
C H A P T E R 1

How to Solve It

We need to do away with the myth that computer science is about computers. Computer
science is no more about computers than astronomy is about telescopes, biology is about
microscopes or chemistry is about beakers and test tubes. Science is not about tools, it is
about how we use them and what we find out when we do.

Michael R. Fellows and Ian Parberry
Computing Research News (1993)

It has often been said that a person does not really understand something until after teaching
it to someone else. Actually a person does not really understand something until after
teaching it to a computer, i.e., expressing it as an algorithm.

Donald E. Knuth
American Scientist (1973)

Computers now touch almost every facet of our daily lives, whether we are
consciously aware of them or not. Computers have changed the way we learn,

communicate, shop, travel, receive healthcare, and entertain ourselves. They are
embedded in virtually everything, from major feats of engineering like airplanes,
spaceships, and factories to everyday items like microwaves, cameras, and tooth-
brushes. In addition, all of our critical infrastructure—utilities, transportation,
finance, communication, healthcare, law enforcement—relies upon computers.

Since computers are the most versatile tools ever invented, it should come as
no surprise that they are also employed throughout academia in the pursuit of
new knowledge. Social scientists use computational models to better understand
social networks, epidemics, population dynamics, markets, and auctions. Humanists
use computational tools to gain insight into literary trends, authorship of ancient
texts, and the macroscopic significance of historical records. Artists are increasingly
incorporating digital technologies into their compositions and performances. Natural

1

Copyright Taylor and Francis, 2021

2 � 1 How to Solve It

Understand the
problem

Design an
algorithm

Write a
program

Look back at
your algorithm

and results

Figure 1.1 A simplified view of the problem solving process.

scientists use computers to collect and analyze immense quantities of data to
make discoveries in environmental science, genomics, particle physics, neuroscience,
pharmacology, and medicine.

But computers are neither productive nor consequential on their own. All of the
computers now driving civilization, for good or ill, were taught by humans. Computers
are amplifiers of human ingenuity. Without us, they are just dumb machines.

The goal of this book is to empower you to teach computers to solve problems and
make discoveries. Computational problem solving is a process that you will find both
familiar and new. We all solve problems every day and employ a variety of strategies
in doing so. Some of these strategies, like breaking big problems into smaller, more
manageable ones, are also fundamental to solving problems with a computer. Where
computational problem solving is different stems from computers’ lack of intellect
and intuition. Computers will only do what you tell them to and nothing more.
They cannot tolerate ambiguity or intuit your intentions. Computational problem
solving, by necessity, must be more precise and intentional than you may be used to.
The payoff though, paraphrasing Donald Knuth1, is that teaching a computer to do
something can also dramatically deepen our understanding of that thing.

The problem solving process that we will outline in this chapter is inspired by How to
Solve It, a short book written by mathematician George Polya [50] in 1945. Polya’s
problem solving framework, having withstood the test of time, consists of four steps:

1. First, understand the problem. What is the unknown? What are the data?
What is the condition?

2. Second, devise a plan to solve the problem.

3. Third, carry out your plan, checking each step.

4. Fourth, look back. Check the result. Can you derive the result differently?

These four steps, with some modifications, can be applied just as well to compu-
tational problem solving, as illustrated in Figure 1.1. In the first step, we make

1You can learn more about Donald Knuth at the end of this chapter.

Copyright Taylor and Francis, 2021

1.1 UNDERSTAND THE PROBLEM � 3

music player

search engine

maps app
The Granville Inn
314 E. Broadway

Granville, OH 43023

Figure 1.2 Some examples of computational problems.

sure that we understand the problem to be solved. In the second step, we devise an
algorithm, a sequence of steps to solve the problem. In the third step, we translate
our algorithm into a correct program that can be carried out by a computer. We
will be using a programming language called Python throughout this book to write
programs. Finally, in the fourth step, we look back on our results and ask whether
we can improve them or the algorithm that derived them. Notice that this process is
often not linear. Work on one step can refine our understanding of a previous step
and nudge us backward, not unlike the process of writing a paper.

This chapter serves as a framework for your learning throughout the rest of the book.
Each subsequent chapter will flesh out aspects of these steps and make them more
concrete by focusing on new types of computational problems and the techniques
used to solve them.

1.1 UNDERSTAND THE PROBLEM

First, understand the problem. What is the unknown? What are the data?
What is the condition?

In computer science, we think of a problem as a relationship between some initial
information, an input , and some desired result, the output . To solve the problem,
we need to teach a computer how to transform the input into the output. The steps
that the computer takes to do this are called a computation . In Polya’s language,
the “data” is the input, the “unknown” is the output, and the ”condition” is the
relationship between the two.

Figure 1.2 illustrates three common computational problems. In each, an input enters
on the left and a corresponding output exits on the right. In between, a computation
transforms the input into the correct output. When you listen to a song, your music

Copyright Taylor and Francis, 2021

4 � 1 How to Solve It

player performs a computation to convert a digital sound file (input) into a sound
pattern that can be reproduced by your headphones (output). When you submit a
web search request (input), your computer, and many others across the Internet,
perform computations to get you results (outputs). And when you use an app on
your phone to get directions, it computes the directions (output) based on your
current position and desired destination (inputs).

Inputs and outputs are probably familiar to you from high school algebra. When
you were given an expression like y = 18x + 31 or f(x) = 18x + 31, you may have
thought about the variable x as a representation of the input and y, or f(x), as a
representation of the output. In this example, when the input is x = 2, the output is
y = 67, or f(x) = 67. The arithmetic that turns x into y is a very simple (and boring)
example of a computation.

Reflection 1.1 What kinds of problems are you interested in? What are their inputs and
outputs? Are the inputs and outputs, as you have defined them, sufficient to define the
problems completely?

A first problem: computing reading level
Suppose you are a teacher who wants to evaluate whether some text is at an
appropriate grade level for your class. In other words, you want to solve the problem
illustrated below.

reading level
calculatortext reading level

The input and output for this problem seem straightforward. But they actually
aren’t; once you start thinking carefully about the problem, you realize there are
many questions that need to be answered. For example, are there any restrictions
or special conditions associated with the input? What kinds of texts are we talking
about? Should the solution work equally well for children’s books, newspaper articles,
scientific papers, and technical manuals? For what language(s) should the solution
work? In what electronic format do the texts need to be? Is there a minimum or
maximum length requirement for the text? It is important to formulate these kinds
of questions and seek any needed clarifications right away; it is much better to do so
immediately than to wait until you have spent a lot of time working on the wrong
problem!

The same sorts of questions should be asked about the output. How is a reading
level represented? Is an integer value corresponding to a school year? Or can it be
a fraction? To what educational system should the grade levels correspond? Are
their minimum and/or maximum allowed values? Once you have answers to your
questions, it is a good idea to re-explain the problem back to the poser, either orally
or in writing. The feedback you get from this exercise might identify additional points
of misunderstanding. You might also draw a picture and work out some examples by
hand to make sure you understand all of the requirements and subtleties involved.

Copyright Taylor and Francis, 2021

1.1 UNDERSTAND THE PROBLEM � 5

We will answer these questions by clarifying that the solution should work for any
English language text, available as a plain text file like those on Project Gutenberg.2

The output will be a number like 4.2, indicating that the text is appropriate for
a student who has completed 2/10 of fourth grade in the U.S. educational system.
Negative reading level values will not make sense in this system, but any positive
number will be acceptable if we interpret the number to mean the number of years
of education required to understand the text.

Functional abstraction
A problem at this stage, before we know how to solve it, is an example of a functional
abstraction .

A functional abstraction describes how to use a tool or technology without
necessarily providing any knowledge about how it works.

In other words, a functional abstraction is a “black box” that we know how to
use effectively, without necessarily understand what is happening inside the box to
produce the output. In the case of the reading level problem, now that we have a
better handle on the specifics, if we had a black box that computed the reading
level, we would know how to use it, even without understanding how the output was
computed. Similarly, to use each of the technologies illustrated in Figure 1.2 we do
not need to understand how the underlying computation transforms the input to
the output.

We exist in a world of functional abstractions that we usually take for granted. We
even think about our own bodies in terms of abstractions. Move your fingers. Did
you need to understand how your brain triggered your nervous and musculoskeletal
systems to make that happen? As far as most of us are concerned, a car is also an
abstraction. To drive a car, do you need to know how turning the steering wheel turns
the car or pushing the accelerator makes it go faster? We understand what should
happen when we do these things, but not necessarily how they happen. Without
abstractions, we would be paralyzed by an avalanche of minutiae.

Reflection 1.2 Imagine that it was necessary to understand how your phone works in
order to use it. Or a car. Or a computer. How would this affect your ability to use these
technologies?

New technologies and automation have introduced new functional abstractions into
everyday life. Our food supply is a compelling example of this. Only a few hundred
years ago, our ancestors knew exactly where their food came from. Inputs of hard
work and suitable weather produced outputs of grain and livestock to sustain a
family. In modern times, we input money and get packaged food; the origins of our
food have become much more abstract.

2Project Gutenberg (http://www.gutenberg.org) is a library of freely available classic literature
with expired U.S. copyrights. The books are available in a variety of formats, but we will be
interested in those in a plain text format like the version of Walden by Henry David Thoreau at
http://www.gutenberg.org/files/205/205-0.txt.

Copyright Taylor and Francis, 2021

http://www.gutenberg.org
http://www.gutenberg.org/files/205/205-0.txt

6 � 1 How to Solve It

Reflection 1.3 Think about a common functional abstraction that you use regularly,
such as your phone or a credit card. How has this functional abstraction changed over
time? Can you think of instances in which better functional abstractions have enhanced
our ability to use a technology?

Functional abstraction is a very important idea in computer science. In the next
section, we will demonstrate how more complex problems are solved by breaking
them into smaller functional abstractions that we can solve and then recombine into
a solution for the original problem.

Exercises
1.1.1. What is a problem in your life that you have to solve regularly? Define the

input and output of the problem well enough for someone else to propose an
algorithm to solve it. Here is an example.

Problem: scan pages in a book
Inputs: a book and page numbers to scan
Output: one PDF file containing all of the pages, one physical page per page

in the file, full color, text recognized

1.1.2. What information is missing from each of the inputs and/or outputs of the
following problem definitions? In each case, assume that you know how to
complete the task given enough information about the input and output.

(a)* Problem: Make brownies
Inputs: butter, sugar, eggs, vanilla, cocoa powder, flour, salt, baking powder
Output: brownies

(b) Problem: Dig a hole
Inputs: a shovel
Output: a hole (of course)

(c) Problem: Plant a vegetable garden
Inputs: seeds
Output: a planted garden plot

1.1.3. Describe three examples from your everyday life in which an abstraction is
beneficial. Explain the benefits of each abstraction versus what life would be
like without it.

1.2 DESIGN AN ALGORITHM

Second, devise a plan to solve the problem.

To compute reading level, we will use the well-known Flesch-Kincaid grade level
score, which approximates the grade level of a text using the formula

0.39 × average words per sentence + 11.8 × average syllables per word − 15.59 .

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 7

Reflection 1.4 To better understand how the Flesch-Kincaid grade level formula works,
apply it to the first epigraph (Fellows and Parberry) at the beginning of this chapter.
What does the formula output as the grade level of this quote?

The 3 sentences in the quote contain 14, 24, and 20 words, respectively, so the
average number of words per sentence is (14 + 24 + 20)/3 ≈ 19.33. There are 90 total
syllables in the quote’s 58 words, so the average number of syllables per word is
90/58 ≈ 1.55. Plugging these values into the formula, we get

0.39 × 19.33 + 11.8 × 1.55 − 15.59 ≈ 10.24.

So the formula says that the quote is at about a tenth grade reading level.

You may be surprised to hear that this formula does not provide nearly enough
detail for a computer to carry it out. You can figure out how to find the average
number of words per sentence and the average number of syllables per word, but a
computer definitely cannot without a lot more help. Instead, this formula is more
appropriately thought of as a more detailed description of what the output “reading
level” means.

To teach a computer how to apply the Flesch-Kincaid formula to any text, we need
to replace the black box with a detailed sequence of steps that transforms the input
(text) into the correct output (reading level). This sequence of steps is called an
algorithm . An algorithm is how we teach a computer how to solve a problem.

Take it from the top
To make designing an algorithm more manageable, we can decompose it into simpler
subproblems. A subproblem is an easier problem that, once solved, will make
solving the original problem more straightforward.

Reflection 1.5 Look at the Flesch-Kincaid formula again. What are the two subproblems
we need to solve before we can apply the formula?

As we saw when we applied the formula, we need to determine two things about the
text: the average number of words per sentence and the average number of syllables
per word. So these are two subproblems of the overall problem, together with the
actual calculation of the Flesch-Kincaid grade level score. We can represent this as
follows.

Flesch-Kincaid
grade level score

average number of
words per sentence

average number of
syllables per word

reading level
of a text

This diagram shows us that there are three subproblems involved in solving the
reading level problem. If we had functional abstractions, “black boxes,” for these
three subproblems, then we could easily solve the reading level problem by getting the

Copyright Taylor and Francis, 2021

8 � 1 How to Solve It

President

Academic
Affairs

Finance and
Management

Student
Affairs

Natural
Sciences

Social
Sciences

Humanities
and Arts Budget Human

Resources
Health and
Wellness Athletics Residential

Life

Biology Computer
Science

Varsity
Athletics Recreation Club SportsSociology HistoryPolitical

Science Music… … …

Figure 1.3 A simplified organizational chart of a hypothetical college.

required values from the two leftmost subproblems and then plugging their outputs
into the third subproblem. This technique is called top-down design because it
involves starting from the top, the problem to be solved, and then breaking it
down into smaller pieces. The final result of this process is called a functional
decomposition .

Top-down design and functional decomposition are commonly used to make all sorts
of things more manageable. For example, suppose you are the president of a college.
Because you cannot effectively manage every detail of such a large organization, you
hire a vice president to oversee each of three divisions, as illustrated in Figure 1.3.
You expect each vice president to keep you informed about the general activity
and performance of their division, but insulate you from the day-to-day details. In
this arrangement, each division becomes a functional abstraction to you; you know
what each division does, but not necessarily how it does it, freeing you to focus on
more important organization-level activity. Each vice president may utilize a similar
arrangement within their division. Indeed, organizations are often subdivided many
times until the number of employees in a unit is small enough to be overseen by a
single manager.

Similarly, each of the subproblems in a functional decomposition might be further
broken down, until we arrive at subproblems that are straightforward to solve.

Reflection 1.6 Can the left subproblem in the reading level problem, “average number
of words per sentence,” be computed directly? Or can it be decomposed further? (Think
about how you computed the reading level in Reflection 1.2.)

We saw above that the average number of words per sentence is equal to the total
number of words divided by the total number of sentences, so we can decompose
this subproblem into two even simpler subproblems:

average number of
words per sentence

total number of
words

total number of
sentences

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 9

average number of
words per sentence

average number of
syllables per word

reading level
of a text

total number of
words

total number of
sentences

total number of
syllables

total number of
words

number of syllables
in one word

Flesch-Kincaid
grade level score

Figure 1.4 Functional decomposition of the reading level problem.

Similarly, we can also decompose the problem of computing the average number of
syllables per word into two subproblems:

average number of
syllables per word

total number of
syllables

total number of
words

Taken altogether, we are now left with three relatively simple subproblems to solve:
(a) counting the total number of words, (b) counting the total number of sentences,
and (c) counting the total number of syllables.

Reflection 1.7 Can computing the total numbers of words, sentences, or syllables be
broken down further?

Counting the total numbers of words and sentences seems pretty straightforward.
But finding the total number of syllables is not as simple because even finding the
number of syllables in one word is not trivial for a computer, especially with all
of the oddities of the English language. Thus it makes sense to further decompose
finding the total number of syllables into the subproblem of finding the number of
syllables in just one word.

A diagram of the final functional decomposition is shown in Figure 1.4. These kinds
of diagrams are called trees because they resemble an upside down tree with the
root at the top and branches spreading out below. Nodes at the bottom of the tree
are called leaves.

Copyright Taylor and Francis, 2021

10 � 1 How to Solve It

Pseudocode
The next step is to write an algorithm for each of the subproblems, starting with
the leaves at the bottom of the tree and working our way up to the root. We will get
to this shortly, but first let’s write an algorithm for a more straightforward problem.

Computing the volume of a sphere

This simple problem can be visualized as follows.

sphere volumeradius r volume of a sphere with radius r

To compute the output from the input, we can simply use the well-known formula
V = (4/3)πr3. Although this is much closer to an algorithm than the Flesch-Kincaid
formula, it still does not explicitly specify a sequence of steps; there are several
alternative sequences that one could follow to carry it out.3 For example, we could
cube r first, then multiply that result by the rest of the terms, or we could cube r
last, or we could multiply r by (4/3)π then by r2, etc. Here is one algorithm that
follows the formula:

Algorithm Sphere Volume

Input: the radius r of the sphere
1 Multiply r × r × r.
2 Multiply the previous result by π.
3 Multiply the previous result by 4.
4 Divide the previous result by 3.

Output: the final result, which is the volume of the sphere

At the top of the algorithm, we note the input and at the bottom we note the output.
In between, the individual lines are called statements. Carrying out the sequence
of statements in an algorithm is called executing or running the algorithm.

The informal style in which this algorithm is written is known as pseudocode , to
differentiate it from code, which is another name for a computer program. In common
usage, the prefix pseudo often has a negative connotation, as in pseudo-intellectual
or pseudoscience, but here it simply connotes a relaxed manner of writing algorithms
that is meant to be read by a human rather than a computer. The flexibility afforded
by pseudocode allows us to more clearly focus on how to solve the problem at hand
without becoming distracted by the more demanding requirements of a programming
language. Once we have refined the algorithm adequately and convinced ourselves
that it is correct, we can translate it into a formal program. We’ll talk more about
that in the next section.

3In Python, we can actually use this formula more or less directly, but to facilitate this simple
example, we’ll pretend otherwise for now.

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 11

Here is a different algorithm that also computes the volume of a sphere. We are
calling this algorithm a “draft” because, like other kinds of writing, algorithms also
require rounds of revisions. We will revise this algorithm two more times.

Algorithm Sphere Volume 2 — Draft 1

Input: the radius r of the sphere
1 Divide 4 by 3.
2 Multiply the previous result by π.
3 Repeat the following three times: multiply the previous result by r.

Output: the final result, which is the volume of the sphere

To better understand what an algorithm is doing, we can execute it on an example,
using a trace table . In a trace table, we trace through each step of the algorithm
and keep track of what is happening. The following trace table shows the execution
of our draft Sphere Volume 2 algorithm with input value r = 10.

Trace input: r = 10
Step Line Result Notes

1 1 1.3̄ 4 ÷ 3 = 1.3̄

2 2 4.186̄ multiplying the previous result (1.3̄) by π
3 3 41.86̄ multiplying the previous result (4.186̄) by 10

4 3 418.6̄ multiplying the previous result (41.86̄) by 10

5 3 4,186.6̄ multiplying the previous result (418.6̄) by 10

Output: 4,186.6̄

The four columns keep track of the number of steps executed by the algorithm, the
line number in the algorithm being executed, the result after that line is executed,
and notes explaining what is happening in that line.

The first two steps are pretty self-explanatory. Then, because line 3 of the algorithm
instructs us to repeat something three times, line 3 is executed 3 times in the trace
table. A statement that repeats like this is called a loop. When algorithms contain
loops, the number of steps is not necessarily the same as the number of lines.

Because we will eventually want to translate our pseudocode algorithms into actual
code, it will be important to adhere to some important principles that will make
this translation easier. First, we must strive to eliminate any ambiguity from our
algorithms. In other words, the steps in an algorithm must never require creative
interpretation by a human being. As we will see in Section 3.1, computers are, at their
core, only able to perform very simple instructions like arithmetic and comparing two
numbers, and are incapable of creative inference. Second, the steps of an algorithm
must be executable by a computer. In other words, they must correlate to things

Copyright Taylor and Francis, 2021

12 � 1 How to Solve It

a computer can actually do. The definition of executable will become clearer as we
learn more about programming.

These two requirements are not really unique to computer algorithms. For example,
we hope that new surgical techniques are unambiguously presented with references to
actual anatomy and real surgical tools. Likewise, when an architect designs a building,
they must use only available materials and be precise about their placement. And
when an author writes a novel, they must write to their audience, using appropriate
language and culturally familiar references.

By these standards, both of the previous algorithms are less than ideal in at least
two ways. First, references to the “previous result” are not precise and will not get
us very far in more complex algorithms where multiple intermediate values need to
be remembered. This kind of imprecision can easily lead to problematic ambiguity in
our algorithms. Second, in none of the steps did we explicitly state that we needed
to remember a result to be used later. When you executed the algorithms, you could
infer this necessity, but this is an example of the kind of ambiguity that we need to
avoid when writing algorithms for a computer.

To remedy these issues, algorithms use variables to give names to values that need
to be remembered later. To make our algorithms understandable to a human reader,
we will use descriptive variable names, unlike the single letter x and y variables
that are common in mathematics. In our pseudocode algorithms, we will indicate
variables in italics and assign a value to a variable with the notation

variable ← value
The left-facing arrow indicates that the value on the right is being assigned to the
variable on the left. For example, eggs← 12 would assign the value 12 to the variable
named eggs. Using variables, the Sphere Volume 2 algorithm can be rewritten as
follows.

Algorithm Sphere Volume 2 — Draft 2

Input: the radius r of the sphere
1 volume ← 4 ÷ 3
2 volume ← previous value of volume × π
3 repeat the following three times:
4 volume ← previous value of volume × r

Output: the value of volume

In this version, we have also formatted the loop a little bit differently, indenting the
statement that is being repeated on a separate line (line 4). The statements that are
executed repeatedly by a loop are called the body of the loop. So line 4 is the body
of the loop that starts on line 3. The following trace table, again with input value r
= 10, illustrates how the revised algorithm works.

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 13

Trace input: r = 10
Step Line volume Notes

1 1 1.3̄ volume ← 4 ÷ 3 = 1.3̄

2 2 4.186̄ volume ← previous volume × π = 1.3̄ × 3.14 = 4.186̄

3 3 ” volume unaffected; execute line 4 three times
4 4 41.86̄ volume ← previous volume × r = 4.186̄ × 10 = 41.86̄

5 4 418.6̄ volume ← previous volume × r = 41.86̄ × 10 = 418.6̄

6 4 4,186.6̄ volume ← previous volume × r = 418.6̄ × 10 = 4,186.6̄

Output: volume = 4,186.6̄

Notice that we have replaced the generic “Result” column with a column that keeps
track of the value of the introduced variable, which we named volume because it
will eventually be assigned the volume of the sphere. The first line of the trace table
shows that the variable named volume is assigned the result of dividing 4 by 3. In
line 2, the value of volume, which is now 1.3̄, is multiplied by π (which we truncate
to 3.14), and the result, which is 4.186̄, is assigned to volume. Notice how much less
ambiguous this is, compared to a reference to a “previous result.” Also note that
this assignment has overwritten the previous value of volume. Next, line 3 does not
do anything on its own; it just instructs us to repeat line 4 three times. (The “ditto”
marks indicate no change to volume.) Each execution of line 4 multiplies the value
of volume by 10, and overwrites the value of volume with this result. At the end,
volume corresponds to the value 4,186.6̄, which is output by the algorithm.

Reflection 1.8 Trace through the algorithm again with input value r = 5. Create a new
trace table to show your progress. (The final answer should be 523.3̄.)

Let’s make one more refinement to our algorithm. In line 2 (and similarly in line 4),
the algorithm refers to the “previous value of” volume on the righthand side of the
assignment:

volume ← previous value of volume × π
We included this language for clarity, but it is not actually necessary; the statement
can be abbreviated to

volume ← volume × π .

In any assignment statement, the righthand side after the arrow must be evaluated
first, before the result of this evaluation is assigned to the variable on the lefthand
side. Therefore, when volume is referenced on the righthand side of this assignment,
it must refer to the previous value of volume, assigned in the previous line, as
illustrated below.

second step
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
volume ←

first step
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
volume × π

↑ ↑
next value previous value

(4.186̄) (1.3̄)

Copyright Taylor and Francis, 2021

14 � 1 How to Solve It

With this revision, the algorithm now looks like this:

Algorithm Sphere Volume 2 — Final

Input: the radius r of the sphere
1 volume ← 4 ÷ 3
2 volume ← volume × π
3 repeat the following three times:
4 volume ← volume × r

Output: volume

A trace table for this algorithm looks exactly like the previous one.

Implement from the bottom
We are now prepared to return our attention to the reading level problem. Based
on our decomposition tree in Figure 1.4, there are two ways that we can proceed.
Our first option is to start at the top of the tree and work our way down. For this
to work, we would need to assume that algorithms for the three main subproblems
already exist. Although it is possible to work this way, it is trickier because we
cannot test whether anything is working correctly until we have written algorithms
for everything in the tree.

Instead, we will start at the bottom of the decomposition tree and work our way up,
in what we call a bottom-up implementation . The subproblems that are leaves
of the tree are not dependent on any other subproblems, so we can design algorithms
for these first, make sure they work, and then call upon them in algorithms for
subproblems one level higher. If we continue this process until we reach the root of
the tree, we will have a complete algorithm. Let’s start with an algorithm for the
“Flesch-Kincaid grade level score” subproblem, which takes as inputs the average
number of words per sentence and the average number of syllables per word, and
outputs the grade level of the text according to the Flesch-Kincaid formula.

average words,
average syllables

reading level of the textFlesch-Kincaid
grade level score

In pseudocode, we can write this algorithm as follows:

Algorithm Flesch Kincaid

Input: average words, average syllables
1 reading level ← 0.39 × average words + 11.8 × average syllables − 15.59

Output: reading level

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 15

This one-line algorithm simply uses its two input values to compute the grade level,
assigns this value to the variable named reading level, and then outputs this value.

Let’s next write an algorithm to compute the number of syllables in a word. This
algorithm will take a single word as input and output the number of syllables.

word count of syllablesnumber of syllables
in one word

Reflection 1.9 How do you count the number of syllables in a word? Do you think your
method can be “taught” to a computer?

As you might imagine, a computer cannot use the “clapping method” or something
similar to compute the number of syllables in a word. Instead, a syllable-counting
algorithm will need to ”look at” the letters in the word and follow some rules based
on those letters. Since the number of syllables in a word is defined to be the number
of distinct vowel sounds, a first approximation would be to simply count the number
of vowels in the word.

Algorithm Syllable Count — Draft 1

Input: a word
1 count ← the number of vowels in word

Output: count

Reflection 1.10 What does it mean for an algorithm to be correct? Is this algorithm
correct? If it is not, why not?

An algorithm is correct if it gives the correct output for every possible input. This
algorithm is obviously too simplistic to be correct. For example, the algorithm will
over-count the number of syllables in words containing diphthongs, such as rain and
loan, and in words ending with a silent e.

Reflection 1.11 There is also some ambiguity in this one-line syllable-counting algorithm.
Do you see what it is?

The ambiguity arises from the definition of a vowel in the English language. The
letters a, e, i, o, and u are always vowels but sometimes so is y. So our algorithm
needs to clarify this. Incorporating these insights (and ignoring y as a vowel) leads
to the following enhanced algorithm.

Copyright Taylor and Francis, 2021

16 � 1 How to Solve It

Algorithm Syllable Count — Draft 2

Input: a word
1 count ← the number of vowels (a, e, i, o, u) in word
2 repeat for each pair of adjacent letters in word:
3 if the letters are both vowels, then subtract 1 from count
4 if word ends in e, then subtract 1 from count

Output: count

Notice two new kinds of pseudocode statements in this algorithm. First, line 2, is a
different kind of loop. Imagine yourself looking carefully for adjacent vowels in a very
long word like consanguineous. You would probably scan along the word visually
or with your finger, from left to right, repeatedly checking pairs of adjacent letters.
This is also what lines 2 and 3 are doing; for each pair of adjacent letters you look at,
check if they are both vowels and subtract one from the count if they are. Another
name for the repetitive process carried out by a loop is iteration ; implicit in line 2
is a process of iterating over the letters of the word.

Lines 3 and 4 both illustrate the second new type of statement, called a conditional
statement , or sometimes an if-then statement . Simple conditional statements
like this are self-explanatory: if the condition after the if is true, do the thing after
then. We will work with more sophisticated conditional statements in Chapter 5.

Let’s use a trace table to show the execution of this algorithm on the word “ancient.”

Trace input: word = "ancient"

Step Line count letters Notes
1 1 3 — there are three vowels in "ancient"

2 2 ” "an" first pair of adjacent letters in "ancient" is "an"
3 3 ” ” "an" are not both vowels; no change to count

4 2 ” "nc" next pair of adjacent letters is "nc"
5 3 ” ” "nc" are not both vowels; no change to count

6 2 ” "ci" next pair of adjacent letters is "ci"
7 3 ” ” "ci" are not both vowels; no change to count

8 2 ” "ie" next pair of adjacent letters is "ie"
9 3 2 ” "ie" are both vowels; subtract 1 from count

10 2 ” "en" next pair of adjacent letters is "en"
11 3 ” ” "en" are not both vowels; no change to count

12 2 ” "nt" next pair of adjacent letters is "nt"
13 3 ” ” "nt" are not both vowels; no change to count

14 4 ” ” "ancient" does not end in e; no change to count

Output: count = 2

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 17

The horizontal lines in the trace table make it easier to see the individual iterations
of the loop. In the first step, we count the number of vowels in the input and assign
count to this value. In step 2, we begin the loop by considering the first pair of
adjacent letters in the input, "an". In step 3, we check if these are both vowels. Since
they are not, we leave count alone. In step 4, we repeat the loop by executing line 2
again with the next pair of adjacent letters, "nc". In step 5, we repeat line 3 which,
again, has no effect on the count. In the third iteration, in lines 6–7, the same thing
happens. In the fourth iteration of the loop, starting in step 8, we do find a pair
of adjacent letters that are both vowels, so we subtract one from count. The loop
continues until we run out of letters from the input. Finally, in step 14, we execute
line 4, which finds that the input does not end in e, so count remains 2.

Reflection 1.12 Use trace tables to also execute the algorithm on the words “create” and
“syllable.” Do you get the correct numbers of syllables?

From these examples, you can see that our algorithm is still not correct. Indeed,
designing a computer algorithm that correctly counts syllables for every word in the
English language is virtually impossible; there are just too many exceptions! But we
can certainly get closer than we are now. We will leave it as an exercise for you to
draft further improvements.

To continue our bottom-up implementation of the reading level algorithm, we will
use the Syllable Count algorithm to solve the “total number of syllables” problem.
The idea of the Total Syllable Count algorithm is simple: for each word in the text,
call upon the Syllable Count algorithm for the number of syllables in that word, and
add this number to a running sum of the total number of syllables.

Algorithm Total Syllable Count

Input: a text
1 total count ← 0
2 repeat for each word in the text:
3 number ← Syllable Count (word)
4 total count ← total count + number

Output: total count

In line 1 of the algorithm, we initialize the total count of syllables to zero. Line 2 is
a loop that iterates over all of the words in the text. For every word, we execute
lines 3 and 4, indented to indicate that these comprise the body of the loop. In line
3, we call upon the Syllable Count algorithm to get the number of syllables in the
word that is being considered in that iteration. Syllable Count (word) is shorthand for
“execute the Syllable Count algorithm with input word,” where word is the variable
name representing the word that is being examined in each iteration of the loop.
The output of the Syllable Count algorithm is then assigned to the variable named
number. So altogether, line 3 is shorthand for

Copyright Taylor and Francis, 2021

18 � 1 How to Solve It

“Execute the Syllable Count algorithm, with input word, and assign the
output to the variable named number.”

Then in line 4, we add the number of syllables in the word to the total count of
syllables.

This is a lot to take in, so let’s once again illustrate with a trace table, using the
first three words of the United Nations charter as input.

Trace input: text = "We the peoples"
Step Line total count word number Notes

1 1 0 — — initialize total count to zero
2 2 ” "We" — do the loop body with word ← "We"
3 3 ” ” 1 get the number of syllables in "We"
4 4 1 ” ” add number to total count

5 2 ” "the" ” do the loop body with word ← "the"
6 3 ” ” 1 get the number of syllables in "the"
7 4 2 ” ” add number to total count

8 2 ” "peoples" ” do the loop body with word ← "peoples"
9 3 ” ” 2 get the number of syllables in "peoples"
10 4 4 ” ” add number to total count

Output: total count = 4
In the trace table, horizontal lines identify the three iterations of the loop, one for
each word in the text. In the first iteration, in step 2, the loop assigns word to be
"We", as the first word in the text. Then, in step 3, number is assigned the output of
Syllable Count ("We"), which means that the Syllable Count algorithm is called upon
to get the number of syllables in "We" and this value (1) is assigned to the variable
number. In step 4, the value of number is added to the total count. Remember that,
in an assignment statement, the righthand side is evaluated first, so the statement
in line 4 is assigning to total count the sum of the previous value of total count and
number, as illustrated below:

total count ← total count + number
↑ ↑ ↑

next value previous value (1)
(1) (0)

In the second iteration, starting in step 5, the loop assigns word to be "the", the
Syllable Count algorithm is called upon to get the number of syllables in "the" and this
value is added to total count, bringing its value to 2. Finally, in the third iteration,
starting on line 8, the process repeats with word assigned to be "peoples", bringing
the total number of syllables to 4, which is the output of the algorithm.

To flesh out the entire reading level algorithm, we would continue designing algorithms
for subproblems at the bottom of the tree, and work our way up, calling upon

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 19

algorithms at lower levels from algorithms for levels above. This would continue
until we get to the root of the tree.

Suppose, for the moment, that we have worked our way up the decomposition tree
and that, in addition to the Flesch-Kincaid algorithm, algorithms for the other two
main subproblems have been written—one that computes the average number of
words per sentence and one that computes the average number of syllables per word.
Also suppose that we have named these algorithms Average Words Per Sentence and
Average Syllables Per Word, respectively. Then the final reading level algorithm would
look like the following.

Algorithm Reading Level

Input: a text
1 average words ← Average Words Per Sentence (text)
2 average syllables ← Average Syllables Per Word (text)
3 reading level ← Flesch-Kincaid (average words, average syllables)

Output: reading level

Line 1 of the algorithm is shorthand for

“Execute the Average Words Per Sentence algorithm, with input text, and
assign the output to the variable named average words.”

Similarly, line 2 of the algorithm is shorthand for

“Execute the Average Syllables Per Word algorithm, with input text, and
assign the output to the variable named average syllables.”

Finally, line 3 calls upon the Flesch-Kincaid algorithm, with the values of these two
variables as input, to compute the Flesch-Kincaid grade level score. The output of
this algorithm is then assigned to the variable named reading level, which is output
by the algorithm.

We invite you to take a stab at writing the remaining algorithms in the exercises.

Exercises
1.2.1. Decompose each of the following problems into subproblems. Continue the

decomposition until you think each subproblem is sufficiently simple to solve.
Explain your rationale for stopping the decomposition where you did.

(a)* an exercise routine from warmup to cool down

(b) your complete laundry routine

(c) writing a paper for a class

(d) your morning routine

(e) planning a multiple course menu

Copyright Taylor and Francis, 2021

20 � 1 How to Solve It

1.2.2. Suppose you want to find the area of each of the following shaded regions. In
each of the diagrams, one square represents one square unit. Decompose each
problem into subproblems that make finding the solution easier. (You do not
need to actually find the areas.)

(b) (c)(a)*

1.2.3. Look up the organizational chart for your school. Choose one division and
explain how the organization of that division supplies a functional abstraction
to the office that oversees the division.

1.2.4* Use a trace table to show how the final Sphere Volume 2 algorithm executes with
input r = 7.

1.2.5. Use a trace table to show how the second draft of the Syllable Count algorithm
executes on the word algorithm. Is the result correct?

1.2.6. The following algorithm computes the surface area of a box.

Algorithm Surface area of a box

Input: length, width, height
1 area 1 ← length × width
2 area 2 ← length × height
3 area 3 ← width × height
4 surface ← area 1 + area 2 + area 3
5 surface ← surface × 2

Output: surface

Use a trace table (started below) to show how the algorithm executes with
inputs length = 4, width = 5, and height = 2.

Trace input: length = 4, width = 5, height = 2
Step Line area 1 area 2 area 3 surface Notes

1 1 20 — — — area 1 ← length × width
2 2
⋮

Output:

1.2.7* The following algorithm determines the winner of an election between two
candidates, Laura and John. The input is a list votes like [Laura, Laura, John,
Laura, . . .].

Copyright Taylor and Francis, 2021

1.2 DESIGN AN ALGORITHM � 21

Algorithm Count votes

Input: votes
1 laura ← 0
2 john ← 0
3 repeat once for each entry in votes:
4 if the entry is for Laura, then add 1 to laura
5 otherwise, add 1 to john
6 if laura > john, then winner ← Laura
7 otherwise, winner ← John

Output: winner

Use a trace table (started below) to show how the algorithm executes with input
votes = [John, Laura, Laura, John, Laura].

Trace input: votes = [John, Laura, Laura, John, Laura]
Step Line laura john winner Notes

1 1 0 — — laura set to 0
2 2
⋮

Output:

1.2.8. There is a subtle mistake in the algorithm in Exercise 1.2.7. Describe and fix it.

1.2.9* Revise the original Sphere Volume algorithm on page 10 so that it also uses a
variable instead of referring to the “previous result.”

1.2.10. Write yet another algorithm for finding the volume of a sphere.

1.2.11. Write an algorithm to sort a stack of any 5 cards by value in ascending order. In
each step, your algorithm may compare or swap the positions of any two cards.

1.2.12. Write an algorithm to walk between two nearby locations, assuming the only
legal instructions are “Take s steps forward,” and “Turn d degrees to the left,”
where s and d are positive integers.

1.2.13. The term algorithm was derived from the name of Muh.ammad ibn Mūsā al-
Khwārizmı̄ (c. 780–c. 850), a Persian mathematician who introduced both Arabic
numerals and algebra to the world. The term algebra is derived from the Latin
translation of the title of his book, “The Compendious Book on Calculation
by Completion and Balancing” [4], which introduced algebra. The following
algorithm for a common algebraic operation is from an English translation of
this work.

You know that all mercantile transactions of people, such as buying and selling,
exchange and hire, comprehend always two notions and four numbers, which are
stated by the enquirer; namely, measure and price, and quantity and sum. The
number which expresses the measure is inversely proportionate to the number

Copyright Taylor and Francis, 2021

22 � 1 How to Solve It

which expresses the sum, and the number of the price inversely proportionate
to that of the quantity. Three of these four numbers are always known, one
is unknown, and this is implied when the person inquiring says “how much?”
and it is the object of the question. The computation in such instances is this,
that you try the three given numbers; two of them must necessarily be inversely
proportionate the one to the other. Then you multiply these two proportionate
numbers by each other, and you divide the product by the third given number, the
proportionate of which is unknown. The quotient of this division is the unknown
number, which the inquirer asked for; and it is inversely proportionate to the
divisor.

Examples.—For the first case: If you are told “ten for six, how much for four?”
then ten is the measure; six is the price; the expression how much implies the
unknown number of the quantity; and four is the number of the sum. The number
of the measure, which is ten, is inversely proportionate to the number of the
sum, namely, four. Multiply, therefore, ten by four, that is to say, the two known
proportionate numbers by each other; the product is forty. Divide this by the
other known number, which is that of the price, namely, six. The quotient is six
and two-thirds; it is the unknown number, implied in the words of the question
“how much?” it is the quantity, and inversely proportionate to the six, which is
the price.

There are four variables identified in the passage: measure, price, sum, and
quantity. Write an algorithm in pseudocode that answers the “how much?”
question posed in the example when the first three quantities are given as input.

1.2.14* Using the Syllable Count algorithm as a guide, write an algorithm named Word

Count that approximates the total number of words in a text. Your algorithm
should take a text as input and output a count of words. Like the Syllable Count

algorithm, use a loop to look at each letter in the text and adjust a count as
appropriate. As with counting syllables, this problem is fraught with complexity
arising from the English language, so your algorithm need not be perfect.

1.2.15. Write an algorithm named Sentence Count to count the total number of sentences
in a text. Your algorithm should take a text as input and output a count of
sentences. The guidance from the previous exercise also applies.

1.2.16* Using Figure 1.4 and the Reading Level algorithm on page 19 as guides, design the
Average Words Per Sentence algorithm. Call upon your Word Count and Sentence

Count algorithms to do most of the work.

1.2.17. Using Figure 1.4 and the Reading Level algorithm on page 19 as guides, design
the Average Syllables Per Word algorithm. Call upon your Word Count algorithm
and the Total Syllable Count algorithm to do most of the work.

1.2.18. Enhance the Syllable Count (Version 2) algorithm on page 16 so that it correctly
counts the number of syllables in

(a) plural words

(b) words ending in a consonant plus le (e.g., syllable)

(c) words containing a y that acts like a vowel

(d) the word algorithm

Copyright Taylor and Francis, 2021

1.3 WRITE A PROGRAM � 23

1.3 WRITE A PROGRAM

Third, carry out your plan, checking each step.

The next step in the problem solving process is to “carry out your plan” by translat-
ing your algorithm into a program that a computer can execute. A program must
adhere to a set of grammatical rules, called syntax , that are defined by a particular
programming language . In this book, we will use a programming language called
Python. You will find that programming in Python is not too different from writing
algorithms in pseudocode, which is why it is a great first language. But Python
is not a toy language either; it has become one of the most widely used program-
ming languages in the world, especially in data science, bioinformatics, and digital
humanities.

Writing programs (or “programming”) is a hands-on activity that allows us to test
our algorithms, apply them to real inputs, and harness their results, in tangible and
satisfying ways. Learning how to program empowers us to put our algorithms into
production. Solving problems and writing programs should also be fun and creative.
Guido van Rossum, the inventor of Python understood this when he named Python
after the British comedy series “Monty Python’s Flying Circus!”

In this section, we will not be able to fully realize our reading level algorithm as a
program just yet. Some of the steps that are easy to write as pseudocode, such as
breaking a text into individual words, are actually more involved than they look on
paper. But we will be able to implement the Flesch-Kincaid algorithm at the bottom
of our decomposition tree, and get oriented for what awaits in future chapters. Before
long, you will be able to implement everything from the previous section and much
more!

Welcome to the circus
As you work through this book, we highly recommend that you do so in front of a
computer. The only way to learn how to program is to do it, so every example we
provide is meant to be tried by you. Then go beyond the examples, and experiment
with your own ideas. Instead of just wondering, “What would happen if I did this?”,
type it in and see! To get started, launch the application called IDLE that comes
with every Python distribution (or another programming environment recommended
by your instructor). You should see a window appear with something like this at the
top:

Python 3.8.4 (v3.8.4:dfa645a65e, Jul 13 2020, 10:45:06)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>>

The program executing in this window is known as a Python shell . The first line
tells you which version of Python you are using (in this case, 3.8.4). The programs
in this book are based on Python version 3.6 and higher. If you need to install a

Copyright Taylor and Francis, 2021

24 � 1 How to Solve It

newer version, you can find one at http://python.org. The symbol >>> on the
fourth line in the IDLE window is called the prompt because it is prompting you
to type in a Python statement. To start, type in print('Hello world!') at the
prompt and hit return.

>>> print('Hello world!')
Hello world!
>>>

Congratulations, you have just written your first program! This one-statement
program simply prints Hello world! on the screen.

Notice that the Python shell responded to your command with a result, and then
gave you a new prompt. The shell will continue this “prompt → compute → respond”
cycle until we quit (by typing quit()). In the “compute” step, as we will see in
Section 3.1, the computer does not really understand what we are typing. Instead,
each Python statement is transparently translated into machine language , which
is the only language a computer actually understands. Then the shell executes the
machine language instructions and prints the result. The part of the shell that does
this translation is called the interpreter . Python programs can also be executed in
“program mode,” where the Python interpreter executes an entire program containing
multiple statements all at once. We will introduce program mode in the next chapter.

A programming language like Python provides a rich set of abstractions that enable us
to solve a wide variety of interesting problems. Your one-line program demonstrates
two of these. The sequence of characters in quotes, 'Hello world!', is called a
character string or just a string . Strings, which can be enclosed in either single
quotes (') or double quotes ("), are how Python represents and stores text, from
single characters up to entire books. To display this string, we used the print

function. Functions are how functional abstractions are implemented in Python.
A function, like the algorithms we developed in the previous section, takes one or
more inputs, called arguments, and produces an output, called the return value .
We call upon functions to compute things for us with the familiar notation that we
used in the previous section to call upon algorithms. The print function takes the
string 'Hello world!' as an argument (in parentheses) and prints it to the screen.
Alternatively, we could have assigned the string to a variable and then passed this
variable to the print function like this:

>>> message = 'Hello world!'
>>> print(message)
Hello world!
>>>

In our pseudocode algorithms, we used a left-facing arrow to assign values to variables
to emphasize that assignment is a two-step, right-to-left process:

1. Evaluate the expression on the righthand side of the assignment operator.

2. Assign the resulting value to the name on the lefthand side of the assignment
operator.

Copyright Taylor and Francis, 2021

http://python.org

1.3 WRITE A PROGRAM � 25

Operators Description

1. () parentheses
2. ** exponentiation (power)
3. +, - unary positive and negative, e.g., -(4 * 9)

4. *, /, //, % multiplication and division
5. +, - addition and subtraction

Table 1.1 Arithmetic operator precedence, highest to lowest. Operators with the same

precedence are evaluated left to right.

In Python, assignment works exactly the same way, but the assignment operator
is the equal sign (=) instead of an arrow.

Python can also crunch numbers, of course. Computing the volume of a sphere looks
like this:

>>> radius = 10
>>> pi = 3.14159
>>> volume = (4 / 3) * pi * radius ** 3

We created two new variables above named radius and pi, and used these variables
to compute the volume using the formula (4/3)πr3. The /, *, and ** symbols perform
division, multiplication, and exponentiation, respectively. The spaces around the
operators in the arithmetic expression are optional and ignored by the interpreter.
In general, Python does not care if you include spaces in expressions, but you
always want to make your programs readable to others, and spaces often help. The
interpreter evaluates arithmetic operators in the usual order, summarized in Table 1.1
(i.e., PEMDAS). This precedence may be overridden by parentheses. You can also
use parentheses, even when unnecessary, to make expressions easier to understand,
as we did above with parentheses around 4 / 3.

Assignment statements do not print any results, but you can display the value of a
variable by either typing its name or using print.

>>> volume
4188.786666666666
>>> print(volume)
4188.786666666666

In the shell, both methods do the same thing. (When we start writing programs in
the next chapter, using print will be necessary.)

Similarly, let’s compute the Flesch-Kincaid reading level of a hypothetical text (since
we cannot yet analyze a real text) with an average of 16 words per sentence and
1.78 syllables per word, using the formula on page 6.

>>> averageWords = 16
>>> averageSyllables = 1.78
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print(readingLevel)
11.654

Copyright Taylor and Francis, 2021

26 � 1 How to Solve It

The print function can also take multiple arguments, separated by commas. A space
will be inserted between arguments when they are displayed.

>>> print('The reading level is', readingLevel, '.')
The reading level is 11.654 .

The first and last arguments are strings, and the second argument is the vari-
able we defined above. Notice that there are no quotes around the variable name
readingLevel.

Reflection 1.13 Why do you think quotation marks are necessary around strings? Try
removing them and see what happens.

>>> print(The reading level is, readingLevel, .)

The quotation marks are necessary because otherwise Python has no way to dis-
tinguish text from a variable or function name. Without the quotation marks, the
Python interpreter will try to make sense of each argument, assuming that each
word is a variable or function name, or a reserved word in the Python language.
Since this sequence of words does not follow the syntax of the language, and most of
these names are not defined, the interpreter will print an error.

Every value in Python has a type associated with it. Understanding this is very
important when programming because the behaviors of operators and functions
often depend upon the type of data they are given. You can see the different types
of values assigned to our variables so far by using the type function.

>>> type(message)
<class 'str'>
>>> type(averageWords)
<class 'int'>
>>> type(averageSyllables)
<class 'float'>
>>> type(readingLevel)
<class 'float'>

A class , for our purposes at the moment, is a synonym for type. (We will talk about
classes in more detail in the next chapter.) So this is telling us that the value assigned
to message is a string (str), the value assigned to averageWords is an integer
(int), and the value assigned to averageSyllables is a float (short for floating
point number). We will have more to say about integers and floats in Section 3.2;
for now, suffice to say that any number without a decimal point is an integer and
any number with a decimal point is a float. The value assigned to readingLevel

is also a float because the type of any arithmetic expression involving a float will
also be a float. So in the print statement above, we actually combined two different
types of values: strings and a float. The print function transparently converted
readingLevel to a string before combining it with the other two strings into a
longer string to print.

To suppress the extra space that gets inserted before the period in this print

statement, we can build a string manually using the + operator which, when applied

Copyright Taylor and Francis, 2021

1.3 WRITE A PROGRAM � 27

to strings, is called the concatenation operator . Concatenation combines strings
into longer strings. For example,

>>> first = 'Monty'
>>> last = 'Python'
>>> name = first + ' ' + last
>>> print(name)
Monty Python

To concatenate 'The reading level is', readingLevel, and '.', we need to first
convert readingLevel to a string using the str function. The str function can take
just about any type of value as an argument and it returns the argument represented
as a string. For example, try this:

>>> readingLevelString = str(readingLevel)
>>> readingLevelString
'11.654'

When we use a function like this by passing an argument to it, it is called a function
call , or a function invocation. Calling str(readingLevel) returns (i.e., outputs)
a string representation of readingLevel and assigns this value to the variable
readingLevelString. Notice the quotes in '11.654', indicating that it is a string
rather than a float. The str function does not change the value of readingLevel
though; it remains the same afterwards, as you can confirm:

>>> readingLevel
11.654

The easiest way to use str in the print statement is to skip the intermediate variable
like this:

>>> print('The reading level is ' + str(readingLevel) + '.')
The reading level is 11.654.

Reflection 1.14 Try the previous statement without the str function. What happens
and why?

If we do not convert readingLevel to a string first, then we are trying to “add” a
string to a float, which doesn’t make any sense.

Some other useful functions are float, int, and round. The float and int functions
return float and integer versions of their arguments, similar to the way the str

function returns a string version of its argument.

>>> float(3)
3.0
>>> int(-1.618)
-1

The int function converts its argument to an integer by truncating it, i.e., removing
the fractional part to the right of the decimal point. This might be helpful in our
reading level computation, since we probably do not really want all of the digits to
the right of the decimal point.

Copyright Taylor and Francis, 2021

28 � 1 How to Solve It

>>> readingLevel = int(readingLevel)
>>> readingLevel
11

Notice that we have overwritten the old value of readingLevel with the truncated
value. Alternatively, we could have used the round function to round the reading
level. Function arguments can be more complex than just single constants and
variables; they can be anything that evaluates to a value. For example, we could get
the rounded reading level like this too:

>>> readingLevel = round(0.39*averageWords + 11.8*averageSyllables - 15.59)
>>> readingLevel
12

The expression in parentheses is evaluated first, and then the result of the expression
is used as the argument to the round function.

Not all functions have return values. For example, the print function, which simply
prints its arguments to the screen, does not. For example, try this:

>>> result = print(readingLevel)
12
>>> print(result)
None

The variable result was assigned whatever the print function returned, which is
different from what it printed. When we print result, we see that it was assigned
something called None. None is a Python keyword that essentially represents “nothing.”
Any function that does not define a return value itself returns None by default. We
will see this again shortly when we learn how to define our own functions.

What’s in a name?
Let’s remind ourselves of a few reasons why variable names are so important.

1. Assigning descriptive names to values can make our algorithms much easier
to understand. In the “real world,” programming is almost always a collabo-
rative endeavor, so it is important to always write programs that are easy to
understand by others. Our goal should be to use sufficient descriptive variable
names to create self-documenting programs that require as little as possi-
ble explanation outside the program itself. To see the value of self-documenting
programs, just consider if we had written the reading level computation above
like this instead:

>>> a = 16
>>> b = 1.78
>>> c = 0.39 * a + 11.8 * b - 15.59

Would you have any idea what these statements did?

2. As we did in our pseudocode algorithms, naming inputs will allow us to
generalize algorithms so that, instead of being tied to one particular input,

Copyright Taylor and Francis, 2021

1.3 WRITE A PROGRAM � 29

and break elif for in not True

as class else from is or try

assert continue except global lambda pass while

async def False if None raise with

await del finally import nonlocal return yield

Table 1.2 The 35 Python keywords.

they work for a variety of possible inputs. We will discuss this further in
Section 2.5.

3. Names will serve as labels for computed values that we wish to use later,
eliminating the need to compute them again at that time.

Variable names in Python can be any sequence of characters drawn from letters,
digits, and the underscore (_) character, but they may not start with a digit. And,
unlike some of our pseudocode variable names, they may not contain spaces. You also
cannot use any of Python’s keywords, shown in Table 1.2. Keywords are elements
of the Python language that have predefined meanings. We will encounter most of
these keywords as we progress through this book.

Let’s try breaking some of these naming rules to see what happens.

>>> average words = 6
^

SyntaxError: invalid syntax

A syntax error indicates a violation of the syntax, or grammar, of the Python
language. It is completely normal for programmers to encounter syntax errors; it is
part of the programming process. With practice, it will often become immediately
obvious what you did wrong, you will fix the mistake, and move on. Other times, you
will need to look harder to discover the problem but, with practice, these instances
too will become easier to diagnose. In this case, the problem is the space we are
trying to use in the variable name.

Next, try this one.

>>> average-words = 6
SyntaxError: cannot assign to operator

This syntax error is referring to the dash/hyphen/minus sign symbol (-) that we
have in our name. Python interprets the symbol as the minus operator, which is
why it is not allowed in names. Instead, we can use the underscore (_) character
(i.e., average_words) or vary the capitalization (i.e., averageWords) to distinguish
the two words in the name.

To develop a more nuanced understanding of what an assignment statement really
does, we need to know a little bit about how values are stored. A computer’s memory
consists of billions of memory cells, each of which can store one value. These cells
are analogous to post office boxes, each with a unique address. And a variable name

Copyright Taylor and Francis, 2021

30 � 1 How to Solve It

is like a “Sticky note”4 attached to the front of one of those boxes. As we will see
in Section 3.2, our programs are also stored in the same memory while they are
executing.

The picture below represents the outcome of the three assignment statements in our
reading level computation. Each of the three rectangles represents a memory cell,
and a variable name (on a sticky note) is attached to each one.

16

averageWords

1.78

readingLevelaverageSyllables

11.654

Like a sticky note, a variable name can easily be reassigned to a different value at
any time. For example, suppose we change the average number of syllables to 1.625:

>>> averageSyllables = 1.625

16

averageWords

1.78

averageSyllablesreadingLevel

1.62511.654

The reassignment caused the averageSyllables sticky note to move to a different
memory cell containing the value 1.625. The old value 1.78 may briefly remain in
memory without a name attached to it, but since we can no longer access that value
without a reference to it, the Python “garbage collection” mechanism will soon free
up the memory that it occupies and allow it to be overwritten with something new.

Reflection 1.15 Did the value of readingLevel change when we changed the value of
averageSyllables?

Try it:

>>> readingLevel
11.654

While the value assigned to averageSyllables has changed, the value assigned to
readingLevel has not. This example demonstrates that assignment is a one-time
event; Python does not “remember” how the value of readingLevel was computed.
Put another way, an assignment is not creating an equivalence between a name and
a computation. Rather, it performs the computation on the righthand side of the
assignment operator only when the assignment happens, and then assigns the result
to the name on the lefthand side. That value remains assigned to the name until the

4“Sticky note” is a registered trademark of the BIC Corporation.

Copyright Taylor and Francis, 2021

1.3 WRITE A PROGRAM � 31

name is explicitly assigned some other value or it ceases to exist. To compute a new
value for readingLevel based on the new value of averageSyllables, we would
need to perform the reading level computation again.

>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> readingLevel
9.825

Now the value assigned to readingLevel has changed, due to the explicit assignment
statement above.

16

averageWords

1.78

averageSyllables

1.62511.654 9.825

readingLevel

Yet another way to reinforce the nature of assignment is to look at what happens if
we add one to averageWords:

>>> averageWords = averageWords + 1

If the equals sign denoted equality, then this statement would not make any sense!
However, if we interpret it using the two-step process, it is perfectly reasonable.
First, the expression on the righthand side is evaluated, ignoring the lefthand side
entirely. Since, at this moment, averageWords is 16, the righthand side evaluates
to 16 + 1 = 17. Second, the value 17 is assigned to averageWords. So this statement
has added 1 to, or incremented , the value of averageWords.

What if we had not assigned a value to averageWords before we tried to increment
it? To find out, try this:

>>> tryThis = tryThis + 1
NameError: name 'tryThis' is not defined

This name error occurred because, when the Python interpreter tried to evaluate
the righthand side of the assignment, it found that tryThis was not assigned a
value, i.e., it was not defined. So we need to make sure that we define any variable
before we refer to it. This may sound obvious but, in the context of some larger
programs later on, it might be easy to forget.

Interactive computing
We can interactively query for string input in our programs with the input function.
The input function takes a string prompt as an argument and returns a string value
that is typed in response. For example, the following statement prompts for your
name and prints a greeting.

Copyright Taylor and Francis, 2021

32 � 1 How to Solve It

>>> name = input('What is your name? ')
What is your name? George
>>> print('Howdy, ' + name + '!')
Howdy, George!

The call to the input function above prints the string 'What is your name? ' and
then waits. After you type something (above, we typed George, shown in red) and
hit the return key, the text that we typed is returned by the input function as a
string and assigned to the variable called name. The value of name is then used in
the print function.

To adapt this format to a reading level program, we will need to convert the strings
returned by the input function to numbers. Luckily, we can do this easily with the
float and int functions.

>>> text = input('Average words per sentence: ')
Average words per sentence: 4.5
>>> averageWords = float(text)
>>> averageSyllables = float(input('Average syllables per word: '))
Average syllables per word: 2.1
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print('The reading level is ' + str(round(readingLevel)) + '.')
The reading level is 11.

In response to the first prompt above, we typed 4.5. Then the input function assigned
what we typed to the variable text as a string, in this case '4.5' (notice the quotes).
Then, using the float function, the string is converted to the numeric value 4.5

(no quotes) and assigned to the variable averageWords. In the second prompt, we
combined these two steps by passing the return value of the input function in as the
argument of float. Either way, now that averageWords and averageSyllables

are numerical values, they can be used in the arithmetic expression to compute the
reading level. In the last print statement, notice how we composed the str and
round functions so that the return value of round is being used as the argument to
str.

Reflection 1.16 Type the statements above again, omitting the float function:

>>> averageWords = input('Average words per sentence: ')
>>> averageSyllables = input('Average syllables per word: ')
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59

What happened? Why?

Looking ahead
In just this section, we have nearly achieved a full Python implementation of our
Flesch Kincaid algorithm from page 14. What our implementation is missing is the
ability to call upon it as a functional abstraction like we did in the Reading Level

algorithm on page 19:

reading level ← Flesch-Kincaid (average words, average syllables)

Copyright Taylor and Francis, 2021

1.3 WRITE A PROGRAM � 33

Here’s a sneak peek at how we will do that in the next chapter:

def fleschKincaid(averageWords, averageSyllables):
return 0.39 * averageWords + 11.8 * averageSyllables - 15.59

This defines fleschKincaid to be a function that takes two arguments as input and
returns the corresponding reading level as its output. With this function, we will be
able to do things like this:

readingLevel = fleschKincaid(16, 1.78)

More to come. . .

Exercises
Use the Python interpreter to answer the following questions. Where appropriate, provide
both the answer and the Python expression you used to get it.

1.3.1* You may have seen a meme that challenges you to find the correct answer for
the expression 8 ÷ 2(2 + 2). Use Python to do this.

1.3.2* The Library of Congress stores its holdings on 838 miles of shelves. Assuming
an average book is one inch thick, how many books would this hold?

1.3.3. If I gave you a nickel and promised to double the amount you have every
hour for the next 24, how much money would you have at the end? What if I
only increased the amount by 50% each hour, how much would you have? Use
exponentiation to compute these quantities.

1.3.4. The Library of Congress stores its holdings on 838 miles of shelves. How many
round trips is this between Granville, Ohio and Columbus, Ohio?

1.3.5. What is wrong with each of the following Python names? Suggest a fixed version
for each.

(a) word count

(b) here:there

(c) 'minutes'

(d) 4ever

(e) #thisisavariable

1.3.6. (a) Assign a variable named radius to have the value 10. Using the formula
for the area of a circle (A = πr2), assign to a new variable named area

the area of a circle with radius equal to your variable radius. (The
number 10 should not appear in the formula.)

(b) Now change the value of radius to 15. What is the value of area now?
Why?

Copyright Taylor and Francis, 2021

34 � 1 How to Solve It

1.3.7* The formula for computing North American wind chill temperatures, in degrees
Celsius, is

W = 13.12 + 0.6215 t + (0.3965 t − 11.37) v0.16

where t is the ambient temperature in degrees Celsius and v is the wind speed
in km/h.5

(a) Compute the wind chill for a temperature of −3○ C and wind speed of
13 km/h by assigning this temperature and wind speed to two variables
temperature and windChill, and then assigning the corresponding
wind chill to another variable windChill using the formula above.

(b) Change the value of temperature to 4.0 and then check the value of
windChill. Why did the value of windChill not change? How would you
update the value of windChill to reflect the change in temperature?

1.3.8* Suppose we want to swap the values of two variables named left and right.
Why doesn’t the following work? Show a method that does work.

left = right
right = left

1.3.9. What are the values of apples and oranges at the end of the following?

apples = 12.0
oranges = 2 * apples
apples = 6

1.3.10. What is the value of number at the end of the following?

number = 0
number = number + 1
number = number + 1
number = number + 1

1.3.11. In the previous exercise, what happens if you omit the first statement
(number = 0)? Explain why number must be assigned a value before the exe-
cuting the statement number = number + 1.

1.3.12. What are the values of apples and oranges at the end of the following?

apples = 12.0
oranges = 6
oranges = oranges * apples

1.3.13. String values can also be manipulated with the * operator. Applied to strings,
the * operator becomes the repetition operator , which repeats a string some
number of times. The operand on the left side of the repetition operator is a
string and the operand on the right side is an integer that indicates the number
of times to repeat the string.

>>> last * 4
'PythonPythonPythonPython'
>>> print(first + ' ' * 10 + last)
Monty Python

(a) Explain why 18 * 10 and '18' * 10 give different values.

5Technically, wind chill is only defined at or below 10○C and for wind speeds above 4.8 km/h.

Copyright Taylor and Francis, 2021

1.3 WRITE A PROGRAM � 35

(b) Use the repetition operator to create a string consisting of 20 asterisks
separated by spaces.

(c) The special character '\n' (really two characters, but it represents a
single character) is called the newline character, and causes printing to
continue on the next line. To see its effect, try this:

>>> print('Hello\nthere')

Use the newline character and the repetition operator to create a string
that will display a vertical line of 20 asterisks when printed.

(d) Combine the techniques from parts (b) and (c) (with some modification)
to create a string that will display a 20 × 20 square of asterisks when
printed.

1.3.14* Modify your wind chill computation from Exercise 1.3.7 so that it gives the
wind chill rounded to the nearest integer.

1.3.15. Show how you can use the int function to truncate any floating point number
to two places to the right of the decimal point. In other words, you want to
truncate a number like 3.1415926 to 3.14. Your expression should work with
any value of number.

1.3.16* Show how you can use the int function to find the fractional part of any positive
floating point number. For example, if the value 3.14 is assigned to number, you
want to output 0.14. Your expression should work with any value of number.

1.3.17. Show how to round a floating point number to the nearest tenth in Python.

1.3.18. What happens when you execute the following statements? Explain why.

>>> value = print(42)
>>> print(value * 2)

1.3.19* Fix the following sequence of statements

>>> radius = input('Radius of your circle? ')
>>> area = 3.14159 * radius * radius
>>> print('The area of your circle is ' + area + '.')

1.3.20. Write a sequence of statements that

(a) prompt for a person’s age,

(b) compute the number of days that person has been alive (assume 365.25
days in a year to account for leap years),

(c) round the number of days to the nearest integer, and then

(d) print the result, nicely formatted.

1.3.21* Repeat Exercise 1.3.14, but this time prompt for the temperature and wind
chill using the input function, and print the result formatted like

The wind chill is -2 degrees Celsius.

Copyright Taylor and Francis, 2021

36 � 1 How to Solve It

1.3.22. The following program implements a Mad Lib.

adj1 = input('Adjective: ')
noun1 = input('Noun: ')
noun2 = input('Noun: ')
adj2 = input('Adjective: ')
noun3 = input('Noun: ')

print('How to Throw a Party')
print()
print('If you are looking for a/an', adj1, 'way to')
print('celebrate your love of', noun1 + ', how about a')
print(noun2 + '-themed costume party? Start by')
print('sending invitations encoded in', adj2, 'format')
print('giving directions to the location of your', noun3 + '.')

Write your own Mad Lib program, requiring at least five parts of speech to
insert. (You can download the program above from the book website to get you
started.)

1.3.23* Write a sequence of statements that accepts three numbers as input, one at a
time, and prints the running sum of the numbers after each input. Use only two
variables, one for the input number and one for the running sum. Here is an
example of what your program should print (omitting the statements you type
at the prompt):

Number 1: 5.1

The current sum is 5.1.

Number 2: 7

The cu

rrent sum is 12.1.

Number 3: 12.3

The final sum is 24.4.

1.4 LOOK BACK

Fourth, look back. Check the result. Can you derive the result differently?

Not all algorithms are good algorithms, even if they are correct. And just about any
algorithm can be made better. Like writing prose or poetry, writing algorithms and
programming involve continual refinement. At every step of the process, we should
“look back” on what we have created to see if it can be improved.

Reflection 1.17 What characteristics might make one algorithm or program better than
another?

Here are some questions we should always ask about our algorithms and programs:

1. Is your program easy to understand?

Are you using descriptive variable names? Is there anything extraneous that
could be omitted? Is there a more elegant way to accomplish the same thing?

2. Does your program work properly?

Copyright Taylor and Francis, 2021

1.4 LOOK BACK � 37

Is it solving the correct problem? Does it give the correct output for every
possible input?

3. How long does your algorithm take? Is it as efficient as it could be?

Is your algorithm doing too much work? Is there a way to streamline it?
Does your program use too much memory? Can it be done with less? Our
algorithms at this point are too simple to worry about this too much but,
as they grow more complex, we will see that efficiency becomes an issue of
paramount importance.

4. Are there ethical ramifications to consider?

How will your algorithm or program affect human welfare? Will your algorithm
unfairly impact some groups more than others? Are any of your assumptions
based on unexamined cultural or racial prejudices? Are there related privacy
or intellectual property issues? What is the environmental impact?

These are essential questions to ask at every step of the problem-solving
process. Sometimes even determining what problem you should solve requires
careful judgment. Similarly, poorly chosen inputs to some problems, e.g., facial
recognition and risk assessment algorithms used in the criminal justice system,
can have severely damaging effects on entire groups of people. And when
designing an algorithm, you may find that ethical considerations are at odds
with efficiency; shortcuts and overly simple solutions can lead to damaging
results.

Questions such as these are both complex and essential, but largely beyond
the scope of this book. Some additional resources well worth exploring are
given in Section 1.5.

We will discuss the first point in more detail in the next chapter, as we start to
develop more complete programs. We elaborate on the second and third points
below.

Testing
It should go without saying that we want our programs to be correct. That is, we
want our algorithms to produce the correct output for every possible input, and
we want our programs to be faithful to the design of our algorithms. There are
techniques that we can use to increase the likelihood that our functions and programs
are correct. The first two steps in our problem solving process are a good start:
making sure that we thoroughly understand the problem we are trying to solve and
spending quality time designing a solution, well before we start typing any code.

However, despite the best planning, errors, or “bugs,” will still creep into your
programs. To root out bugs from our programs, i.e., debug them, we have to test
them thoroughly with a variety of carefully chosen inputs. We started to do this when

Copyright Taylor and Francis, 2021

38 � 1 How to Solve It

we refined our syllable-counting algorithm in Section 1.2. There are four important
categories of inputs that you should be thinking about as we move forward:

1. If there are disallowed inputs that don’t make sense for the problem and are
not guaranteed to work, this should be stated explicitly in the documentation,
as we will discuss further in the next section. We will also talk about how to
more formally specify and check for these inputs in Section 5.5.

2. Once you have identified the range of legal inputs, test your program with
several common inputs to make sure that its basic functionality is intact. It
is important to test with inputs that are representative of the entire range of
possibilities. For example, if your input is a number, try both negative and
positive integers and floats.

3. Boundary cases are inputs that rests on a boundary of the range of legal inputs.
For example, if your allowed inputs are all numbers between 0 and 100, be
sure to test both 0 and 100. In many problems, testing boundary cases can
identify issues with your algorithm that are easy to overlook.

4. Finally, corner cases are any other kind of rare input that might cause the
program to break. These are usually the hardest to identify and tend to be
quite specific to the problem being solved.

To illustrate, let’s look at the simple problem of converting an average course grade
between 0 and 100 to a GPA on a standard four-point scale, where 90–100 is a 4,
80–89 is a 3, 70–79 is a 2, 60–69 is a 1, and < 60 is a 0. (For simplicity, we will ignore
+/− grades.). As a first stab at an algorithm, we notice that dividing by 10 to get
the tens place of the input grade and then subtracting 5 seems to work.

Algorithm Convert grade — Draft

Input: grade
1 tens place ← the digit in the tens place of grade
2 GPA ← tens place − 5

Output: GPA

In Python, we can implement this algorithm in one line:

>>> grade = 87
>>> GPA = int(grade / 10) - 5
>>> GPA
3

Reflection 1.18 What are the disallowed inputs for this algorithm?

Assuming that no extra credit is possible, any grade less than zero or greater than
100 should be disallowed. We’ll look at how to more formally specify this in the
coming chapters. Next, we should try to some common inputs from 0 to 100. To
start, trying a grade in each of the five GPA categories makes sense.

Copyright Taylor and Francis, 2021

1.4 LOOK BACK � 39

Reflection 1.19 Try a grade in each of the five GPA categories. What do you find?

Reflection 1.20 What boundary cases should you try?

Did you try grades on the boundaries of the categories (e.g., 60 and 90), grades
below 50, and the boundary cases of 0 and 100? Here we have some issues.

>>> grade = 42
>>> GPA = int(grade / 10) - 5
>>> GPA
-1
>>> grade = 0
>>> GPA = int(grade / 10) - 5
>>> GPA
-5
>>> grade = 100
>>> GPA = int(grade / 10) - 5
>>> GPA
5

To fix these problems, we want to ensure that GPA never falls below zero or exceeds
four. We can accomplish this with the min and max functions, which return the
minimum and maximum values among their arguments. To fix the negative GPA
issue, we want to return the maximum of GPA and zero.

>>> grade = 42
>>> GPA = int(grade / 10) - 5
>>> GPA = max(GPA, 0)
>>> GPA
0

To fix a GPA exceeding four, we want to return the minimum of the GPA and 4.

>>> grade = 100
>>> GPA = int(grade / 10) - 5
>>> GPA = min(GPA, 4)
>>> GPA
4

To fix both problems, we need to combine these solutions:

>>> GPA = int(grade / 10) - 5
>>> GPA = max(GPA, 0)
>>> GPA = min(GPA, 4)

At this point, you should try all of the test cases again to make sure everything
works correctly. We will revisit testing in Section 5.5.

Algorithm efficiency
Now let’s look a little more closely at the third question at the beginning of this
section:

3. How long does your algorithm take? Is it as efficient as it could be?

Copyright Taylor and Francis, 2021

40 � 1 How to Solve It

To determine how much time an algorithm requires, we could implement it as
a program and execute it on a computer. However, this approach presents some
problems. First, which programming language do we use? Second, which inputs do
we use for our timing experiments? Third, which computer do we use? Once we
make these choices, will they give us a complete picture of our algorithm’s efficiency?
Will they allow us to predict the time required to execute the algorithm on different
computers? Will these predictions still be valid ten years from now?

A better way to predict the amount of time required by an algorithm is to count
the number of elementary steps that are required, independent of any particular
computer. An elementary step is one that always requires the same amount of time,
regardless of the input. Examples of elementary steps are

• arithmetic operations,

• assignments of values to variables,

• testing a condition involving numbers or a character, and

• examining a character in a string or a number in a list.

Each of these things takes the same amount of time regardless of the numbers being
operated upon, the types of values being assigned, or the values being examined.
The number of elementary steps required by an algorithm is called the algorithm’s
time complexity . By determining an algorithm’s time complexity, we can estimate
how long an algorithm will take on any computer, relative to another algorithm for
the same problem.

Constant-time algorithms

To make this more concrete, let’s count how many elementary steps there are in our
final Sphere Volume 2 algorithm on page 14, beginning with line 1:

1 volume ← 4 ÷ 3
Line 1 contains two elementary steps: an arithmetic operation followed by an
assignment of the result to a variable. Assignment and arithmetic (with two operands)
are elementary steps because they always require the same amount of time regardless
of the variable or the operands. Line 2, below, also contains two elementary steps
for the same reason.

2 volume ← volume × π

Lines 3–4 consist of a loop that instructs us to perform a similar arith-
metic/assignment statement three times:

3 repeat the following three times:
4 volume ← volume × r

Line 4 takes two elementary steps by itself, but it is executed three times, so lines
3–4 require a total of six elementary steps. Therefore, all together, this algorithm
requires 2 + 2 + 6 = 10 elementary steps.

Copyright Taylor and Francis, 2021

1.4 LOOK BACK � 41

The most important takeaway from this analysis, however, is that the Sphere Volume 2

algorithm requires the same number of elementary steps regardless of what the input
is. It executes ten elementary steps whether the input is 10 or 10,000. Therefore, we
call it a constant-time algorithm .

Linear-time algorithms

Next let’s analyze our last Syllable Count algorithm from page 16. The first statement
in this algorithm counts the number of vowels in the input word:

1 count ← the number of vowels (a, e, i, o, u) in word

Although this may look like one elementary step at first glance, it is not. As we will
discuss more in Chapter 6, a computer algorithm cannot just look at a word and
instantly tell you how many vowels it has. Instead, it will need to check each letter,
one at a time, counting the number of vowels that it sees. In other words, line 1 is
equivalent to the following:

(a) count ← 0
(b) repeat for each letter in word:
(c) if letter is a vowel (a, e, i, o, u), then add 1 to count

Writing it in this way makes it more apparent that the number of elementary steps
required by line 1 depends on the number of letters in word. More specifically, a
word with n letters will require n iterations of the loop in lines (b)–(c); the longer
the word is (i.e., the bigger n is), the longer this will take. The body of the loop in
line (c) requires at most two elementary steps: one to examine a letter and one to
add to count. Therefore altogether, including the initialization of count to zero in
line(a), there are 2n + 1 elementary steps here.

Lines 2–3 of the algorithm contain a more explicit loop that is very similar to our
rewritten version of line 1:

2 repeat for each pair of adjacent letters in word:
3 if the letters are both vowels, then subtract 1 from count

The only difference from lines (b)–(c) above is that this loop looks at pairs of
letters instead of individual letters and it subtracts from, rather than adds to, count.
Regardless, once again, the number of elementary steps depends on the length of
word; if there are n letters in word, lines 2–3 repeat n − 1 times (because there
are n − 1 pairs of adjacent letters in a word with n letters). You can see this more
explicitly in the trace table in page 16. In that case, the input contained n = 7 letters
and there were n − 1 = 6 iterations of the loop. In the body of the loop, there are at
most two elementary steps, so the entire loop contains 2(n − 1) elementary steps.

Finally, line 4 is much simpler:

4 if word ends in e, then subtract 1 from count

We can safely say that the number of elementary steps in this line does not depend
on the length of word. This conclusion relies on the assumption, which will be

Copyright Taylor and Francis, 2021

42 � 1 How to Solve It

0 20 40 60 80 100
Input size (n)

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f e
le

m
en

ta
ry

 st
ep

s
Constant-time algorithm
Linear-time algorithm

Figure 1.5 A comparison of constant vs. linear time complexity.

verified in Chapter 6, that we can look at the end of any word directly, regardless of
its length. So we can say that this line requires at most two elementary steps, one to
check the last letter in word and one to subtract from count.
Putting it all together then, the entire algorithm requires about (2n+1)+2(n−1)+2 =
4n + 1 elementary steps. As with the sphere-volume algorithm, the exact number is
not terribly important. The important thing to notice is that the time complexity
of this algorithm is linearly proportional to the length of the input word. A linear
function is one that contains n but no higher powers of n like n2 or n3. We call
algorithms with time complexities that are linearly proportional to n, like Syllable

Count, linear-time algorithms.

The real issue underlying time complexity is scalability : how quickly the running
time grows as the input gets very large. The difference between a constant-time
algorithm and a linear-time algorithm is illustrated in Figure 1.5. The blue line
represents the time complexity of a constant-time algorithm that always requires ten
elementary steps regardless of how large the input becomes. The red line represents
the time complexity of a linear-time algorithm that requires 4n + 1 elementary
steps when the input has size n. Notice that the number of elementary steps in the
linear-time algorithm grows proportionally to the size of the input. As the input
gets larger, the difference between the constant-time algorithm and the linear-time
algorithm grows much larger. Therefore, for a particular problem, if we could choose
between a constant-time algorithm and a linear-time algorithm, especially if n is

Copyright Taylor and Francis, 2021

1.4 LOOK BACK � 43

Figure 1.6 Examples of everyday algorithms: a fire alarm, an elevator, and a recipe.

large, we would clearly favor the constant-time algorithm. But even linear-time
algorithms are generally considered to be very fast. As will see later, some problems
require a lot more time to solve.

A linear-time algorithm is also said to have time complexity O(n) (pronounced “big
oh of n”). The uppercase letter O is shorthand for “order;” we can also say that a
linear-time algorithm has “order of n” time complexity. A constant-time algorithm
is said to have O(1) time complexity. We will study time complexity in more detail
in Section 6.7.

Although we have presented “looking back” as the last step in a four-step process,
the issues we have discussed here are important to keep in mind in every step.
The better your product is at each step, the less work you will have to do later to
clean it up. Designing algorithms can be a tricky business and first impressions can
sometimes be deceiving. For example, you have already seen that the number of lines
in an algorithm is often unrelated to its time complexity. Similarly, techniques that
seem to work at first glance may not work for some inputs. As in any worthwhile
endeavor, a careful and deliberate approach will pay dividends in the long run.

Exercises
1.4.1. Identify three algorithms from your everyday life and critique them with respect

to readability, correctness, and efficiency. Some examples of everyday algorithms
are shown in Figure 1.6.

1.4.2. What characteristics, other than the ones we discussed, might make one algo-
rithm better than another?

1.4.3. For each of the following algorithms, demonstrate that it is correct by testing it
with at least two common inputs and all boundary inputs you can identify. Say
what the algorithm’s output is in each case. Also, if there are any inputs that
should not be allowed, identify those.

Copyright Taylor and Francis, 2021

44 � 1 How to Solve It

(a)* your revised Sphere Volume algorithm from Exercise 1.2.9

(b)* the Count votes algorithm from Exercise 1.2.7

(c) the Surface area of a box algorithm from Exercise 1.2.6

(d)
Algorithm Maximum value in a list

Input: a list of numbers
1 maxSoFar ← first item in numbers
2 repeat for each item in numbers:
3 if item > maxSoFar, then assign maxSoFar ← item

Output: maxSoFar

(e)
Algorithm Distance to lightning strike

Input: elapsed number of seconds
1 speed of sound ← 343 m/s
2 distance ← seconds × speed of sound
3 distance ← distance ÷ 1000

Output: distance

(f)
Algorithm Raise to the fifth

Input: a number
1 product ← 1
2 repeat 5 times:
3 product ← product × number

Output: product

(g)
Algorithm Count pronouns

Input: a text
1 countFeminine ← 0
2 countMasculine ← 0
3 repeat for each word in the text:
4 if the word is she, then add one to countFeminine
5 if the word is he, then add one to countMasculine
6 ratio ← countFeminine ÷ countMasculine

Output: ratio

Copyright Taylor and Francis, 2021

1.5 SUMMARY AND FURTHER DISCOVERY � 45

1.4.4. For each of the algorithms in the previous exercise, estimate the number of
elementary steps and decide whether it is a constant-time or a linear-time
algorithm.

1.4.5. Suppose that you have been asked to organize a phone tree for your organization
to personally alert everyone with a phone call in the event of an emergency.
You have to make the first call, but after that, you can delegate others to make
calls as well. Who makes which calls and the order in which they are made
constitutes an algorithm. For example, suppose there are only eight people in
the organization, and they are named Amelia, Beth, Caroline, Dave, Ernie, Flo,
Gretchen, and Homer. Then here is a simple algorithm:

Algorithm Alphabetical Phone Tree

Input: a list of eight people and their phone numbers
1 Amelia calls Beth.
2 Beth calls Caroline.
3 Caroline calls Dave.
⋮

7 Gretchen calls Homer.
Output: none (but phone calls were made)

For simplicity, assume that everyone answers the phone right away and every
phone call takes the same amount of time.

(a) For the phone tree problem, identify at least two criteria that would
make one algorithm better than another. For each criterion, design an
algorithm that satisfies it.

(b) In the interest of safety, one criterion for a phone tree would be to ensure
that everyone is notified as soon as possible. Design an algorithm that
ensures that all eight people are notified in a chain of at most three calls.
At the outset, only Amelia is aware of the emergency. (Multiple calls
can be made simultaneously.)

(c) Extend the algorithm you designed in the previous question to an
arbitrarily large number of people. In general, how many people are
called simultaneously during any step t = 1,2,3, . . .? First, think about
how many calls are made during steps 1, 2, and 3 in your algorithm.
Then think about how many calls would be made during time steps 4,
5, and 6. Can you generalize this process to any step t?

1.5 SUMMARY AND FURTHER DISCOVERY
In this chapter, we outlined the four steps in the computational problem solving
process. First, we need to understand the problem we are trying to solve, viewed as
the relationship between its inputs and the desired output. This may sound obvious,
but you would be surprised at how much time is often wasted solving the incorrect
problem! Solving some small examples by hand at this point can often help, and

Copyright Taylor and Francis, 2021

46 � 1 How to Solve It

illuminate potential pitfalls. At the end of this step, the problem is viewed as a
functional abstraction because we understand what an algorithm for it should do,
but not yet what the algorithm looks like.

Second, we want to design an algorithm to solve the problem. It helps to use top-down
design to decompose the problem into smaller subproblems. Then we can design
algorithms for the simplest problems first and work our way up the decomposition
tree in a bottom-up fashion. Algorithm design is often the most challenging of the
four steps, which is why writing algorithms in pseudocode is so valuable. Pseudocode
allows us to think about how to solve the problem without being distracted by the
more demanding requirements of a programming language. In our algorithms, we
saw four categories of algorithmic statements:

1. assignment statements that assign a value to a variable,

2. arithmetic statements,

3. loops that repeat a set of statements some number of times, and

4. conditional statements that make decisions.

It may surprise you to know that these four types of statements are sufficient to
write any algorithm imaginable! So writing algorithms, and programs, in large part
amounts to putting this small palette to work in creative ways. As we progress
through this book, we will incrementally learn how to use these kinds of statements
in myriad combinations to solve a wide variety of problems.

In the third step, we translate the algorithm into a program in Python. We started
our introduction to programming by using variables, arithmetic, and simple functions.
In the next chapter, you will begin to write your own functions and incorporate
them into longer programs. By the end of this book, you will be amazed by the
kinds of things you can do!

Fourth, we need to remember to “look back” at our algorithms and programs in a
process of continual refinement. Just because a program seems to work on a few
simple inputs does not mean that it cannot be improved. We always want to strive
for the clearest, most efficient, and fairest solution we can.

Notes for further discovery
The first epigraph at the beginning of this chapter is from an article by computer
scientists Michael Fellows and Ian Parberry [16]. A similar quote is often attributed
to the late Dutch computer scientist Edsger Dijkstra.

The second epigraph is from the great Donald Knuth [33], Professor Emeritus of
The Art of Computer Programming at Stanford University. When he was still in
graduate school in the 1960s Dr. Knuth began his life’s work, a multi-volume set
of books titled, The Art of Computer Programming [31]. In 2011, he published
the first part of Volume 4, and has plans to write seven volumes total. Although
incomplete, this work was cited at the end of 1999 in American Scientist ’s list of

Copyright Taylor and Francis, 2021

1.5 SUMMARY AND FURTHER DISCOVERY � 47

“100 or so Books that Shaped a Century of Science” [42]. Dr. Knuth also invented the
typesetting program TEX, which was used to write this book. He is the recipient of
many international awards, including the Turing Award, named after Alan Turing,
which is considered to be the “Nobel Prize of computer science.”

Guido van Rossum is a Dutch computer programmer who invented the Python
programming language. IDLE is an acronym for “Integrated DeveLopment Environ-
ment,” but is also considered to be a tribute to Eric Idle, one of the founders of
Monty Python.

The “Hello world!” program is the traditional first program that everyone learns when
starting out. See http://en.wikipedia.org/wiki/Hello_world_program for an
interesting history.

As you continue to learn Python, it will be helpful to add the following documenta-
tion site to your “favorites” list: https://docs.python.org/3/index.html. There
are also a list of links and references for commonly used classes and functions
(Appendix A) on the book website.

There are many good resources for learning more about ethics in computing and
data science. The ACM Code of Ethics and Professional Conduct (https://www.
acm.org/code-of-ethics) is the main code followed by computing practitioners
around the world. For more in-depth coverage of moral theories and ethics, we
recommend Computer Ethics by Deborah Johnson [27], Ethics of Big Data by Kord
Davis [11], and Ethical and Secure Computing by Joseph Migga Kizza [30]. Race after
Technology by Ruha Benjamin [6], Algorithms of Oppression: How Search Engines
Reinforce Racism by Safiya Umoja Noble [44], and Weapons of Math Destruction
by Cathy O’Neil [45] delve deeper into the potentially damaging social impacts of
computing.

Finally, a note about “big oh” notation. Our use of O(n) is actually a slight,
but common, abuse of notation. Formally, to say that an algorithm has O(n)
time complexity means that its time complexity is asymptotically at most linearly
proportional to n. In other words, a constant-time algorithm also has O(n) time
complexity! The correct notation is Θ(n) (“big theta of n”), but “big oh” notation is
used so frequently in practice that we chose to also use it, despite some discomfort.

Copyright Taylor and Francis, 2021

http://en.wikipedia.org/wiki/Hello_world_program
https://docs.python.org/3/index.html
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics

Copyright Taylor and Francis, 2021

