparisons
before reaching a recursive function call. As we did in Section 9.4, we will simply
represent the number of comparisons before each recursive call with the constant c.
When n = 0, we reach a base case with no recursive calls, so T (0) = c.

Reflection 10.10 How many more comparisons are there in a recursive call to
binarySearch?

Since each recursive call divides the size of the list under consideration by (about)
half, the size of the list we are passing into each recursive call is (about) n/2.
Therefore, the number of comparisons in each recursive call must be T (n/2). The
total number of comparisons is then

T (n) = T (n/2) + c.

Now we can use the same substitution method that we used with recursive linear
search to arrive at a closed form expression in terms of n. First, since T (n) =
T (n/2) + c, we can substitute T (n) with T (n/2) + c:

T(n/2) c+

T(n)

Now we need to replace T (n/2) with something. Notice that T (n/2) is just T (n)
with n/2 substituted for n. Therefore, using the definition of T (n) above,

T (n/2) = T (n/2/2) + c = T (n/4) + c.

Similarly,
T (n/4) = T (n/4/2) + c = T (n/8) + c

and
T (n/8) = T (n/8/2) + c = T (n/16) + c.

This sequence of substitutions is illustrated in Figure 10.2. Notice that the denomi-
nator under the n at each step is a power of 2 whose exponent is the multiplier in
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T(n/2) c+

T(n/4) c+

T(n/8) c+

T(n)

T(1)

⋰

c+

c

c

2c

3c

(log2 n)c

(log2 n + 1)c

⋮

T(n/2i) c+ ic

⋰ ⋮

T(0) c+

(log2 n + 2)c

Figure 10.2 An illustration of how to derive a closed form for the recurrence relation

T (n) = T (n/2) + c.

front of the accumulated c’s at that step. In other words, for each denominator 2i,
the accumulated value on the right is i ⋅ c. When we finally reach T (1) = T (n/n),
the denominator has become n = 2log2 n, so i = log2 n and the total on the right must
be (log2 n)c. Finally, we know that T (0) = c, so the total number of comparisons is

T (n) = (log2 n + 2) c.

Therefore, as expected, the recursive binary search is a O(logn) algorithm.

Exercises
10.1.1* Modify both of the binary search functions so that, when the target is not found,

the functions also print the values in keys that would have been on either side
of the target if it were in the list.
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10.1.2* When the value of target is less than keys[mid] in the binary search algorithms,
they next search the sublist between indices left and mid - 1. Would the
algorithms still work if they searched between left and mid instead? Why or
why not?

10.1.3. Similar to the previous exercise, suppose the binary search algorithms next
searched the sublist between mid and right (instead of between mid + 1 and
right) when the target is greater than keys[mid]. Would the algorithms still
work? Why or why not?

10.1.4. Write a function that takes the name of a text file as a parameter and returns
the number of misspelled words in the file. Use the wordTokens function from
Section 6.1 to get the list of words in the text file.

10.1.5. Write a function that takes three parameters—minLength, maxLength, and
step—and produces a plot like Figure 10.1 comparing the worst case run-
ning times of binary search and linear search on lists with length minLength,
minLength + step, minLength + 2 * step, . . . , maxLength. Use a slice of the
list derived from list(range(maxLength)) as the sorted list for each length.
To produce the worst case behavior of each algorithm, search for an item that
is not in the list (e.g., −1).

10.1.6. The function below plays a guessing game against the pseudorandom number
generator. What is the worst case number of guesses necessary for the function
to win the game for any value of n, where n is a power of 2? Explain your
answer.

import random
def guessingGame(n):

secret = random.randrange(1, n + 1)
left = 1
right = n
guessCount = 1
guess = (left + right) // 2
while guess != secret:

if guess > secret:
right = guess - 1

else:
left = guess + 1

guessCount = guessCount + 1
guess = (left + right) // 2

return guessCount

10.2 SELECTION SORT
Sorting is a well-studied problem, and a wide variety of sorting algorithms have
been designed, including the one used by the familiar sort method of the list class.
In this section and the two that follow, we will develop and compare three other
common algorithms, named selection sort, insertion sort, and merge sort.
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Reflection 10.11 Before you read further, think about how you would sort a list of items
(names, numbers, books, socks, etc.) in some desired order. Write down your algorithm in
pseudocode.

The selection sort algorithm is so called because, in each step, it selects the next
smallest value in the list and places it in its proper sorted position by swapping
it with whatever is currently there. For example, consider the list of numbers
[50, 30, 40, 20, 10, 70, 60]. To sort this list in ascending order, the selection
sort algorithm first finds the smallest number, 10. We want to place 10 in the first
position in the list, so we swap it with the number that is currently in that position,
50, resulting in the modified list

[10, 30, 40, 20, 50, 70, 60]

Next, we find the second smallest number, 20, and swap it with the number in the
second position, 30:

[10, 20, 40, 30, 50, 70, 60]

Then we find the third smallest number, 30, and swap it with the number in the
third position, 40:

[10, 20, 30, 40, 50, 70, 60]

Next, we find the fourth smallest number, 40. But since 40 is already in the fourth
position, no swap is necessary. This process continues until we reach the end of the
list.

Reflection 10.12 Work through the remaining steps in the selection sort algorithm. What
numbers are swapped in each step?

Implementing selection sort
Let’s look at how we can implement this algorithm, using a more detailed represen-
tation of this list which, as before, we will name keys:

index: 

keys[index]:

1 2 3 4 5 6

30 7040 6050 20 10

0

To begin, we want to search for the smallest value in the list, and swap it with the
value at index 0. We have actually already implemented both parts of this step. In
Exercise 7.2.5, you may have written a function

swap(data, i, j)

that swaps the two values with indices i and j in the list data. To use this function
to swap items, we will need the index of the smallest value. We already did this back
on page 289 in the minDay function:

minIndex = 0
for index in range(1, len(keys)):

if keys[index] < keys[minIndex]:
minIndex = index

Copyright Taylor and Francis, 2021



420 � 10 Organizing Data

Once we have the index of the minimum value in minIndex, we can swap it with
the item at index 0 with:

if minIndex != 0:
swap(keys, 0, minIndex)

Reflection 10.13 Why do we check if minIndex != 0 before calling the swap function?

In our example, these steps will find the smallest value, 10, at index 4, and then call
swap(keys, 0, 4). We first check if minIndex != 0 so we do not needlessly swap
the value in position 0 with itself. This swap results in the following modified list:

30 7040 6010 20 50

1 2 3 4 5 6index: 

keys[index]:

0

In the next step, we need to do the same thing, but for the second smallest value.

Reflection 10.14 How we do we find the second smallest value in the list?

Notice that, now that the smallest value is “out of the way” at the front of the
list, the second smallest value in keys must be the smallest value in keys[1:].
Therefore, we can use exactly the same process as above, but on keys[1:] instead.
This requires only four small changes in the code, marked in red below.

minIndex = 1
for index in range(2, n):

if keys[index] < keys[minIndex]:
minIndex = index

if minIndex != 1:
swap(keys, 1, minIndex)

Instead of initializing minIndex to 0 and starting the for loop at 1, we initialize
minIndex to 1 and start the for loop at 2. Then we swap the smallest value into
position 1 instead of 0. In our example list, this will find the smallest value in
keys[1:], 20, at index 3. Then it will call swap(keys, 1, 3), resulting in:

1 2 3 4 5 6

20 7040 6010 30 50

0index: 

keys[index]:

Similarly, the next step is to find the index of the smallest value starting at index 2,
and then swap it with the value in index 2:

minIndex = 2
for index in range(3, n):

if keys[index] < keys[minIndex]:
minIndex = index

if minIndex != 2:
swap(keys, 2, minIndex)
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In our example list, this will find the smallest value in keys[2:], 30, at index 3.
Then it will call swap(keys, 2, 3), resulting in:

1 2 3 4 5 6

20 7030 6010 40 50

index: 

keys[index]:

0

We continue by repeating this sequence of steps, with increasing values of the numbers
in red, until we reach the end of the list.

To implement this algorithm, we need to situate the loop above in another loop that
iterates over the increasing values in red. We can do this by replacing the initial
value assigned to minIndex in red with a variable named start:

minIndex = start
for index in range(start + 1, n):

if keys[index] < keys[minIndex]:
minIndex = index

if minIndex != start:
swap(keys, start, minIndex)

Then we place these steps inside a for loop that has start take on all of the integers
from 0 to len(keys) - 2:

1 def selectionSort(keys):
2 """Sort a list in ascending order using the selection sort algorithm.

3 Parameter:
4 keys: a list of keys

5 Return value: None
6 """

7 n = len(keys)
8 for start in range(n - 1):
9 minIndex = start

10 for index in range(start + 1, n):
11 if keys[index] < keys[minIndex]:
12 minIndex = index
13 if minIndex != start:
14 swap(keys, start, minIndex)

Reflection 10.15 In the outer for loop of the selectionSort function, why is the last
value of start equal to n - 2 instead of n - 1? Think about what steps would be
executed if start were assigned the value n - 1 in the last iteration of the loop.

Reflection 10.16 What would happen if we called selectionSort with the list
['dog', 'cat', 'Monkey', 'Zebra', 'platypus', 'armadillo']? Would it work? If
so, in what order would the words be sorted?
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Figure 10.3 Execution times of selection sort and the list sort method on small

randomly shuffled lists.

Because the comparison operators are defined for both numbers and strings, we
can use our selectionSort function to sort either kind of data. For example, call
selectionSort on each of the following lists, and then print the results. (Remember
to incorporate the swap function from Exercise 7.2.5.)

numbers = [50, 30, 40, 20, 10, 70, 60]
animals = ['dog', 'cat', 'Monkey', 'Zebra', 'platypus', 'armadillo']
heights = [7.80, 6.42, 8.64, 7.83, 7.75, 8.99, 9.25, 8.95]

Efficiency of selection sort
Next, let’s look at the time complexity of the selection sort algorithm. We can
derive the asymptotic time complexity by counting the number of times the most
frequently executed elementary step executes. In the selectionSort function, this
is the comparison in the if statement on line 11. Since line 11 is in the body of the
inner for loop that starts on line 10, it will be executed in every iteration of that
loop. When start is 0, the inner for loop on line 10 runs from 1 to n− 1, for a total
of n− 1 iterations. So line 11 is also executed n− 1 times. Next, when start is 1, the
inner for loop runs from 2 to n − 1, a total of n − 2 iterations, so line 11 is executed
n − 2 times. With each new value of start, there is one less iteration of the inner
for loop. Therefore, the total number of times that line 11 is executed is

(n − 1) + (n − 2) + (n − 3) +⋯
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Where does this sum stop? To find out, we look at the last iteration of the outer
for loop, when start is n - 2. In this case, the inner for loop runs from n - 1 to
n - 1, for only one iteration. So the total number of steps is

(n − 1) + (n − 2) + (n − 3) +⋯ + 3 + 2 + 1.

We have encountered this sum a few times before (see Tangent 4.1):

(n − 1) + (n − 2) + (n − 3) +⋯ + 3 + 2 + 1 = n(n − 1)
2

= 1

2
n2 − 1

2
n.

Ignoring the 1/2 in front of n2 and the low order term (1/2)n, we find that this
expression is asymptotically O(n2). So selection sort has quadratic time complexity.

Figure 10.3 shows the results of an experiment comparing the running time of
selection sort to the sort method of the list class. (Exercise 10.3.3 asks you to
replicate this experiment.) The parabolic blue curve in Figure 10.3 represents the
quadratic time complexity of the selection sort algorithm. The red curve at the
bottom of Figure 10.3 represents the running time of the sort method. Although
this plot compares the algorithms with very small lists, on which both algorithms
are very fast, we see a marked difference in the growth rates of the execution times.
We will see why the sort method is so much faster in Section 10.4.

Querying data
Suppose we want to write a program that allows someone to query the USGS
earthquake data that we worked with in Section 7.4. Although we did not use them
then, each earthquake was identified by a unique key such as ak10811825. The first
two characters identify the monitoring network (ak represents the Alaska Regional
Network) and the last eight digits are a unique ID assigned by the network. Our
program will search for a given key, and return the associated latitude, longitude,
magnitude, and depth. This associated data is sometimes called satellite data
because it revolves around the key.

To use the efficient binary search algorithm in our program, we need to first sort
the data by its keys. When we read this data into memory, we can either read it
into parallel lists, as we did in Section 7.4, or we can read it into a table (i.e., a list
of lists), as we did in Section 8.1. In this section, we will modify our selection sort
algorithm to handle the first option. We will leave the second option as an exercise.

We will read the data into two lists named ids and data, which are a list of keys and
a list of tuples, respectively. Each tuple in the second list will contain the satellite
data for one earthquake. By design, these two lists will be parallel in the sense
that the satellite data in data[index] belongs to the earthquake with the key in
ids[index]. When we sort the earthquakes’ keys, we will need to make sure that
their associations with the satellite data are maintained. In other words, if, during
the sort of the list ids, we swap the values in ids[9] and ids[4], we also need to
swap data[9] and data[4].
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Modifying our selection sort algorithm in this way is actually quite simple. First, we
will add a second parameter named data that contains the satellite data correspond-
ing to keys. The function will still make all of its sorting decisions based on the
list of keys. But when we swap two values in keys, we also swap the corresponding
values in data. The modified function looks like this (with changes in red):

def selectionSort2(keys, data):
"""Sort parallel lists of keys and data values in ascending

order using the selection sort algorithm.

Parameters:
keys: a list of keys
data: a list of data values corresponding to the keys

Return value: None
"""

n = len(keys)
for start in range(n - 1):

minIndex = start
for index in range(start + 1, n):

if keys[index] < keys[minIndex]:
minIndex = index

swap(keys, start, minIndex)
swap(data, start, minIndex)

Once we have the sorted parallel lists ids and data, we can use binary search to
retrieve the index of a particular ID in the list ids, and then use that index to
retrieve the corresponding satellite data from the list data. The following function
implements this idea by repeatedly prompting for an earthquake ID.

def queryQuakes(ids, data):
""" (docstring omitted) """

key = input('Earthquake ID (q to quit): ')
while key != 'q':

index = binarySearch(ids, key, 0, len(ids) - 1)
if index >= 0:

print('Location: ' + str(data[index][:2]) + '\n' +
'Magnitude: ' + str(data[index][3]) + '\n' +
'Depth: ' + str(data[index][2]) + '\n')

else:
print('An earthquake with that ID was not found.')

key = input('Earthquake ID (q to quit): ')

The main function below reads the earthquakes from the file (left as an exercise),
sorts the data with our selection sort algorithm for parallel lists, and then calls
queryQuakes.
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def main():
ids, data = readQuakes() # left as an exercise
selectionSort2(ids, data)
queryQuakes(ids, data)

Exercises
10.2.1. Can you find a list of length 5 that requires more comparisons in selectionSort

(on line 11) than another list of length 5? In general, with lists of length n, is
there a worst case list and a best case list with respect to comparisons? How
many comparisons do the best case and worst case lists require?

10.2.2. Now consider the number of swaps. Can you find a list of length 5 that requires
more swaps (on line 14) than another list of length 5? In general, with lists of
length n, is there a worst case list and a best case list with respect to swaps?
How many swaps do the best case and worst case lists require?

10.2.3* The inner for loop of the selection sort function can be eliminated by using two
built-in Python functions instead, as shown in the following alternative selection
sort implementation.

def selectionSortAlt(keys):
n = len(keys)
for start in range(n - 1):

minimum = min(keys[start:])
minIndex = start + keys[start:].index(minimum)
if minIndex != start:

swap(keys, start, minIndex)

Is this function more or less efficient than the selectionSort function we
developed? Explain.

10.2.4. Suppose we already have a list that is sorted in ascending order, and want to
insert new values into it. Write a function that inserts an item into a sorted list,
maintaining the sorted order, without re-sorting the list.

10.2.5* Write the function

readQuakes()

that is needed by the program at the end of this section. The function should read
earthquake IDs and earthquake satellite data, consisting of latitude, longitude,
depth and magnitude, from the data file on the web at

http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.csv

and return two parallel lists, as described on page 423. The satellite data for
each earthquake should be stored as a tuple of floating point values. For example,
the satellite data for a earthquake that occurred at 19.5223 degrees latitude and
-155.5753 degrees longitude with magnitude 1.1 and depth 13.6 km should be
stored in the tuple (19.5223, -155.5753, 1.1, 13.6).

Use this function to complete a working version of the program on page 425.
(Remember to incorporate the recursive binary search and the swap function
from Exercise 7.2.5.) Look at the above URL in a web browser to find some
earthquake IDs for which to search, or do the next exercise to have your program
print a list.
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10.2.6. Add to the queryQuakes function on page 424 the option to print an alphabetical
list of all earthquakes, in response to typing list for the earthquake ID. The
output should look something like this:

Earthquake ID (q to quit): ci37281696

Location: (33.4436667, -116.6743333)

Magnitude: 0.54

Depth: 13.69

Earthquake ID (q to quit): list

ID Location Magnitude Depth

---------- ---------------------- --------- -----

ak11406701 (63.2397, -151.4564) 5.5 1.3

ak11406705 (58.9801, -152.9252) 69.2 2.3

ak11406708 (59.7555, -152.6543) 80.0 1.9

...

uw60913561 (41.8655, -119.6957) 0.2 2.4

uw60913616 (44.2917, -122.6705) 0.0 1.3

10.2.7. An alternative to storing the earthquake data in two parallel lists is to store it
in one table (a list of lists). For example, the beginning of a table containing
the earthquakes shown in the previous exercise would look like this:

[['ak11406701', 63.2397, -151.4564, 5.5, 1.3],
['ak11406705', 58.9801, -152.9252, 69.2, 2.3],
...

]

Rewrite the readQuakes, selectionSort, binarySearch, and queryQuakes

functions so that they work with the earthquake data stored in this way instead.
Your functions should assume that the key for each earthquake is in column
0. Combine your functions into a working program that is driven by a main

function like the one on page 425.

10.2.8. The Sieve of Eratosthenes is a simple algorithm for generating prime numbers
that has a structure that is similar to the nested loops in selection sort. The
algorithm begins by initializing a list of n Boolean values named prime as
follows. (In this case, n = 12.)

prime: F F T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11

At the end of the algorithm, we want prime[index] to be False if index is
not prime and True if index is prime. The algorithm continues by initializing a
loop index variable to 2 (indicated by the arrow below) and then setting the
list value of every multiple of 2 to be False.

F F T T F T F T F T F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
Next, the loop index variable is incremented to 3 and, since prime[3] is True,
the list value of every multiple of 3 is set to be False.

Copyright Taylor and Francis, 2021



10.3 INSERTION SORT � 427

F F T T F T F T F F F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
Next, the loop index variable is incremented to 4. Since prime[4] is False, we
do not need to set any of its multiples to False, so we do not do anything.

F F T T F T F T F F F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
This process continues with the loop index variable set to 5:

F F T T F T F T F F F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
And so on. How long must the algorithm continue to increment index before
it has marked all non-prime numbers? Once it is done filling in the list, the
algorithm iterates over it one more time to build the list of prime numbers, in
this case, [2, 3, 5, 7, 11]. Write a function that implements this algorithm
to return a list of all prime numbers less than or equal to a parameter n.

10.3 INSERTION SORT
Our second sorting algorithm, named insertion sort , is familiar to anyone who has
sorted a hand of playing cards. Working left to right through our hand, the insertion
sort algorithm inserts each card into its proper place with respect to the previously
arranged cards. For example, consider our previous list, arranged as a hand of cards:

50
30

40 20 10
70

60

We start with the second card from the left, 30, and decide whether it should stay
where it is or be inserted to the left of the first card. In this case, it should be
inserted to the left of 50, resulting in the following slightly modified ordering:
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30
50

40 20 10
70

60

Then we consider the third card from the left, 40. We see that 40 should be inserted
between 30 and 50, resulting in the following order.

30
40

50 20 10
70

60

Next, we consider 20, and see that it should be inserted all the way to the left, before
30.

20
30

40 50 10
70

60

This process continues with 10, 70, and 60, at which time the hand will be sorted.

Implementing insertion sort
To implement this algorithm, we need to repeatedly find the correct location to
insert an item among the items to the left, assuming that the items to the left are
already sorted. Let’s name the index of the item that we wish to insert insertIndex
and the item itself itemToInsert. In other words, we assign

itemToInsert = keys[insertIndex]

To illustrate, suppose that insertIndex is 4 (and itemToInsert is 10), as shown
below:
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1 2 3 4 5 6

30 7040 6020 50 10

insertIndex

itemToInsert

index: 

keys[index]:

0

We need to compare itemToInsert to each of the items to the left, first at index
insertIndex - 1, then at insertIndex - 2, insertIndex - 3, etc. When we
come to an item that is less than or equal to itemToInsert or we reach the beginning
of the list, we know that we have found the proper location for the item. This process
can be expressed with a while loop:

index = insertIndex - 1
while index >= 0 and keys[index] > itemToInsert:

index = index - 1

The variable index tracks which item we are currently comparing to itemToInsert.
The value of index is decremented while it is still at least zero and the item at
position index is still greater than itemToInsert. When the while loop ends, it is
because either index has reached -1 or keys[index] <= itemToInsert. In either
case, we want to insert itemToInsert into position index + 1. In the example
above, we would reach the beginning of the list, so we want to insert itemToInsert
into position index + 1 = 0.

To actually insert itemToInsert in its correct position, we need to delete
itemToInsert from its current position, and insert it into position index + 1.
One option is to use pop and insert:

keys.pop(insertIndex)
keys.insert(index + 1, itemToInsert)

In the insertion sort algorithm, we want to repeat this process for each value of
insertIndex, starting at 1, so we enclose these steps in a for loop:

def insertionSort_Draft(keys):
""" (docstring omitted) """

n = len(keys)
for insertIndex in range(1, n):

itemToInsert = keys[insertIndex]
index = insertIndex - 1
while index >= 0 and keys[index] > itemToInsert:

index = index - 1
keys.pop(insertIndex)
keys.insert(index + 1, itemToInsert)
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Although this function is correct, it performs more work than necessary. To see
why, think about how the pop and insert methods must work, based on the
picture of the list on page 429. First, to delete (pop) itemToInsert, which is at
position insertIndex, all of the items to the right, from position insertIndex

+ 1 to position n - 1, must be shifted one position to the left. Then, to insert
itemToInsert into position index + 1, all of the items to the right, from position
index + 2 to n - 1, must be shifted one position to the right. So the items from
position insertIndex + 1 to position n - 1 are shifted twice, only to end up back
where they started.

A more efficient algorithm only shifts those items that need to be shifted, and does
so while we are already iterating over them. The following modified algorithm does
just that.

1 def insertionSort(keys):
2 """ Sort a list in ascending order using the insertion sort algorithm.

3 Parameter:
4 keys: a list of keys to sort

5 Return value: None
6 """

7 n = len(keys)
8 for insertIndex in range(1, n):
9 itemToInsert = keys[insertIndex]

10 index = insertIndex - 1
11 while index >= 0 and keys[index] > itemToInsert:
12 keys[index + 1] = keys[index]
13 index = index - 1
14 keys[index + 1] = itemToInsert

The highlighted assignment statement on line 8 copies each item at position index

one position to the right. Therefore, when we get to the end of the loop, position
index + 1 is available to store itemToInsert.

Reflection 10.17 To get a better sense of how this works, carefully work through the
steps with the three remaining items to be inserted in the illustration on page 429.

Reflection 10.18 Write a main function that calls the insertionSort function to sort
the list from the beginning of this section: [50, 30, 40, 20, 10, 70, 60].

Efficiency of insertion sort
Is the insertion sort algorithm any more efficient than selection sort? To discover its
time complexity, we first need to identify the most frequently executed elementary
step(s). In this case, these appear to be the two assignment statements on lines
8–9 in the body of the while loop. However, the most frequently executed step is
actually the test of the while loop condition on line 7 because the condition of a
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Figure 10.4 Execution times of selection sort, insertion sort, and the sort method on

small randomly shuffled lists.

while loop is always tested when the loop is first reached, and again after each
iteration. Therefore, a while loop condition is always tested once more than the
body of the loop.

Reflection 10.19 What are the minimum and maximum numbers of times the while

loop condition is tested, for any particular value of insertIndex in the outer for loop?

In the best case, it is possible that the condition is only tested once. This will
happen if the item immediately to the left of itemToInsert is less than or equal
to itemToInsert. Since there are n − 1 iterations of the outer for loop, this means
that the while loop condition could be tested only n − 1 times in total for the
entire algorithm. So, in the best case, insertion sort has linear-time, or O(n), time
complexity.

In the worst case, the while loop will always iterate until index >= 0 is False,
i.e., until index == -1. This will happen if keys is initially in reverse order, mean-
ing that itemToInsert is always less than every item to its left. Since index

starts at insertIndex - 1, this will cause the while loop condition to be tested
insertIndex + 1 times. So in the first iteration of the outer for loop, when
insertIndex is 1, the while loop condition is tested insertIndex + 1 = 2 times.
When insertIndex is 2, it is tested 3 times. This continues until insertIndex is n
- 1, at which time, the while loop condition is tested n times. So the total number
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of iterations of the while loop is 2 + 3 + 4 +⋯ + n, which is the same as

(1 + 2 + 3 +⋯ + n) − 1 = n(n + 1)
2

− 1 = 1

2
n2 + 1

2
n − 1.

Ignoring the constants and slower growing terms, this means that insertion sort is
also a quadratic-time, or O(n2), algorithm in the worst case.

Figure 10.4 shows the actual running times of the sorting algorithms we have studied
so far on very small, randomly shuffled lists. We can see that the running time of
insertion sort is almost identical to that of selection sort in practice. Both algorithms
are still significantly slower than the built-in sort method. We will see why in the
next section.

Exercises
10.3.1. Give examples of 10-element lists that require the best case and worst case num-

bers of comparisons in an insertion sort. How many comparisons are necessary
to sort each of these lists?

10.3.2* Write a function that compares the time required to sort a long list of English
words using insertion sort to the time required by the sort method of the list
class. You can use the function time.time() function, which returns the number
of seconds that have elapsed since January 1, 1970, to record the time required
to execute each function. A list of English words can be found on computers
running Mac OS X or Linux in the file /usr/share/dict/words, or one can be
downloaded from the book website. This list is already sorted if you consider an
uppercase letter to be equivalent to its lowercase counterpart. However, since
Python considers uppercase letters to come before lowercase letters, the list is
not really sorted for our purposes. But it is “almost” sorted, which means that
insertion sort should perform relatively well. Be sure to make a separate copy
of the original list for each sorting algorithm.

How many seconds did each sort require? (Be patient; insertion sort could take
several minutes!) If you can be really patient, try timing selection sort as well.

10.3.3. Write a function

sortPlot(minLength, maxLength, step)

that produces a plot like Figure 10.4 comparing the running times of inser-
tion sort, selection sort, and the sort method of the list class on shuffled
lists with length minLength, minLength + step, minLength + 2 * step, . . . ,
maxLength. At the beginning of your function, produce a shuffled list with
length maxLength with

data = list(range(maxLength))
random.shuffle(data)

Then time each function for each list length using a new, unsorted slice of this
list.

10.3.4* A sorting algorithm is called stable if two items with the same value always
appear in the sorted list in the same order as they appeared in the original list.
Are selection sort and insertion sort stable sorts? Explain your answer in each
case.
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10.3.5. A third simple quadratic-time sorting algorithm is called bubble sort because it
repeatedly “bubbles” large items toward the end of the list by swapping each
item repeatedly with its neighbor to the right if it is larger than this neighbor.

For example, consider the short list [3, 2, 4, 1]. In the first pass over the
list, bubble sort compares pairs of items, starting from the left, and swaps them
if they are out of order. The illustration below depicts in red the items that
are compared in the first pass, and the arrows depict which of those pairs are
swapped because they are out of order.

3  2  4  1 2  3  4  1 2  3  4  1 2  3  1  4

At the end of the first pass, the largest item (in blue) is in its correct location.
We repeat the process, but stop before the last item.

2  3  1  4 2  1  3  42  3  1  4

After the second pass, we know that the two largest items (in blue) are in their
correct locations. On this short list, we make just one more pass.

1  2  3  42  1  3  4 1  2  3  4

After n−1 passes, we know that the last n−1 items are in their correct locations.
Therefore, the first item must be also, and we are done. Write a function that
implements this algorithm.

10.3.6. In the bubble sort algorithm, if no items are swapped during a pass over the
list, the list must be in sorted order. The bubble sort algorithm can be made
somewhat more efficient by detecting when this happens, and returning early if
it does. Write a function that implements this modified bubble sort algorithm.
(Hint: replace the outer for loop with a while loop and introduce a Boolean
variable that controls the while loop.)

10.3.7. Write a modified version of the insertion sort function that sorts two parallel
lists named keys and data, based on the values in keys, like the parallel list
version of selection sort on page 424.

10.4 EFFICIENT SORTING
In the preceding sections, we developed two sorting algorithms, but discovered that
they were both significantly less efficient than the built-in sort method. The sort

method is based on a recursive sorting algorithm called merge sort .1

Merge sort
As illustrated in Figure 10.5(a), merge sort is a divide and conquer algorithm, like
those from Section 9.5. Divide and conquer algorithms generally consist of three
steps:

1The Python sorting algorithm, called Timsort , has elements of both merge sort and insertion
sort. If you would like to learn more, visit http://bugs.python.org/file4451/timsort.txt.
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keys[mid:]keys[:mid]

keys

keys

keys[:mid] keys[mid:]

sort sort

merge

(a)

[10, 20, 30, 40, 50, 60, 70]

[10, 20, 40, 70][30, 50, 60]

[60, 30, 50, 20, 10, 70, 40]

[60, 30, 50] [20, 10, 70, 40]

sort sort

merge

(b)

Figure 10.5 Illustrations of merge sort (a) in general and (b) on an example.

1. Divide the problem into two or more subproblems.

2. Conquer each subproblem recursively.

3. Combine the solutions to the subproblems into a solution for the original
problem.

Reflection 10.20 Based on Figure 10.5(a), what are the divide, conquer, and combine
steps in the merge sort algorithm?

The divide step of merge sort is very simple: just divide the list in half. The conquer
step recursively calls the merge sort algorithm on the two halves. The combine step
merges the two sorted halves into the final sorted list. This elegant algorithm is
implemented by the following function:

def mergeSort(keys):
"""Sort a list in ascending order using the merge sort algorithm.

Parameter:
keys: a list of keys to sort

Return value: None
"""

n = len(keys)
if n > 1:

mid = n // 2 # divide list in half
left = keys[:mid]
right = keys[mid:]

mergeSort(left) # recursively sort the left half
mergeSort(right) # recursively sort the right half
merge(left, right, keys) # merge sorted halves into keys
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[][10, 20, 40, 70][30, 50, 60](a)

[10, 20, 40, 70][30, 50, 60](b) [10]

[10, 20, 40, 70][30, 50, 60](c) [10, 20]

[10, 20, 40, 70][30, 50, 60](d) [10, 20, 30]

[10, 20, 40, 70][30, 50, 60](e) [10, 20, 30, 40]

[10, 20, 40, 70][30, 50, 60](f) [10, 20, 30, 40, 50]

[10, 20, 40, 70][30, 50, 60](g) [10, 20, 30, 40, 50, 60]

[10, 20, 30, 40, 50, 60, 70][10, 20, 40, 70][30, 50, 60](h)

left right merged

Figure 10.6 An illustration of the merge algorithm with example sublists.

Reflection 10.21 Where is the base case in this function?

The base case in this function is implicit; when n <= 1, the function just returns
because a list containing zero or one values is, of course, already sorted.

To flesh out mergeSort, we need to implement the merge function. Suppose we want
to sort the list [60, 30, 50, 20, 10, 70, 40]. As illustrated in Figure 10.5(b), the
merge sort algorithm first divides this list into the two sublists left = [60, 30, 50]

and right = [20, 10, 70, 40]. After recursively sorting each of these lists, we
have left = [30, 50, 60] and right = [10, 20, 40, 70]. Now we want to
efficiently merge these two sorted lists into one final sorted list. We could, of course,
concatenate the two lists and then call merge sort with them. But that would be far
too much work; we can do much better!

Because left and right are sorted, the first item in the merged list must be the
minimum of the first item in left and the first item in right. So we place this
minimum item into the first position in the merged list, and remove it from left

or right. The next item in the merged list must again be at the front of left or
right. This process continues until we run out of items in one of the lists.

This algorithm is illustrated in Figure 10.6. Rather than delete items from left and
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right as we append them to the merged list, we will maintain an index for each list
to remember the next item to consider. The red arrows in Figure 10.6 represent these
indices which, as shown in step (a), start at the left side of each list. In steps (a)–(b),
we compare the two front items in left and right, append the minimum (10 from
right) to the merged list, and advance the right index. In steps (b)–(c), we compare
the first item in left to the second item in right, again append the minimum (20
from right) to the merged list, and advance the right index. In steps (c)–(d), we
compare the first item in left to the third item in right, append the minimum
(this time, 30 from left), and advance the left index. This process continues until
one of the indices exceeds the length of its list. In the example, this happens after
step (g) when the left index is incremented past the end of left. At this point, we
extend the merged list with whatever is left over in right, as shown in step (h).

Reflection 10.22 Work through steps (a) through (h) on your own to make sure you
understand how the merge algorithm works.

This merge algorithm is implemented by the following function.

1 def merge(left, right, merged):
2 """Merge two sorted lists, left and right, into one sorted list
3 named merged.

4 Parameters:
5 left: a sorted list
6 right: another sorted list
7 merged: the merged sorted list

8 Return value: None
9 """

10 merged.clear() # clear contents of merged
11 leftIndex = 0 # index in left
12 rightIndex = 0 # index in right

13 while leftIndex < len(left) and rightIndex < len(right):
14 if left[leftIndex] <= right[rightIndex]: # left value is smaller
15 merged.append(left[leftIndex])
16 leftIndex = leftIndex + 1
17 else: # right value is smaller
18 merged.append(right[rightIndex])
19 rightIndex = rightIndex + 1

20 if leftIndex >= len(left): # remaining items are in right
21 merged.extend(right[rightIndex:])
22 else: # remaining items are in left
23 merged.extend(left[leftIndex:])

The merge function begins by clearing out the contents of the merged list and
initializing the indices for the left and right lists to zero. The while loop starting
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on line 13 constitutes the main part of the algorithm. The loop iterates while both
leftIndex and rightIndex are valid indices in their respective lists. In lines 14–19,
the algorithm compares the items at the two indices and appends the smallest to
merged. When the loop finishes, we know that either leftIndex >= len(left) or
rightIndex >= len(right). In the first case (lines 20–21), there are still items
remaining in right to append to merged. In the second case (lines 22–23), there are
still items remaining in left to append to merged.

Reflection 10.23 Write a program that uses the merge sort algorithm to sort the list in
Figure 10.5(b).

Internal vs. external sorting
We have been assuming all along that the data that we want to sort is small enough
to fit in a list in a computer’s memory. The selection and insertion sort algorithms
must have the entire list in memory at once because they potentially pass over the
entire list in each iteration of their outer loops. For this reason, they are called
internal sorting algorithms.

But what if the data is larger than the few gigabytes that can fit in memory all at
once? This is routinely the situation with real databases. In these cases, we need
an external sorting algorithm , one that can sort data in secondary storage by
bringing smaller pieces of it into memory at a time.

The merge sort algorithm can be implemented as an external sorting algorithm. In
the merge function, each of the sorted halves could reside in a file on disk and the
algorithm could just bring the current front items into memory when it needs them.
The merged list can also reside in a file on disk; when a new item is added to end of
the merged result, it just needs to be written to the merged file after the previous
item. Exercise 10.4.7 asks you to write a version of the merge function that merges
two sorted files in this way.

Efficiency of merge sort
To formally derive the time complexity of merge sort, we would need to set up a
recurrence relation like the one for the recursive binary search. But doing so for merge
sort is a little more complicated, so let’s look at it in a different way. Figure 10.7
illustrates the work that is done through the recursive calls in the algorithm. These
recursive calls divide the list into smaller and smaller lists until they reach the base
case, as illustrated in the top half of the diagram. The number of elementary steps
performed when dividing each list through slicing is proportional to the length of
the list, since every element is copied. In each of these “divide” levels, all n items
are being copied once in a slicing operation. The number of slices gets larger as we
work down toward the base case, and each one is smaller, but the total number of
items remains constant at n. So there are O(n) elementary steps being done in each
“divide” level.
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Figure 10.7 An illustration of the work performed by the merge sort algorithm.

Reflection 10.24 How many “divide” levels are there until the base case is reached when
n = 8? When n = 16? For n in general?

When n = 8, as in the diagram, there are three “divide” levels. If n were doubled to
16, there would be just one more level needed. In general, because the lists are being
halved at each level, until each list contains just one item, there must be log2 n levels
until the base case is reached. Therefore, the total number of elementary steps in
the top half of the diagram is proportional to n ⋅ log2 n, or O(n logn).
Now let’s analyze the number of elementary steps in the bottom half of the diagram.
In the base case, each list contains at most one item, so they are sorted, as depicted
by the red arrows. Then those short lists are merged into lists that are about twice as
long. This merging continues until all of the original items are merged into the final
sorted list. The number of “merge” levels in the diagram is the same as the number
of “divide” levels because the same process is performed in reverse order. So the
total number of elementary steps in the bottom half of the diagram is proportional
to log2 n times the number of elementary steps performed in each “merge” level.

Reflection 10.25 About how many elementary steps does the merge function contain
when merged contains 8 items? 16 items? n items?

Since all of the items in the left and right lists are copied to the merged list
exactly once, the total number of elementary steps in merge is proportional to the
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Figure 10.8 A comparison of the execution times of selection sort and merge sort on

small randomly shuffled lists.

length of the merged list. In each “merge” level of the diagram, since all n items are
involved in one merge operation, the combined lengths of the merged lists is n. So
the total number of elementary steps in each “merge” level must be proportional to
n. Therefore, the total number of elementary steps in the bottom half of the diagram
is also proportional to n ⋅ log2 n, or O(n logn).
Adding the O(n logn) from the top half of the diagram to the O(n logn) from
the bottom half gives us O(n logn) elementary steps in total because the “big-oh”
notation hides the constant coefficient that comes from this addition. So the time
complexity of merge sort is O(n logn).
How much faster is this than the quadratic-time selection and insertion sorts?
Figure 10.8 illustrates the difference by comparing the merge sort and selection sort
functions on small randomly shuffled lists. The merge sort algorithm is much faster.
Recall that the algorithm behind the built-in sort method is based on merge sort,
which explains why it was so much faster than our previous sorts. Exercise 10.4.1
asks you to compare the algorithms on much longer lists as well.

Exercises
10.4.1. Suppose the selection sort algorithm requires exactly n2 steps and the merge

sort algorithm requires exactly n log2 n steps. About how many times slower is
selection sort than merge sort when n = 100? n = 1000? n = 1 million?
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10.4.2. Repeat Exercise 10.3.2 with the merge sort algorithm. How does the time
required by the merge sort algorithm compare to that of the insertion sort
algorithm and the built-in sort method?

10.4.3. Add merge sort to the running time plot in Exercise 10.3.3. How does its time
compare to the other sorts?

10.4.4. Our mergeSort function is a stable sort, meaning that two items with the same
value always appear in the sorted list in the same order as they appeared in
the original list. However, if we changed the <= operator in line 18 of the merge

function to a < operator, it would no longer be stable. Explain why.

10.4.5* We have seen that binary search is exponentially faster than linear search in the
worst case. But is it always worthwhile to use binary search over linear search?
The answer, as is commonly the case in the “real world,” is “it depends.” In
this exercise, you will investigate this question. Suppose we have an unordered
list of n items that we wish to search.

(a) If we use the linear search algorithm, what is the time complexity of
this search?

(b) If we use the binary search algorithm, what is the time complexity of
this search? (Think carefully about this.)

(c) If we perform n (where n is also the length of the list) individual searches
of the list, what is the time complexity of the n searches together if we
use the linear search algorithm?

(d) If we perform n individual searches with the binary search algorithm,
what is the time complexity of the n searches together?

(e) What can you conclude about when it is best to use binary search vs.
linear search?

10.4.6. Suppose we have a list of n keys that we anticipate needing to search k times.
We have two options: either we sort the keys once and then perform all of the
searches using a binary search algorithm or we forgo the sort and simply perform
all of the searches using a linear search algorithm. Suppose the sorting algorithm
requires exactly n2/2 steps, the binary search algorithm requires log2 n steps,
and the linear search requires n steps. Assume each step takes the same amount
of time.

(a) If the length of the list is n = 1024 and we perform k = 100 searches,
which alternative is better?

(b) If the length of the list is n = 1024 and we perform k = 500 searches,
which alternative is better?

(c) If the length of the list is n = 1024 and we perform k = 1000 searches,
which alternative is better?

10.4.7. Write a function that merges two sorted files into one sorted file. Your function
should take the names of the three files as parameters. Assume that all three
files contain one string value per line. Your function should not use any lists,
instead reading only one item at a time from each input file and writing one item
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at a time to the output file. In other words, at any particular time, there should
be at most one item from each file assigned to any variable in your function.
You will know when you have reached the end of one of the input files when
a call to readline returns an empty string. There are two files on the book
website named left.txt and right.txt that you can use to test your function.

*10.5 TRACTABLE AND INTRACTABLE ALGORITHMS
This section is available on the book website.

10.6 SUMMARY AND FURTHER DISCOVERY
Sorting and searching are perhaps the most fundamental problems in computer
science for good reason. We have seen how simply sorting a list can exponentially
decrease the time it takes to search it, using the binary search algorithm. Since
binary search is one of those algorithms that “naturally” exhibits self-similarity, we
designed both iterative and recursive algorithms that implement the same idea. We
also designed two basic sorting algorithms named selection sort and insertion sort.
Each of these algorithms can sort a short list relatively quickly, but they are both
very inefficient when it comes to larger lists. By comparison, the recursive merge
sort algorithm is very fast. Merge sort has the added advantage of being an external
sorting algorithm, meaning we can adapt it to sort very large data sets that cannot
be brought into a computer’s memory all at once.

Although the selection and insertion sort algorithms are quite inefficient compared
to merge sort, they are still tractable, meaning that they will finish in a “reasonable”
amount of time. In fact, all algorithms with time complexities that are polynomial
functions of their input sizes are considered to be tractable. On the other hand,
exponential-time algorithms are called intractable because even when their input
sizes are relatively small, they require eons to finish.

Notes for further discovery
This chapter’s epigraph is from an interview given by Marissa Mayer to the Los
Angeles Times in 2008 [21].

The subjects of this chapter are fundamental topics in second-semester computer
science courses, and there are many books available that cover them in more detail.
A higher-level overview of some of the tricks used to make searching fast can be
found in John MacCormick’s Nine Algorithms that Changed the Future [37].

*10.7 PROJECTS
This section is available on the book website.
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