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Preface

In my view, an introductory computer science course should strive to accomplish
three things. First, it should demonstrate to students how computing has become

a powerful mode of inquiry, and a vehicle of discovery, in a wide variety of disciplines.
This orientation is also inviting to students of the natural and social sciences, and the
humanities, who increasingly benefit from an introduction to computational thinking,
beyond the limited “black box” recipes often found in manuals and “Computing
for X” books. Second, the course should engage students in computational problem
solving, and lead them to discover the power of abstraction, efficiency, and data
organization in the design of their solutions. Third, the course should teach students
how to implement their solutions as computer programs. In learning how to program,
students more deeply learn the core principles, and experience the thrill of seeing
their solutions come to life.

Unlike most introductory computer science textbooks, which are organized around
programming language constructs, I deliberately lead with interdisciplinary problems
and techniques. This orientation is more interesting to a more diverse audience, and
more accurately reflects the role of programming in problem solving and discovery.
A computational discovery does not, of course, originate in a programming language
feature in search of an application. Rather, it starts with a compelling problem which
is modeled and solved algorithmically, by leveraging abstraction and prior experience
with similar problems. Only then is the solution implemented as a program.

Like most introductory computer science textbooks, I introduce programming skills
in an incremental fashion, and include many opportunities for students to practice
them. The topics in this book are arranged to ease students into computational
thinking, and encourage them to incrementally build on prior knowledge. Each
chapter focuses on a general class of problems that is tackled by new algorithmic
techniques and programming language features. My hope is that students will leave
the course, not only with strong programming skills, but with a set of problem
solving strategies and simulation techniques that they can apply in their future work,
whether or not they take another computer science course.

I use Python to introduce computer programming for two reasons. First, Python’s
intuitive syntax allows students to focus on interesting problems and powerful
principles, without unnecessary distractions. Learning how to think algorithmically
is hard enough without also having to struggle with a non-intuitive syntax. Second,
the expressiveness of Python (in particular, low-overhead lists and dictionaries)
expands tremendously the range of accessible problems in the introductory course.

xv
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Teaching with Python over the last fifteen years has been a revelation; introductory
computer science has become fun again.

Changes in the second edition
In this comprehensive, cover-to-cover update, some sections were entirely rewritten
while others saw only minor revisions. Here are the highlights:

Problem solving The new first chapter, How to Solve It, sets the stage by focusing on
Polya’s elegant four-step problem solving process, adapted to a computational frame-
work. I introduce informal pseudocode, functional decomposition, hand-execution
with informal trace tables, and testing, practices that are now carried on throughout
the book. The introduction to Python (formally Chapter 2) is integrated into this
framework. Chapter 7, Designing Programs, from the first edition has been elimi-
nated, with that material spread out more naturally among Chapters 1, 5, and 6 in
the second edition.

Chapter 2, Visualizing Abstraction (based on the previous Chapter 3), elaborates on
the themes in Chapter 1, and their implementations in Python, introducing turtle
graphics, functions, and loops. The new Chapter 3, Inside a Computer (based on
the previous Sections 1.4 and 2.5), takes students on a brief excursion into the simple
principles underlying how computers work.

Online materials To reduce the size of the printed book, we have moved some
sections and all of the projects online. These sections are marked in the table of
contents with ***. Online materials are still indexed in the main book for convenience.

Exercises I’ve added exercises to most sections, bringing the total to about 750.
Solutions to exercises marked with an asterisk are available online for both students
and self-learners.

Digital humanities The interdisciplinary problems in the first edition were focused
primarily in the natural and social sciences. In this edition, especially in Chapters 1,
6, and 7, we have added new material on text analysis techniques commonly used in
the “digital humanities.”

Object-oriented design Chapter 12 begins with a new section to introduce object-
oriented design in a more concrete way through the development of an agent-based
simulation of a viral epidemic. The following sections flesh out more details on how
to implement polymorphic operators and collection classes.
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Book website
Online materials for this book are available at

https://www.discoveringCS.net.

Here you will find

• additional “optional” sections, marked with an asterisk in the main text,

• over thirty interdisciplinary programming projects,

• solutions to selected exercises,

• programs and data files referenced in the text, exercises, and projects, and

• pointers for further exploration and links to additional documentation.

To students
Active learning Learning how to solve computational problems and implement
them as computer programs requires daily practice. Like an athlete, you will get
out of shape and fall behind quickly if you skip it. There are no shortcuts. Your
instructor is there to help, but he or she cannot do the work for you.

With this in mind, it is important that you type in and try the examples throughout
the text, and then go beyond them. Be curious! There are numbered “Reflection”
questions throughout the book that ask you to stop and think about, or apply,
something that you just read. Often, the question is answered in the book immediately
thereafter, so that you can check your understanding, but peeking ahead will rob
you of an important opportunity.

Further discovery There are many opportunities to delve into topics more deeply.
“Tangent” boxes scattered throughout the text briefly introduce related, but more
technical or applied, topics. For the most part, these are not strictly required to
understand what comes next, but I encourage you to read them anyway. In the
“Summary and Further Discovery” section of each chapter, you can find both a
high-level summary of the chapter and additional pointers to explore chapter topics
in more depth.

Exercises and projects At the end of most sections are several programming exercises
that ask you to further apply concepts from that section. Often, the exercises assume
that you have already worked through all of the examples in that section. Solutions
to the starred exercises are available on the book website. There are also more
involved projects available on the book website that challenge you to solve a variety
of interdisciplinary problems.

No prerequisites The book assumes no prior knowledge of computer science. How-
ever, it does assume a modest comfort with high school algebra. In optional sections,

https://www.discoveringCS.net
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trigonometry is occasionally mentioned, as is the idea of convergence to a limit, but
these are not relevant to understanding the main topics in the book.

Have fun! Programming and problem solving should be a fun, creative activity. I
hope that this book sparks your curiosity and love of learning, and that you enjoy
the journey as much as I have enjoyed writing this book.

To instructors
This book is appropriate for a traditional CS1 course for majors, a CS0 course for
non-majors (at a slower pace and omitting more material), or a targeted introductory
computing course for students in the natural sciences, social sciences, or humanities.

The approach is gentle and holistic, introducing programming concepts in the context
of interdisciplinary problems. We start with problem-solving, featuring pseudocode
and hand-execution with trace tables, and carry these techniques forward, especially
in the first half of the book.

Problem focus Most chapters begin with an interesting problem, and new concepts
and programming techniques are introduced in the context of solving it. As new
techniques are introduced, students are frequently challenged to re-solve old problems
in different ways. They are also encouraged to reuse their previous functions as
components in later programs.

Reflection questions, exercises, and projects “Reflection” questions are embedded
in every section to encourage active reading. These may also be assigned as “reading
questions” before class. The end-of-section exercises are appropriate for regular home-
work, and some more complex ones may form the basis of longer-term assignments.
The book website also hosts a few dozen interdisciplinary projects that students may
work on independently or in pairs over a longer time frame. I believe that projects
like these are crucial for students to develop both problem solving skills and an
appreciation for the many fascinating applications of computer science.

Additional instructor resources All of the reflection questions and exercises are
available to instructors as Jupyter notebooks. Solutions to all exercises and projects
are also available. Please visit the publisher’s website to request access.

Python coverage This book is not intended to be a Python manual. Some features
of the language were intentionally omitted because they would have muddled the core
problem solving focus or are not commonly found in other languages that students
may see in future CS courses (e.g., simultaneous swap, chained comparisons, zip,
enumerate in for loops).

Topic coverage There is more in this book than can be covered in a single semester,
giving instructors the opportunity to tailor the content to their particular situation
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Figure 1 An overview of chapter dependencies.

and interests. As illustrated in Figure 1, Chapters 1–7 form the core of the book, and
should be covered sequentially. The remaining chapters can be covered, partially or
entirely, at your discretion, although I would expect that most instructors will cover
at least parts of Chapters 8–10, and 12 if the course covers object-oriented design.
Chapter 11 introduces social network graphs and small-world and scale-free networks
as additional powerful applications of dictionaries, and may come any time after
Chapter 7. Sections marked with an asterisk are optional, in the sense that they are
not assumed for future sections in that chapter. When exercises and projects depend
on optional sections, they are also marked with an asterisk, and the dependency is
stated at the beginning of the project.

Chapter outlines The following tables provide brief overviews of what is available
in each chapter. Each table’s three columns, reflecting the three parts of the book’s
subtitle, provide three lenses through which to view the chapter.

1 How to Solve It
Sample problems Principles Programming

● reading level
● counting syllables, words
● sphere volume
● digital music
● search engines
● GPS devices
● phone trees
● wind chill
● compounding interest
● Mad Libs

● problems, input/output
● functional abstraction
● functional decomposition
● top-down design
● bottom-up implementation
● algorithms and programs
● pseudocode
● names as references
● trace tables
● constant- vs. linear-time

● int, float, str types
● arithmetic
● assignment
● variable names
● calling built-in functions
● using strings
● string operators
● print and input
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2 Visualizing Abstraction
Sample problems Principles Programming

● visualizing earthquakes
● drawing flowers
● random walks
● ideal gas
● groundwater flow
● demand functions
● reading level

● using abstract data types
● creating functional

abstractions
● functional decomposition
● bottom-up implementation
● turtle graphics
● trace tables with loops

● using classes and objects
● turtle module
● for loops (range and lists)
● using and writing functions
● return vs. print
● namespaces and scope
● docstrings and comments
● self-documenting code
● program structure

3 Inside a Computer
Principles Programming

● computer organization
● machine language
● binary representations
● computer arithmetic
● finite precision, error propagation
● Boolean logic, truth tables, logic gates
● Turing machines, finite state machines

● int and float types
● arithmetic errors
● true vs. floor division

4 Growth and Decay
Sample problems Principles Programming

● population models
● network value
● demand and profit
● loans and investing
● bacterial growth
● radiocarbon dating
● epidemics (SIR, SIS)
● diffusion models

● accumulators
● list accumulators
● data visualization
● conditional iteration
● classes of growth
● continuous models
● accuracy vs. time
● numerical approximation

● for loops, range
● format strings
● matplotlib.pyplot
● appending to lists
● while loops

5 Forks in the Road
Sample problems Principles Programming

● random walks
● Monte Carlo simulation
● guessing games
● polling and

sampling
● particle escape

● random number generators
● simulating probabilities
● flag variables
● using distributions
● DeMorgan’s laws
● defensive programming
● pre- and post-conditions
● unit testing

● random module
● if/elif/else
● comparison operators
● Boolean operators
● short circuit evaluation
● predicate functions
● assert, isinstance
● catching exceptions
● histograms
● while loops
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6 Text, Documents, and DNA
Sample problems Principles Programming

● text analysis
● word frequency trends
● checksums
● concordances
● dot plots, plagiarism
● congressional votes
● genomics

● functional decomposition
● unit testing
● ASCII, Unicode
● linear-time algorithms
● time complexity
● linear search
● string accumulators

● str class and methods
● iterating over strings, lists
● indexing and slicing
● iterating over indices
● creating a module
● text files and the web
● break
● nested loops

7 Data Analysis
Sample problems Principles Programming

● word, bigram frequencies
● smoothing data
● 100-year floods
● traveling salesman
● meteorite sites
● zebra migration
● tumor diagnosis
● supply and demand
● voting methods

● histograms
● hash tables
● tabular data files
● efficient algorithm design
● linear regression
● k-means clustering
● heuristics

● list class
● indexing and slicing
● list operators and methods
● reading CSV files
● modifying lists in place
● list parameters
● tuples
● list comprehensions
● dictionaries

8 Flatland
Sample problems Principles Programming

● earthquake data
● Game of Life
● image filters
● racial segregation
● ferromagnetism
● dendrites
● epidemics
● tumor growth

● 2-D data
● cellular automata
● digital images
● color models

● lists of lists
● nested loops
● 2-D data in a dictionary

9 Self-similarity and Recursion
Sample problems Principles Programming

● fractals
● cracking passwords
● Tower of Hanoi
● maximizing profit
● navigating a maze
● Lindenmayer systems
● gerrymandering
● percolation

● self-similarity
● recursion
● linear search
● recurrence relations
● divide and conquer
● depth-first search
● grammars

● writing recursive functions
● divide and conquer
● backtracking
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10 Organizing Data
Sample problems Principles Programming

● spell check
● querying data sets

● binary search
● quadratic-time sorting
● parallel lists
● merge sort
● recurrence relations
● intractability, P=NP?

● nested loops
● writing recursive functions

11 Networks
Sample problems Principles Programming

● social media, web graphs
● diffusion of ideas
● epidemics
● Oracle of Bacon

● graphs
● adjacency list, matrix
● breadth-first search
● queues
● shortest paths
● depth-first search
● small-world networks
● scale-free networks
● uniform random graphs

● dictionaries

12 Object-oriented Design
Sample problems Principles Programming

● epidemic simulation
● data sets
● genomic sequences
● rational numbers
● flocking behavior
● slime mold aggregation

● abstract data types
● encapsulation
● polymorphism
● data structures
● stacks
● hash tables
● agent-based simulation
● swarm intelligence

● object-oriented design
● writing classes
● special methods
● overriding operators
● modules

Software assumptions
To follow along in this book and complete the exercises, you will need to have
installed Python 3.6 or later on your computer, and have access to IDLE or another
programming environment. The book also assumes that you have installed the
matplotlib.pyplot and numpy modules. The easiest way to get this software is to
install the free open source Anaconda distribution from http://www.anaconda.com.

Errata
While I (and my students) have ferreted out many errors, readers will inevitably find
more. You can find an up-to-date list of errata on the book website. If you find an error
in the text or have another suggestion, please let me know at havill@denison.edu.

http://www.anaconda.com
havill@denison.edu
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C H A P T E R 1

How to Solve It

We need to do away with the myth that computer science is about computers. Computer
science is no more about computers than astronomy is about telescopes, biology is about
microscopes or chemistry is about beakers and test tubes. Science is not about tools, it is
about how we use them and what we find out when we do.

Michael R. Fellows and Ian Parberry
Computing Research News (1993)

It has often been said that a person does not really understand something until after teaching
it to someone else. Actually a person does not really understand something until after
teaching it to a computer, i.e., expressing it as an algorithm.

Donald E. Knuth
American Scientist (1973)

Computers now touch almost every facet of our daily lives, whether we are
consciously aware of them or not. Computers have changed the way we learn,

communicate, shop, travel, receive healthcare, and entertain ourselves. They are
embedded in virtually everything, from major feats of engineering like airplanes,
spaceships, and factories to everyday items like microwaves, cameras, and tooth-
brushes. In addition, all of our critical infrastructure—utilities, transportation,
finance, communication, healthcare, law enforcement—relies upon computers.

Since computers are the most versatile tools ever invented, it should come as
no surprise that they are also employed throughout academia in the pursuit of
new knowledge. Social scientists use computational models to better understand
social networks, epidemics, population dynamics, markets, and auctions. Humanists
use computational tools to gain insight into literary trends, authorship of ancient
texts, and the macroscopic significance of historical records. Artists are increasingly
incorporating digital technologies into their compositions and performances. Natural

1



2 � 1 How to Solve It

Understand the 
problem

Design an 
algorithm

Write a 
program

Look back at 
your algorithm 

and results

Figure 1.1 A simplified view of the problem solving process.

scientists use computers to collect and analyze immense quantities of data to
make discoveries in environmental science, genomics, particle physics, neuroscience,
pharmacology, and medicine.

But computers are neither productive nor consequential on their own. All of the
computers now driving civilization, for good or ill, were taught by humans. Computers
are amplifiers of human ingenuity. Without us, they are just dumb machines.

The goal of this book is to empower you to teach computers to solve problems and
make discoveries. Computational problem solving is a process that you will find both
familiar and new. We all solve problems every day and employ a variety of strategies
in doing so. Some of these strategies, like breaking big problems into smaller, more
manageable ones, are also fundamental to solving problems with a computer. Where
computational problem solving is different stems from computers’ lack of intellect
and intuition. Computers will only do what you tell them to and nothing more.
They cannot tolerate ambiguity or intuit your intentions. Computational problem
solving, by necessity, must be more precise and intentional than you may be used to.
The payoff though, paraphrasing Donald Knuth1, is that teaching a computer to do
something can also dramatically deepen our understanding of that thing.

The problem solving process that we will outline in this chapter is inspired by How to
Solve It, a short book written by mathematician George Polya [50] in 1945. Polya’s
problem solving framework, having withstood the test of time, consists of four steps:

1. First, understand the problem. What is the unknown? What are the data?
What is the condition?

2. Second, devise a plan to solve the problem.

3. Third, carry out your plan, checking each step.

4. Fourth, look back. Check the result. Can you derive the result differently?

These four steps, with some modifications, can be applied just as well to compu-
tational problem solving, as illustrated in Figure 1.1. In the first step, we make

1You can learn more about Donald Knuth at the end of this chapter.
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314 E. Broadway
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Figure 1.2 Some examples of computational problems.

sure that we understand the problem to be solved. In the second step, we devise an
algorithm, a sequence of steps to solve the problem. In the third step, we translate
our algorithm into a correct program that can be carried out by a computer. We
will be using a programming language called Python throughout this book to write
programs. Finally, in the fourth step, we look back on our results and ask whether
we can improve them or the algorithm that derived them. Notice that this process is
often not linear. Work on one step can refine our understanding of a previous step
and nudge us backward, not unlike the process of writing a paper.

This chapter serves as a framework for your learning throughout the rest of the book.
Each subsequent chapter will flesh out aspects of these steps and make them more
concrete by focusing on new types of computational problems and the techniques
used to solve them.

1.1 UNDERSTAND THE PROBLEM

First, understand the problem. What is the unknown? What are the data?
What is the condition?

In computer science, we think of a problem as a relationship between some initial
information, an input , and some desired result, the output . To solve the problem,
we need to teach a computer how to transform the input into the output. The steps
that the computer takes to do this are called a computation . In Polya’s language,
the “data” is the input, the “unknown” is the output, and the ”condition” is the
relationship between the two.

Figure 1.2 illustrates three common computational problems. In each, an input enters
on the left and a corresponding output exits on the right. In between, a computation
transforms the input into the correct output. When you listen to a song, your music
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player performs a computation to convert a digital sound file (input) into a sound
pattern that can be reproduced by your headphones (output). When you submit a
web search request (input), your computer, and many others across the Internet,
perform computations to get you results (outputs). And when you use an app on
your phone to get directions, it computes the directions (output) based on your
current position and desired destination (inputs).

Inputs and outputs are probably familiar to you from high school algebra. When
you were given an expression like y = 18x + 31 or f(x) = 18x + 31, you may have
thought about the variable x as a representation of the input and y, or f(x), as a
representation of the output. In this example, when the input is x = 2, the output is
y = 67, or f(x) = 67. The arithmetic that turns x into y is a very simple (and boring)
example of a computation.

Reflection 1.1 What kinds of problems are you interested in? What are their inputs and
outputs? Are the inputs and outputs, as you have defined them, sufficient to define the
problems completely?

A first problem: computing reading level
Suppose you are a teacher who wants to evaluate whether some text is at an
appropriate grade level for your class. In other words, you want to solve the problem
illustrated below.

reading level
calculatortext reading level

The input and output for this problem seem straightforward. But they actually
aren’t; once you start thinking carefully about the problem, you realize there are
many questions that need to be answered. For example, are there any restrictions
or special conditions associated with the input? What kinds of texts are we talking
about? Should the solution work equally well for children’s books, newspaper articles,
scientific papers, and technical manuals? For what language(s) should the solution
work? In what electronic format do the texts need to be? Is there a minimum or
maximum length requirement for the text? It is important to formulate these kinds
of questions and seek any needed clarifications right away; it is much better to do so
immediately than to wait until you have spent a lot of time working on the wrong
problem!

The same sorts of questions should be asked about the output. How is a reading
level represented? Is an integer value corresponding to a school year? Or can it be
a fraction? To what educational system should the grade levels correspond? Are
their minimum and/or maximum allowed values? Once you have answers to your
questions, it is a good idea to re-explain the problem back to the poser, either orally
or in writing. The feedback you get from this exercise might identify additional points
of misunderstanding. You might also draw a picture and work out some examples by
hand to make sure you understand all of the requirements and subtleties involved.
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We will answer these questions by clarifying that the solution should work for any
English language text, available as a plain text file like those on Project Gutenberg.2

The output will be a number like 4.2, indicating that the text is appropriate for
a student who has completed 2/10 of fourth grade in the U.S. educational system.
Negative reading level values will not make sense in this system, but any positive
number will be acceptable if we interpret the number to mean the number of years
of education required to understand the text.

Functional abstraction
A problem at this stage, before we know how to solve it, is an example of a functional
abstraction .

A functional abstraction describes how to use a tool or technology without
necessarily providing any knowledge about how it works.

In other words, a functional abstraction is a “black box” that we know how to
use effectively, without necessarily understand what is happening inside the box to
produce the output. In the case of the reading level problem, now that we have a
better handle on the specifics, if we had a black box that computed the reading
level, we would know how to use it, even without understanding how the output was
computed. Similarly, to use each of the technologies illustrated in Figure 1.2 we do
not need to understand how the underlying computation transforms the input to
the output.

We exist in a world of functional abstractions that we usually take for granted. We
even think about our own bodies in terms of abstractions. Move your fingers. Did
you need to understand how your brain triggered your nervous and musculoskeletal
systems to make that happen? As far as most of us are concerned, a car is also an
abstraction. To drive a car, do you need to know how turning the steering wheel turns
the car or pushing the accelerator makes it go faster? We understand what should
happen when we do these things, but not necessarily how they happen. Without
abstractions, we would be paralyzed by an avalanche of minutiae.

Reflection 1.2 Imagine that it was necessary to understand how your phone works in
order to use it. Or a car. Or a computer. How would this affect your ability to use these
technologies?

New technologies and automation have introduced new functional abstractions into
everyday life. Our food supply is a compelling example of this. Only a few hundred
years ago, our ancestors knew exactly where their food came from. Inputs of hard
work and suitable weather produced outputs of grain and livestock to sustain a
family. In modern times, we input money and get packaged food; the origins of our
food have become much more abstract.

2Project Gutenberg (http://www.gutenberg.org) is a library of freely available classic literature
with expired U.S. copyrights. The books are available in a variety of formats, but we will be
interested in those in a plain text format like the version of Walden by Henry David Thoreau at
http://www.gutenberg.org/files/205/205-0.txt.

http://www.gutenberg.org
http://www.gutenberg.org/files/205/205-0.txt
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Reflection 1.3 Think about a common functional abstraction that you use regularly,
such as your phone or a credit card. How has this functional abstraction changed over
time? Can you think of instances in which better functional abstractions have enhanced
our ability to use a technology?

Functional abstraction is a very important idea in computer science. In the next
section, we will demonstrate how more complex problems are solved by breaking
them into smaller functional abstractions that we can solve and then recombine into
a solution for the original problem.

Exercises
1.1.1. What is a problem in your life that you have to solve regularly? Define the

input and output of the problem well enough for someone else to propose an
algorithm to solve it. Here is an example.

Problem: scan pages in a book
Inputs: a book and page numbers to scan
Output: one PDF file containing all of the pages, one physical page per page

in the file, full color, text recognized

1.1.2. What information is missing from each of the inputs and/or outputs of the
following problem definitions? In each case, assume that you know how to
complete the task given enough information about the input and output.

(a)* Problem: Make brownies
Inputs: butter, sugar, eggs, vanilla, cocoa powder, flour, salt, baking powder
Output: brownies

(b) Problem: Dig a hole
Inputs: a shovel
Output: a hole (of course)

(c) Problem: Plant a vegetable garden
Inputs: seeds
Output: a planted garden plot

1.1.3. Describe three examples from your everyday life in which an abstraction is
beneficial. Explain the benefits of each abstraction versus what life would be
like without it.

1.2 DESIGN AN ALGORITHM

Second, devise a plan to solve the problem.

To compute reading level, we will use the well-known Flesch-Kincaid grade level
score, which approximates the grade level of a text using the formula

0.39 × average words per sentence + 11.8 × average syllables per word − 15.59 .
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Reflection 1.4 To better understand how the Flesch-Kincaid grade level formula works,
apply it to the first epigraph (Fellows and Parberry) at the beginning of this chapter.
What does the formula output as the grade level of this quote?

The 3 sentences in the quote contain 14, 24, and 20 words, respectively, so the
average number of words per sentence is (14 + 24 + 20)/3 ≈ 19.33. There are 90 total
syllables in the quote’s 58 words, so the average number of syllables per word is
90/58 ≈ 1.55. Plugging these values into the formula, we get

0.39 × 19.33 + 11.8 × 1.55 − 15.59 ≈ 10.24.

So the formula says that the quote is at about a tenth grade reading level.

You may be surprised to hear that this formula does not provide nearly enough
detail for a computer to carry it out. You can figure out how to find the average
number of words per sentence and the average number of syllables per word, but a
computer definitely cannot without a lot more help. Instead, this formula is more
appropriately thought of as a more detailed description of what the output “reading
level” means.

To teach a computer how to apply the Flesch-Kincaid formula to any text, we need
to replace the black box with a detailed sequence of steps that transforms the input
(text) into the correct output (reading level). This sequence of steps is called an
algorithm . An algorithm is how we teach a computer how to solve a problem.

Take it from the top
To make designing an algorithm more manageable, we can decompose it into simpler
subproblems. A subproblem is an easier problem that, once solved, will make
solving the original problem more straightforward.

Reflection 1.5 Look at the Flesch-Kincaid formula again. What are the two subproblems
we need to solve before we can apply the formula?

As we saw when we applied the formula, we need to determine two things about the
text: the average number of words per sentence and the average number of syllables
per word. So these are two subproblems of the overall problem, together with the
actual calculation of the Flesch-Kincaid grade level score. We can represent this as
follows.

Flesch-Kincaid 
grade level score

average number of
words per sentence

average number of
syllables per word

reading level
of a text

This diagram shows us that there are three subproblems involved in solving the
reading level problem. If we had functional abstractions, “black boxes,” for these
three subproblems, then we could easily solve the reading level problem by getting the
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Figure 1.3 A simplified organizational chart of a hypothetical college.

required values from the two leftmost subproblems and then plugging their outputs
into the third subproblem. This technique is called top-down design because it
involves starting from the top, the problem to be solved, and then breaking it
down into smaller pieces. The final result of this process is called a functional
decomposition .

Top-down design and functional decomposition are commonly used to make all sorts
of things more manageable. For example, suppose you are the president of a college.
Because you cannot effectively manage every detail of such a large organization, you
hire a vice president to oversee each of three divisions, as illustrated in Figure 1.3.
You expect each vice president to keep you informed about the general activity
and performance of their division, but insulate you from the day-to-day details. In
this arrangement, each division becomes a functional abstraction to you; you know
what each division does, but not necessarily how it does it, freeing you to focus on
more important organization-level activity. Each vice president may utilize a similar
arrangement within their division. Indeed, organizations are often subdivided many
times until the number of employees in a unit is small enough to be overseen by a
single manager.

Similarly, each of the subproblems in a functional decomposition might be further
broken down, until we arrive at subproblems that are straightforward to solve.

Reflection 1.6 Can the left subproblem in the reading level problem, “average number
of words per sentence,” be computed directly? Or can it be decomposed further? (Think
about how you computed the reading level in Reflection 1.2.)

We saw above that the average number of words per sentence is equal to the total
number of words divided by the total number of sentences, so we can decompose
this subproblem into two even simpler subproblems:

average number of
words per sentence

total number of
words

total number of 
sentences
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Figure 1.4 Functional decomposition of the reading level problem.

Similarly, we can also decompose the problem of computing the average number of
syllables per word into two subproblems:

average number of 
syllables per word

total number of
syllables

total number of
words

Taken altogether, we are now left with three relatively simple subproblems to solve:
(a) counting the total number of words, (b) counting the total number of sentences,
and (c) counting the total number of syllables.

Reflection 1.7 Can computing the total numbers of words, sentences, or syllables be
broken down further?

Counting the total numbers of words and sentences seems pretty straightforward.
But finding the total number of syllables is not as simple because even finding the
number of syllables in one word is not trivial for a computer, especially with all
of the oddities of the English language. Thus it makes sense to further decompose
finding the total number of syllables into the subproblem of finding the number of
syllables in just one word.

A diagram of the final functional decomposition is shown in Figure 1.4. These kinds
of diagrams are called trees because they resemble an upside down tree with the
root at the top and branches spreading out below. Nodes at the bottom of the tree
are called leaves.
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Pseudocode
The next step is to write an algorithm for each of the subproblems, starting with
the leaves at the bottom of the tree and working our way up to the root. We will get
to this shortly, but first let’s write an algorithm for a more straightforward problem.

Computing the volume of a sphere

This simple problem can be visualized as follows.

sphere volumeradius r volume of a sphere with radius r

To compute the output from the input, we can simply use the well-known formula
V = (4/3)πr3. Although this is much closer to an algorithm than the Flesch-Kincaid
formula, it still does not explicitly specify a sequence of steps; there are several
alternative sequences that one could follow to carry it out.3 For example, we could
cube r first, then multiply that result by the rest of the terms, or we could cube r
last, or we could multiply r by (4/3)π then by r2, etc. Here is one algorithm that
follows the formula:

Algorithm Sphere Volume

Input: the radius r of the sphere
1 Multiply r × r × r.
2 Multiply the previous result by π.
3 Multiply the previous result by 4.
4 Divide the previous result by 3.

Output: the final result, which is the volume of the sphere

At the top of the algorithm, we note the input and at the bottom we note the output.
In between, the individual lines are called statements. Carrying out the sequence
of statements in an algorithm is called executing or running the algorithm.

The informal style in which this algorithm is written is known as pseudocode , to
differentiate it from code, which is another name for a computer program. In common
usage, the prefix pseudo often has a negative connotation, as in pseudo-intellectual
or pseudoscience, but here it simply connotes a relaxed manner of writing algorithms
that is meant to be read by a human rather than a computer. The flexibility afforded
by pseudocode allows us to more clearly focus on how to solve the problem at hand
without becoming distracted by the more demanding requirements of a programming
language. Once we have refined the algorithm adequately and convinced ourselves
that it is correct, we can translate it into a formal program. We’ll talk more about
that in the next section.

3In Python, we can actually use this formula more or less directly, but to facilitate this simple
example, we’ll pretend otherwise for now.
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Here is a different algorithm that also computes the volume of a sphere. We are
calling this algorithm a “draft” because, like other kinds of writing, algorithms also
require rounds of revisions. We will revise this algorithm two more times.

Algorithm Sphere Volume 2 — Draft 1

Input: the radius r of the sphere
1 Divide 4 by 3.
2 Multiply the previous result by π.
3 Repeat the following three times: multiply the previous result by r.

Output: the final result, which is the volume of the sphere

To better understand what an algorithm is doing, we can execute it on an example,
using a trace table . In a trace table, we trace through each step of the algorithm
and keep track of what is happening. The following trace table shows the execution
of our draft Sphere Volume 2 algorithm with input value r = 10.

Trace input: r = 10
Step Line Result Notes

1 1 1.3̄ 4 ÷ 3 = 1.3̄

2 2 4.186̄ multiplying the previous result (1.3̄) by π
3 3 41.86̄ multiplying the previous result (4.186̄) by 10

4 3 418.6̄ multiplying the previous result (41.86̄) by 10

5 3 4,186.6̄ multiplying the previous result (418.6̄) by 10

Output: 4,186.6̄

The four columns keep track of the number of steps executed by the algorithm, the
line number in the algorithm being executed, the result after that line is executed,
and notes explaining what is happening in that line.

The first two steps are pretty self-explanatory. Then, because line 3 of the algorithm
instructs us to repeat something three times, line 3 is executed 3 times in the trace
table. A statement that repeats like this is called a loop. When algorithms contain
loops, the number of steps is not necessarily the same as the number of lines.

Because we will eventually want to translate our pseudocode algorithms into actual
code, it will be important to adhere to some important principles that will make
this translation easier. First, we must strive to eliminate any ambiguity from our
algorithms. In other words, the steps in an algorithm must never require creative
interpretation by a human being. As we will see in Section 3.1, computers are, at their
core, only able to perform very simple instructions like arithmetic and comparing two
numbers, and are incapable of creative inference. Second, the steps of an algorithm
must be executable by a computer. In other words, they must correlate to things
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a computer can actually do. The definition of executable will become clearer as we
learn more about programming.

These two requirements are not really unique to computer algorithms. For example,
we hope that new surgical techniques are unambiguously presented with references to
actual anatomy and real surgical tools. Likewise, when an architect designs a building,
they must use only available materials and be precise about their placement. And
when an author writes a novel, they must write to their audience, using appropriate
language and culturally familiar references.

By these standards, both of the previous algorithms are less than ideal in at least
two ways. First, references to the “previous result” are not precise and will not get
us very far in more complex algorithms where multiple intermediate values need to
be remembered. This kind of imprecision can easily lead to problematic ambiguity in
our algorithms. Second, in none of the steps did we explicitly state that we needed
to remember a result to be used later. When you executed the algorithms, you could
infer this necessity, but this is an example of the kind of ambiguity that we need to
avoid when writing algorithms for a computer.

To remedy these issues, algorithms use variables to give names to values that need
to be remembered later. To make our algorithms understandable to a human reader,
we will use descriptive variable names, unlike the single letter x and y variables
that are common in mathematics. In our pseudocode algorithms, we will indicate
variables in italics and assign a value to a variable with the notation

variable ← value
The left-facing arrow indicates that the value on the right is being assigned to the
variable on the left. For example, eggs← 12 would assign the value 12 to the variable
named eggs. Using variables, the Sphere Volume 2 algorithm can be rewritten as
follows.

Algorithm Sphere Volume 2 — Draft 2

Input: the radius r of the sphere
1 volume ← 4 ÷ 3
2 volume ← previous value of volume × π
3 repeat the following three times:
4 volume ← previous value of volume × r

Output: the value of volume

In this version, we have also formatted the loop a little bit differently, indenting the
statement that is being repeated on a separate line (line 4). The statements that are
executed repeatedly by a loop are called the body of the loop. So line 4 is the body
of the loop that starts on line 3. The following trace table, again with input value r
= 10, illustrates how the revised algorithm works.
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Trace input: r = 10
Step Line volume Notes

1 1 1.3̄ volume ← 4 ÷ 3 = 1.3̄

2 2 4.186̄ volume ← previous volume × π = 1.3̄ × 3.14 = 4.186̄

3 3 ” volume unaffected; execute line 4 three times
4 4 41.86̄ volume ← previous volume × r = 4.186̄ × 10 = 41.86̄

5 4 418.6̄ volume ← previous volume × r = 41.86̄ × 10 = 418.6̄

6 4 4,186.6̄ volume ← previous volume × r = 418.6̄ × 10 = 4,186.6̄

Output: volume = 4,186.6̄

Notice that we have replaced the generic “Result” column with a column that keeps
track of the value of the introduced variable, which we named volume because it
will eventually be assigned the volume of the sphere. The first line of the trace table
shows that the variable named volume is assigned the result of dividing 4 by 3. In
line 2, the value of volume, which is now 1.3̄, is multiplied by π (which we truncate
to 3.14), and the result, which is 4.186̄, is assigned to volume. Notice how much less
ambiguous this is, compared to a reference to a “previous result.” Also note that
this assignment has overwritten the previous value of volume. Next, line 3 does not
do anything on its own; it just instructs us to repeat line 4 three times. (The “ditto”
marks indicate no change to volume.) Each execution of line 4 multiplies the value
of volume by 10, and overwrites the value of volume with this result. At the end,
volume corresponds to the value 4,186.6̄, which is output by the algorithm.

Reflection 1.8 Trace through the algorithm again with input value r = 5. Create a new
trace table to show your progress. (The final answer should be 523.3̄.)

Let’s make one more refinement to our algorithm. In line 2 (and similarly in line 4),
the algorithm refers to the “previous value of” volume on the righthand side of the
assignment:

volume ← previous value of volume × π
We included this language for clarity, but it is not actually necessary; the statement
can be abbreviated to

volume ← volume × π .

In any assignment statement, the righthand side after the arrow must be evaluated
first, before the result of this evaluation is assigned to the variable on the lefthand
side. Therefore, when volume is referenced on the righthand side of this assignment,
it must refer to the previous value of volume, assigned in the previous line, as
illustrated below.

second step
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
volume ←

first step
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
volume × π

↑ ↑
next value previous value

(4.186̄) (1.3̄)
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With this revision, the algorithm now looks like this:

Algorithm Sphere Volume 2 — Final

Input: the radius r of the sphere
1 volume ← 4 ÷ 3
2 volume ← volume × π
3 repeat the following three times:
4 volume ← volume × r

Output: volume

A trace table for this algorithm looks exactly like the previous one.

Implement from the bottom
We are now prepared to return our attention to the reading level problem. Based
on our decomposition tree in Figure 1.4, there are two ways that we can proceed.
Our first option is to start at the top of the tree and work our way down. For this
to work, we would need to assume that algorithms for the three main subproblems
already exist. Although it is possible to work this way, it is trickier because we
cannot test whether anything is working correctly until we have written algorithms
for everything in the tree.

Instead, we will start at the bottom of the decomposition tree and work our way up,
in what we call a bottom-up implementation . The subproblems that are leaves
of the tree are not dependent on any other subproblems, so we can design algorithms
for these first, make sure they work, and then call upon them in algorithms for
subproblems one level higher. If we continue this process until we reach the root of
the tree, we will have a complete algorithm. Let’s start with an algorithm for the
“Flesch-Kincaid grade level score” subproblem, which takes as inputs the average
number of words per sentence and the average number of syllables per word, and
outputs the grade level of the text according to the Flesch-Kincaid formula.

average words, 
average syllables

reading level of the textFlesch-Kincaid 
grade level score

In pseudocode, we can write this algorithm as follows:

Algorithm Flesch Kincaid

Input: average words, average syllables
1 reading level ← 0.39 × average words + 11.8 × average syllables − 15.59

Output: reading level
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This one-line algorithm simply uses its two input values to compute the grade level,
assigns this value to the variable named reading level, and then outputs this value.

Let’s next write an algorithm to compute the number of syllables in a word. This
algorithm will take a single word as input and output the number of syllables.

word count of syllablesnumber of syllables 
in one word

Reflection 1.9 How do you count the number of syllables in a word? Do you think your
method can be “taught” to a computer?

As you might imagine, a computer cannot use the “clapping method” or something
similar to compute the number of syllables in a word. Instead, a syllable-counting
algorithm will need to ”look at” the letters in the word and follow some rules based
on those letters. Since the number of syllables in a word is defined to be the number
of distinct vowel sounds, a first approximation would be to simply count the number
of vowels in the word.

Algorithm Syllable Count — Draft 1

Input: a word
1 count ← the number of vowels in word

Output: count

Reflection 1.10 What does it mean for an algorithm to be correct? Is this algorithm
correct? If it is not, why not?

An algorithm is correct if it gives the correct output for every possible input. This
algorithm is obviously too simplistic to be correct. For example, the algorithm will
over-count the number of syllables in words containing diphthongs, such as rain and
loan, and in words ending with a silent e.

Reflection 1.11 There is also some ambiguity in this one-line syllable-counting algorithm.
Do you see what it is?

The ambiguity arises from the definition of a vowel in the English language. The
letters a, e, i, o, and u are always vowels but sometimes so is y. So our algorithm
needs to clarify this. Incorporating these insights (and ignoring y as a vowel) leads
to the following enhanced algorithm.
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Algorithm Syllable Count — Draft 2

Input: a word
1 count ← the number of vowels (a, e, i, o, u) in word
2 repeat for each pair of adjacent letters in word:
3 if the letters are both vowels, then subtract 1 from count
4 if word ends in e, then subtract 1 from count

Output: count

Notice two new kinds of pseudocode statements in this algorithm. First, line 2, is a
different kind of loop. Imagine yourself looking carefully for adjacent vowels in a very
long word like consanguineous. You would probably scan along the word visually
or with your finger, from left to right, repeatedly checking pairs of adjacent letters.
This is also what lines 2 and 3 are doing; for each pair of adjacent letters you look at,
check if they are both vowels and subtract one from the count if they are. Another
name for the repetitive process carried out by a loop is iteration ; implicit in line 2
is a process of iterating over the letters of the word.

Lines 3 and 4 both illustrate the second new type of statement, called a conditional
statement , or sometimes an if-then statement . Simple conditional statements
like this are self-explanatory: if the condition after the if is true, do the thing after
then. We will work with more sophisticated conditional statements in Chapter 5.

Let’s use a trace table to show the execution of this algorithm on the word “ancient.”

Trace input: word = "ancient"

Step Line count letters Notes
1 1 3 — there are three vowels in "ancient"

2 2 ” "an" first pair of adjacent letters in "ancient" is "an"
3 3 ” ” "an" are not both vowels; no change to count

4 2 ” "nc" next pair of adjacent letters is "nc"
5 3 ” ” "nc" are not both vowels; no change to count

6 2 ” "ci" next pair of adjacent letters is "ci"
7 3 ” ” "ci" are not both vowels; no change to count

8 2 ” "ie" next pair of adjacent letters is "ie"
9 3 2 ” "ie" are both vowels; subtract 1 from count

10 2 ” "en" next pair of adjacent letters is "en"
11 3 ” ” "en" are not both vowels; no change to count

12 2 ” "nt" next pair of adjacent letters is "nt"
13 3 ” ” "nt" are not both vowels; no change to count

14 4 ” ” "ancient" does not end in e; no change to count

Output: count = 2
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The horizontal lines in the trace table make it easier to see the individual iterations
of the loop. In the first step, we count the number of vowels in the input and assign
count to this value. In step 2, we begin the loop by considering the first pair of
adjacent letters in the input, "an". In step 3, we check if these are both vowels. Since
they are not, we leave count alone. In step 4, we repeat the loop by executing line 2
again with the next pair of adjacent letters, "nc". In step 5, we repeat line 3 which,
again, has no effect on the count. In the third iteration, in lines 6–7, the same thing
happens. In the fourth iteration of the loop, starting in step 8, we do find a pair
of adjacent letters that are both vowels, so we subtract one from count. The loop
continues until we run out of letters from the input. Finally, in step 14, we execute
line 4, which finds that the input does not end in e, so count remains 2.

Reflection 1.12 Use trace tables to also execute the algorithm on the words “create” and
“syllable.” Do you get the correct numbers of syllables?

From these examples, you can see that our algorithm is still not correct. Indeed,
designing a computer algorithm that correctly counts syllables for every word in the
English language is virtually impossible; there are just too many exceptions! But we
can certainly get closer than we are now. We will leave it as an exercise for you to
draft further improvements.

To continue our bottom-up implementation of the reading level algorithm, we will
use the Syllable Count algorithm to solve the “total number of syllables” problem.
The idea of the Total Syllable Count algorithm is simple: for each word in the text,
call upon the Syllable Count algorithm for the number of syllables in that word, and
add this number to a running sum of the total number of syllables.

Algorithm Total Syllable Count

Input: a text
1 total count ← 0
2 repeat for each word in the text:
3 number ← Syllable Count (word)
4 total count ← total count + number

Output: total count

In line 1 of the algorithm, we initialize the total count of syllables to zero. Line 2 is
a loop that iterates over all of the words in the text. For every word, we execute
lines 3 and 4, indented to indicate that these comprise the body of the loop. In line
3, we call upon the Syllable Count algorithm to get the number of syllables in the
word that is being considered in that iteration. Syllable Count (word) is shorthand for
“execute the Syllable Count algorithm with input word,” where word is the variable
name representing the word that is being examined in each iteration of the loop.
The output of the Syllable Count algorithm is then assigned to the variable named
number. So altogether, line 3 is shorthand for
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“Execute the Syllable Count algorithm, with input word, and assign the
output to the variable named number.”

Then in line 4, we add the number of syllables in the word to the total count of
syllables.

This is a lot to take in, so let’s once again illustrate with a trace table, using the
first three words of the United Nations charter as input.

Trace input: text = "We the peoples"
Step Line total count word number Notes

1 1 0 — — initialize total count to zero
2 2 ” "We" — do the loop body with word ← "We"
3 3 ” ” 1 get the number of syllables in "We"
4 4 1 ” ” add number to total count

5 2 ” "the" ” do the loop body with word ← "the"
6 3 ” ” 1 get the number of syllables in "the"
7 4 2 ” ” add number to total count

8 2 ” "peoples" ” do the loop body with word ← "peoples"
9 3 ” ” 2 get the number of syllables in "peoples"
10 4 4 ” ” add number to total count

Output: total count = 4
In the trace table, horizontal lines identify the three iterations of the loop, one for
each word in the text. In the first iteration, in step 2, the loop assigns word to be
"We", as the first word in the text. Then, in step 3, number is assigned the output of
Syllable Count ("We"), which means that the Syllable Count algorithm is called upon
to get the number of syllables in "We" and this value (1) is assigned to the variable
number. In step 4, the value of number is added to the total count. Remember that,
in an assignment statement, the righthand side is evaluated first, so the statement
in line 4 is assigning to total count the sum of the previous value of total count and
number, as illustrated below:

total count ← total count + number
↑ ↑ ↑

next value previous value (1)
(1) (0)

In the second iteration, starting in step 5, the loop assigns word to be "the", the
Syllable Count algorithm is called upon to get the number of syllables in "the" and this
value is added to total count, bringing its value to 2. Finally, in the third iteration,
starting on line 8, the process repeats with word assigned to be "peoples", bringing
the total number of syllables to 4, which is the output of the algorithm.

To flesh out the entire reading level algorithm, we would continue designing algorithms
for subproblems at the bottom of the tree, and work our way up, calling upon
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algorithms at lower levels from algorithms for levels above. This would continue
until we get to the root of the tree.

Suppose, for the moment, that we have worked our way up the decomposition tree
and that, in addition to the Flesch-Kincaid algorithm, algorithms for the other two
main subproblems have been written—one that computes the average number of
words per sentence and one that computes the average number of syllables per word.
Also suppose that we have named these algorithms Average Words Per Sentence and
Average Syllables Per Word, respectively. Then the final reading level algorithm would
look like the following.

Algorithm Reading Level

Input: a text
1 average words ← Average Words Per Sentence (text)
2 average syllables ← Average Syllables Per Word (text)
3 reading level ← Flesch-Kincaid (average words, average syllables)

Output: reading level

Line 1 of the algorithm is shorthand for

“Execute the Average Words Per Sentence algorithm, with input text, and
assign the output to the variable named average words.”

Similarly, line 2 of the algorithm is shorthand for

“Execute the Average Syllables Per Word algorithm, with input text, and
assign the output to the variable named average syllables.”

Finally, line 3 calls upon the Flesch-Kincaid algorithm, with the values of these two
variables as input, to compute the Flesch-Kincaid grade level score. The output of
this algorithm is then assigned to the variable named reading level, which is output
by the algorithm.

We invite you to take a stab at writing the remaining algorithms in the exercises.

Exercises
1.2.1. Decompose each of the following problems into subproblems. Continue the

decomposition until you think each subproblem is sufficiently simple to solve.
Explain your rationale for stopping the decomposition where you did.

(a)* an exercise routine from warmup to cool down

(b) your complete laundry routine

(c) writing a paper for a class

(d) your morning routine

(e) planning a multiple course menu
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1.2.2. Suppose you want to find the area of each of the following shaded regions. In
each of the diagrams, one square represents one square unit. Decompose each
problem into subproblems that make finding the solution easier. (You do not
need to actually find the areas.)

(b) (c)(a)*

1.2.3. Look up the organizational chart for your school. Choose one division and
explain how the organization of that division supplies a functional abstraction
to the office that oversees the division.

1.2.4* Use a trace table to show how the final Sphere Volume 2 algorithm executes with
input r = 7.

1.2.5. Use a trace table to show how the second draft of the Syllable Count algorithm
executes on the word algorithm. Is the result correct?

1.2.6. The following algorithm computes the surface area of a box.

Algorithm Surface area of a box

Input: length, width, height
1 area 1 ← length × width
2 area 2 ← length × height
3 area 3 ← width × height
4 surface ← area 1 + area 2 + area 3
5 surface ← surface × 2

Output: surface

Use a trace table (started below) to show how the algorithm executes with
inputs length = 4, width = 5, and height = 2.

Trace input: length = 4, width = 5, height = 2
Step Line area 1 area 2 area 3 surface Notes

1 1 20 — — — area 1 ← length × width
2 2
⋮

Output:

1.2.7* The following algorithm determines the winner of an election between two
candidates, Laura and John. The input is a list votes like [Laura, Laura, John,
Laura, . . . ].
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Algorithm Count votes

Input: votes
1 laura ← 0
2 john ← 0
3 repeat once for each entry in votes:
4 if the entry is for Laura, then add 1 to laura
5 otherwise, add 1 to john
6 if laura > john, then winner ← Laura
7 otherwise, winner ← John

Output: winner

Use a trace table (started below) to show how the algorithm executes with input
votes = [John, Laura, Laura, John, Laura].

Trace input: votes = [John, Laura, Laura, John, Laura]
Step Line laura john winner Notes

1 1 0 — — laura set to 0
2 2
⋮

Output:

1.2.8. There is a subtle mistake in the algorithm in Exercise 1.2.7. Describe and fix it.

1.2.9* Revise the original Sphere Volume algorithm on page 10 so that it also uses a
variable instead of referring to the “previous result.”

1.2.10. Write yet another algorithm for finding the volume of a sphere.

1.2.11. Write an algorithm to sort a stack of any 5 cards by value in ascending order. In
each step, your algorithm may compare or swap the positions of any two cards.

1.2.12. Write an algorithm to walk between two nearby locations, assuming the only
legal instructions are “Take s steps forward,” and “Turn d degrees to the left,”
where s and d are positive integers.

1.2.13. The term algorithm was derived from the name of Muh.ammad ibn Mūsā al-
Khwārizmı̄ (c. 780–c. 850), a Persian mathematician who introduced both Arabic
numerals and algebra to the world. The term algebra is derived from the Latin
translation of the title of his book, “The Compendious Book on Calculation
by Completion and Balancing” [4], which introduced algebra. The following
algorithm for a common algebraic operation is from an English translation of
this work.

You know that all mercantile transactions of people, such as buying and selling,
exchange and hire, comprehend always two notions and four numbers, which are
stated by the enquirer; namely, measure and price, and quantity and sum. The
number which expresses the measure is inversely proportionate to the number
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which expresses the sum, and the number of the price inversely proportionate
to that of the quantity. Three of these four numbers are always known, one
is unknown, and this is implied when the person inquiring says “how much?”
and it is the object of the question. The computation in such instances is this,
that you try the three given numbers; two of them must necessarily be inversely
proportionate the one to the other. Then you multiply these two proportionate
numbers by each other, and you divide the product by the third given number, the
proportionate of which is unknown. The quotient of this division is the unknown
number, which the inquirer asked for; and it is inversely proportionate to the
divisor.

Examples.—For the first case: If you are told “ten for six, how much for four?”
then ten is the measure; six is the price; the expression how much implies the
unknown number of the quantity; and four is the number of the sum. The number
of the measure, which is ten, is inversely proportionate to the number of the
sum, namely, four. Multiply, therefore, ten by four, that is to say, the two known
proportionate numbers by each other; the product is forty. Divide this by the
other known number, which is that of the price, namely, six. The quotient is six
and two-thirds; it is the unknown number, implied in the words of the question
“how much?” it is the quantity, and inversely proportionate to the six, which is
the price.

There are four variables identified in the passage: measure, price, sum, and
quantity. Write an algorithm in pseudocode that answers the “how much?”
question posed in the example when the first three quantities are given as input.

1.2.14* Using the Syllable Count algorithm as a guide, write an algorithm named Word

Count that approximates the total number of words in a text. Your algorithm
should take a text as input and output a count of words. Like the Syllable Count

algorithm, use a loop to look at each letter in the text and adjust a count as
appropriate. As with counting syllables, this problem is fraught with complexity
arising from the English language, so your algorithm need not be perfect.

1.2.15. Write an algorithm named Sentence Count to count the total number of sentences
in a text. Your algorithm should take a text as input and output a count of
sentences. The guidance from the previous exercise also applies.

1.2.16* Using Figure 1.4 and the Reading Level algorithm on page 19 as guides, design the
Average Words Per Sentence algorithm. Call upon your Word Count and Sentence

Count algorithms to do most of the work.

1.2.17. Using Figure 1.4 and the Reading Level algorithm on page 19 as guides, design
the Average Syllables Per Word algorithm. Call upon your Word Count algorithm
and the Total Syllable Count algorithm to do most of the work.

1.2.18. Enhance the Syllable Count (Version 2) algorithm on page 16 so that it correctly
counts the number of syllables in

(a) plural words

(b) words ending in a consonant plus le (e.g., syllable)

(c) words containing a y that acts like a vowel

(d) the word algorithm
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1.3 WRITE A PROGRAM

Third, carry out your plan, checking each step.

The next step in the problem solving process is to “carry out your plan” by translat-
ing your algorithm into a program that a computer can execute. A program must
adhere to a set of grammatical rules, called syntax , that are defined by a particular
programming language . In this book, we will use a programming language called
Python. You will find that programming in Python is not too different from writing
algorithms in pseudocode, which is why it is a great first language. But Python
is not a toy language either; it has become one of the most widely used program-
ming languages in the world, especially in data science, bioinformatics, and digital
humanities.

Writing programs (or “programming”) is a hands-on activity that allows us to test
our algorithms, apply them to real inputs, and harness their results, in tangible and
satisfying ways. Learning how to program empowers us to put our algorithms into
production. Solving problems and writing programs should also be fun and creative.
Guido van Rossum, the inventor of Python understood this when he named Python
after the British comedy series “Monty Python’s Flying Circus!”

In this section, we will not be able to fully realize our reading level algorithm as a
program just yet. Some of the steps that are easy to write as pseudocode, such as
breaking a text into individual words, are actually more involved than they look on
paper. But we will be able to implement the Flesch-Kincaid algorithm at the bottom
of our decomposition tree, and get oriented for what awaits in future chapters. Before
long, you will be able to implement everything from the previous section and much
more!

Welcome to the circus
As you work through this book, we highly recommend that you do so in front of a
computer. The only way to learn how to program is to do it, so every example we
provide is meant to be tried by you. Then go beyond the examples, and experiment
with your own ideas. Instead of just wondering, “What would happen if I did this?”,
type it in and see! To get started, launch the application called IDLE that comes
with every Python distribution (or another programming environment recommended
by your instructor). You should see a window appear with something like this at the
top:

Python 3.8.4 (v3.8.4:dfa645a65e, Jul 13 2020, 10:45:06)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>>

The program executing in this window is known as a Python shell . The first line
tells you which version of Python you are using (in this case, 3.8.4). The programs
in this book are based on Python version 3.6 and higher. If you need to install a
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newer version, you can find one at http://python.org. The symbol >>> on the
fourth line in the IDLE window is called the prompt because it is prompting you
to type in a Python statement. To start, type in print('Hello world!') at the
prompt and hit return.

>>> print('Hello world!')
Hello world!
>>>

Congratulations, you have just written your first program! This one-statement
program simply prints Hello world! on the screen.

Notice that the Python shell responded to your command with a result, and then
gave you a new prompt. The shell will continue this “prompt → compute → respond”
cycle until we quit (by typing quit()). In the “compute” step, as we will see in
Section 3.1, the computer does not really understand what we are typing. Instead,
each Python statement is transparently translated into machine language , which
is the only language a computer actually understands. Then the shell executes the
machine language instructions and prints the result. The part of the shell that does
this translation is called the interpreter . Python programs can also be executed in
“program mode,” where the Python interpreter executes an entire program containing
multiple statements all at once. We will introduce program mode in the next chapter.

A programming language like Python provides a rich set of abstractions that enable us
to solve a wide variety of interesting problems. Your one-line program demonstrates
two of these. The sequence of characters in quotes, 'Hello world!', is called a
character string or just a string . Strings, which can be enclosed in either single
quotes (') or double quotes ("), are how Python represents and stores text, from
single characters up to entire books. To display this string, we used the print

function. Functions are how functional abstractions are implemented in Python.
A function, like the algorithms we developed in the previous section, takes one or
more inputs, called arguments, and produces an output, called the return value .
We call upon functions to compute things for us with the familiar notation that we
used in the previous section to call upon algorithms. The print function takes the
string 'Hello world!' as an argument (in parentheses) and prints it to the screen.
Alternatively, we could have assigned the string to a variable and then passed this
variable to the print function like this:

>>> message = 'Hello world!'
>>> print(message)
Hello world!
>>>

In our pseudocode algorithms, we used a left-facing arrow to assign values to variables
to emphasize that assignment is a two-step, right-to-left process:

1. Evaluate the expression on the righthand side of the assignment operator.

2. Assign the resulting value to the name on the lefthand side of the assignment
operator.

http://python.org
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Operators Description

1. ( ) parentheses
2. ** exponentiation (power)
3. +, - unary positive and negative, e.g., -(4 * 9)

4. *, /, //, % multiplication and division
5. +, - addition and subtraction

Table 1.1 Arithmetic operator precedence, highest to lowest. Operators with the same

precedence are evaluated left to right.

In Python, assignment works exactly the same way, but the assignment operator
is the equal sign (=) instead of an arrow.

Python can also crunch numbers, of course. Computing the volume of a sphere looks
like this:

>>> radius = 10
>>> pi = 3.14159
>>> volume = (4 / 3) * pi * radius ** 3

We created two new variables above named radius and pi, and used these variables
to compute the volume using the formula (4/3)πr3. The /, *, and ** symbols perform
division, multiplication, and exponentiation, respectively. The spaces around the
operators in the arithmetic expression are optional and ignored by the interpreter.
In general, Python does not care if you include spaces in expressions, but you
always want to make your programs readable to others, and spaces often help. The
interpreter evaluates arithmetic operators in the usual order, summarized in Table 1.1
(i.e., PEMDAS). This precedence may be overridden by parentheses. You can also
use parentheses, even when unnecessary, to make expressions easier to understand,
as we did above with parentheses around 4 / 3.

Assignment statements do not print any results, but you can display the value of a
variable by either typing its name or using print.

>>> volume
4188.786666666666
>>> print(volume)
4188.786666666666

In the shell, both methods do the same thing. (When we start writing programs in
the next chapter, using print will be necessary.)

Similarly, let’s compute the Flesch-Kincaid reading level of a hypothetical text (since
we cannot yet analyze a real text) with an average of 16 words per sentence and
1.78 syllables per word, using the formula on page 6.

>>> averageWords = 16
>>> averageSyllables = 1.78
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print(readingLevel)
11.654
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The print function can also take multiple arguments, separated by commas. A space
will be inserted between arguments when they are displayed.

>>> print('The reading level is', readingLevel, '.')
The reading level is 11.654 .

The first and last arguments are strings, and the second argument is the vari-
able we defined above. Notice that there are no quotes around the variable name
readingLevel.

Reflection 1.13 Why do you think quotation marks are necessary around strings? Try
removing them and see what happens.

>>> print(The reading level is, readingLevel, .)

The quotation marks are necessary because otherwise Python has no way to dis-
tinguish text from a variable or function name. Without the quotation marks, the
Python interpreter will try to make sense of each argument, assuming that each
word is a variable or function name, or a reserved word in the Python language.
Since this sequence of words does not follow the syntax of the language, and most of
these names are not defined, the interpreter will print an error.

Every value in Python has a type associated with it. Understanding this is very
important when programming because the behaviors of operators and functions
often depend upon the type of data they are given. You can see the different types
of values assigned to our variables so far by using the type function.

>>> type(message)
<class 'str'>
>>> type(averageWords)
<class 'int'>
>>> type(averageSyllables)
<class 'float'>
>>> type(readingLevel)
<class 'float'>

A class , for our purposes at the moment, is a synonym for type. (We will talk about
classes in more detail in the next chapter.) So this is telling us that the value assigned
to message is a string (str), the value assigned to averageWords is an integer
(int), and the value assigned to averageSyllables is a float (short for floating
point number). We will have more to say about integers and floats in Section 3.2;
for now, suffice to say that any number without a decimal point is an integer and
any number with a decimal point is a float. The value assigned to readingLevel

is also a float because the type of any arithmetic expression involving a float will
also be a float. So in the print statement above, we actually combined two different
types of values: strings and a float. The print function transparently converted
readingLevel to a string before combining it with the other two strings into a
longer string to print.

To suppress the extra space that gets inserted before the period in this print

statement, we can build a string manually using the + operator which, when applied
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to strings, is called the concatenation operator . Concatenation combines strings
into longer strings. For example,

>>> first = 'Monty'
>>> last = 'Python'
>>> name = first + ' ' + last
>>> print(name)
Monty Python

To concatenate 'The reading level is', readingLevel, and '.', we need to first
convert readingLevel to a string using the str function. The str function can take
just about any type of value as an argument and it returns the argument represented
as a string. For example, try this:

>>> readingLevelString = str(readingLevel)
>>> readingLevelString
'11.654'

When we use a function like this by passing an argument to it, it is called a function
call , or a function invocation. Calling str(readingLevel) returns (i.e., outputs)
a string representation of readingLevel and assigns this value to the variable
readingLevelString. Notice the quotes in '11.654', indicating that it is a string
rather than a float. The str function does not change the value of readingLevel
though; it remains the same afterwards, as you can confirm:

>>> readingLevel
11.654

The easiest way to use str in the print statement is to skip the intermediate variable
like this:

>>> print('The reading level is ' + str(readingLevel) + '.')
The reading level is 11.654.

Reflection 1.14 Try the previous statement without the str function. What happens
and why?

If we do not convert readingLevel to a string first, then we are trying to “add” a
string to a float, which doesn’t make any sense.

Some other useful functions are float, int, and round. The float and int functions
return float and integer versions of their arguments, similar to the way the str

function returns a string version of its argument.

>>> float(3)
3.0
>>> int(-1.618)
-1

The int function converts its argument to an integer by truncating it, i.e., removing
the fractional part to the right of the decimal point. This might be helpful in our
reading level computation, since we probably do not really want all of the digits to
the right of the decimal point.
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>>> readingLevel = int(readingLevel)
>>> readingLevel
11

Notice that we have overwritten the old value of readingLevel with the truncated
value. Alternatively, we could have used the round function to round the reading
level. Function arguments can be more complex than just single constants and
variables; they can be anything that evaluates to a value. For example, we could get
the rounded reading level like this too:

>>> readingLevel = round(0.39*averageWords + 11.8*averageSyllables - 15.59)
>>> readingLevel
12

The expression in parentheses is evaluated first, and then the result of the expression
is used as the argument to the round function.

Not all functions have return values. For example, the print function, which simply
prints its arguments to the screen, does not. For example, try this:

>>> result = print(readingLevel)
12
>>> print(result)
None

The variable result was assigned whatever the print function returned, which is
different from what it printed. When we print result, we see that it was assigned
something called None. None is a Python keyword that essentially represents “nothing.”
Any function that does not define a return value itself returns None by default. We
will see this again shortly when we learn how to define our own functions.

What’s in a name?
Let’s remind ourselves of a few reasons why variable names are so important.

1. Assigning descriptive names to values can make our algorithms much easier
to understand. In the “real world,” programming is almost always a collabo-
rative endeavor, so it is important to always write programs that are easy to
understand by others. Our goal should be to use sufficient descriptive variable
names to create self-documenting programs that require as little as possi-
ble explanation outside the program itself. To see the value of self-documenting
programs, just consider if we had written the reading level computation above
like this instead:

>>> a = 16
>>> b = 1.78
>>> c = 0.39 * a + 11.8 * b - 15.59

Would you have any idea what these statements did?

2. As we did in our pseudocode algorithms, naming inputs will allow us to
generalize algorithms so that, instead of being tied to one particular input,
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and break elif for in not True

as class else from is or try

assert continue except global lambda pass while

async def False if None raise with

await del finally import nonlocal return yield

Table 1.2 The 35 Python keywords.

they work for a variety of possible inputs. We will discuss this further in
Section 2.5.

3. Names will serve as labels for computed values that we wish to use later,
eliminating the need to compute them again at that time.

Variable names in Python can be any sequence of characters drawn from letters,
digits, and the underscore (_) character, but they may not start with a digit. And,
unlike some of our pseudocode variable names, they may not contain spaces. You also
cannot use any of Python’s keywords, shown in Table 1.2. Keywords are elements
of the Python language that have predefined meanings. We will encounter most of
these keywords as we progress through this book.

Let’s try breaking some of these naming rules to see what happens.

>>> average words = 6
^

SyntaxError: invalid syntax

A syntax error indicates a violation of the syntax, or grammar, of the Python
language. It is completely normal for programmers to encounter syntax errors; it is
part of the programming process. With practice, it will often become immediately
obvious what you did wrong, you will fix the mistake, and move on. Other times, you
will need to look harder to discover the problem but, with practice, these instances
too will become easier to diagnose. In this case, the problem is the space we are
trying to use in the variable name.

Next, try this one.

>>> average-words = 6
SyntaxError: cannot assign to operator

This syntax error is referring to the dash/hyphen/minus sign symbol (-) that we
have in our name. Python interprets the symbol as the minus operator, which is
why it is not allowed in names. Instead, we can use the underscore (_) character
(i.e., average_words) or vary the capitalization (i.e., averageWords) to distinguish
the two words in the name.

To develop a more nuanced understanding of what an assignment statement really
does, we need to know a little bit about how values are stored. A computer’s memory
consists of billions of memory cells, each of which can store one value. These cells
are analogous to post office boxes, each with a unique address. And a variable name
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is like a “Sticky note”4 attached to the front of one of those boxes. As we will see
in Section 3.2, our programs are also stored in the same memory while they are
executing.

The picture below represents the outcome of the three assignment statements in our
reading level computation. Each of the three rectangles represents a memory cell,
and a variable name (on a sticky note) is attached to each one.

16

averageWords

1.78

readingLevelaverageSyllables

11.654

Like a sticky note, a variable name can easily be reassigned to a different value at
any time. For example, suppose we change the average number of syllables to 1.625:

>>> averageSyllables = 1.625

16

averageWords

1.78

averageSyllablesreadingLevel

1.62511.654

The reassignment caused the averageSyllables sticky note to move to a different
memory cell containing the value 1.625. The old value 1.78 may briefly remain in
memory without a name attached to it, but since we can no longer access that value
without a reference to it, the Python “garbage collection” mechanism will soon free
up the memory that it occupies and allow it to be overwritten with something new.

Reflection 1.15 Did the value of readingLevel change when we changed the value of
averageSyllables?

Try it:

>>> readingLevel
11.654

While the value assigned to averageSyllables has changed, the value assigned to
readingLevel has not. This example demonstrates that assignment is a one-time
event; Python does not “remember” how the value of readingLevel was computed.
Put another way, an assignment is not creating an equivalence between a name and
a computation. Rather, it performs the computation on the righthand side of the
assignment operator only when the assignment happens, and then assigns the result
to the name on the lefthand side. That value remains assigned to the name until the

4“Sticky note” is a registered trademark of the BIC Corporation.



1.3 WRITE A PROGRAM � 31

name is explicitly assigned some other value or it ceases to exist. To compute a new
value for readingLevel based on the new value of averageSyllables, we would
need to perform the reading level computation again.

>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> readingLevel
9.825

Now the value assigned to readingLevel has changed, due to the explicit assignment
statement above.

16

averageWords

1.78

averageSyllables

1.62511.654 9.825

readingLevel

Yet another way to reinforce the nature of assignment is to look at what happens if
we add one to averageWords:

>>> averageWords = averageWords + 1

If the equals sign denoted equality, then this statement would not make any sense!
However, if we interpret it using the two-step process, it is perfectly reasonable.
First, the expression on the righthand side is evaluated, ignoring the lefthand side
entirely. Since, at this moment, averageWords is 16, the righthand side evaluates
to 16 + 1 = 17. Second, the value 17 is assigned to averageWords. So this statement
has added 1 to, or incremented , the value of averageWords.

What if we had not assigned a value to averageWords before we tried to increment
it? To find out, try this:

>>> tryThis = tryThis + 1
NameError: name 'tryThis' is not defined

This name error occurred because, when the Python interpreter tried to evaluate
the righthand side of the assignment, it found that tryThis was not assigned a
value, i.e., it was not defined. So we need to make sure that we define any variable
before we refer to it. This may sound obvious but, in the context of some larger
programs later on, it might be easy to forget.

Interactive computing
We can interactively query for string input in our programs with the input function.
The input function takes a string prompt as an argument and returns a string value
that is typed in response. For example, the following statement prompts for your
name and prints a greeting.
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>>> name = input('What is your name? ')
What is your name? George
>>> print('Howdy, ' + name + '!')
Howdy, George!

The call to the input function above prints the string 'What is your name? ' and
then waits. After you type something (above, we typed George, shown in red) and
hit the return key, the text that we typed is returned by the input function as a
string and assigned to the variable called name. The value of name is then used in
the print function.

To adapt this format to a reading level program, we will need to convert the strings
returned by the input function to numbers. Luckily, we can do this easily with the
float and int functions.

>>> text = input('Average words per sentence: ')
Average words per sentence: 4.5
>>> averageWords = float(text)
>>> averageSyllables = float(input('Average syllables per word: '))
Average syllables per word: 2.1
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print('The reading level is ' + str(round(readingLevel)) + '.')
The reading level is 11.

In response to the first prompt above, we typed 4.5. Then the input function assigned
what we typed to the variable text as a string, in this case '4.5' (notice the quotes).
Then, using the float function, the string is converted to the numeric value 4.5

(no quotes) and assigned to the variable averageWords. In the second prompt, we
combined these two steps by passing the return value of the input function in as the
argument of float. Either way, now that averageWords and averageSyllables

are numerical values, they can be used in the arithmetic expression to compute the
reading level. In the last print statement, notice how we composed the str and
round functions so that the return value of round is being used as the argument to
str.

Reflection 1.16 Type the statements above again, omitting the float function:

>>> averageWords = input('Average words per sentence: ')
>>> averageSyllables = input('Average syllables per word: ')
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59

What happened? Why?

Looking ahead
In just this section, we have nearly achieved a full Python implementation of our
Flesch Kincaid algorithm from page 14. What our implementation is missing is the
ability to call upon it as a functional abstraction like we did in the Reading Level

algorithm on page 19:

reading level ← Flesch-Kincaid (average words, average syllables)
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Here’s a sneak peek at how we will do that in the next chapter:

def fleschKincaid(averageWords, averageSyllables):
return 0.39 * averageWords + 11.8 * averageSyllables - 15.59

This defines fleschKincaid to be a function that takes two arguments as input and
returns the corresponding reading level as its output. With this function, we will be
able to do things like this:

readingLevel = fleschKincaid(16, 1.78)

More to come. . .

Exercises
Use the Python interpreter to answer the following questions. Where appropriate, provide
both the answer and the Python expression you used to get it.

1.3.1* You may have seen a meme that challenges you to find the correct answer for
the expression 8 ÷ 2(2 + 2). Use Python to do this.

1.3.2* The Library of Congress stores its holdings on 838 miles of shelves. Assuming
an average book is one inch thick, how many books would this hold?

1.3.3. If I gave you a nickel and promised to double the amount you have every
hour for the next 24, how much money would you have at the end? What if I
only increased the amount by 50% each hour, how much would you have? Use
exponentiation to compute these quantities.

1.3.4. The Library of Congress stores its holdings on 838 miles of shelves. How many
round trips is this between Granville, Ohio and Columbus, Ohio?

1.3.5. What is wrong with each of the following Python names? Suggest a fixed version
for each.

(a) word count

(b) here:there

(c) 'minutes'

(d) 4ever

(e) #thisisavariable

1.3.6. (a) Assign a variable named radius to have the value 10. Using the formula
for the area of a circle (A = πr2), assign to a new variable named area

the area of a circle with radius equal to your variable radius. (The
number 10 should not appear in the formula.)

(b) Now change the value of radius to 15. What is the value of area now?
Why?
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1.3.7* The formula for computing North American wind chill temperatures, in degrees
Celsius, is

W = 13.12 + 0.6215 t + (0.3965 t − 11.37) v0.16

where t is the ambient temperature in degrees Celsius and v is the wind speed
in km/h.5

(a) Compute the wind chill for a temperature of −3○ C and wind speed of
13 km/h by assigning this temperature and wind speed to two variables
temperature and windChill, and then assigning the corresponding
wind chill to another variable windChill using the formula above.

(b) Change the value of temperature to 4.0 and then check the value of
windChill. Why did the value of windChill not change? How would you
update the value of windChill to reflect the change in temperature?

1.3.8* Suppose we want to swap the values of two variables named left and right.
Why doesn’t the following work? Show a method that does work.

left = right
right = left

1.3.9. What are the values of apples and oranges at the end of the following?

apples = 12.0
oranges = 2 * apples
apples = 6

1.3.10. What is the value of number at the end of the following?

number = 0
number = number + 1
number = number + 1
number = number + 1

1.3.11. In the previous exercise, what happens if you omit the first statement
(number = 0)? Explain why number must be assigned a value before the exe-
cuting the statement number = number + 1.

1.3.12. What are the values of apples and oranges at the end of the following?

apples = 12.0
oranges = 6
oranges = oranges * apples

1.3.13. String values can also be manipulated with the * operator. Applied to strings,
the * operator becomes the repetition operator , which repeats a string some
number of times. The operand on the left side of the repetition operator is a
string and the operand on the right side is an integer that indicates the number
of times to repeat the string.

>>> last * 4
'PythonPythonPythonPython'
>>> print(first + ' ' * 10 + last)
Monty Python

(a) Explain why 18 * 10 and '18' * 10 give different values.

5Technically, wind chill is only defined at or below 10○C and for wind speeds above 4.8 km/h.
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(b) Use the repetition operator to create a string consisting of 20 asterisks
separated by spaces.

(c) The special character '\n' (really two characters, but it represents a
single character) is called the newline character, and causes printing to
continue on the next line. To see its effect, try this:

>>> print('Hello\nthere')

Use the newline character and the repetition operator to create a string
that will display a vertical line of 20 asterisks when printed.

(d) Combine the techniques from parts (b) and (c) (with some modification)
to create a string that will display a 20 × 20 square of asterisks when
printed.

1.3.14* Modify your wind chill computation from Exercise 1.3.7 so that it gives the
wind chill rounded to the nearest integer.

1.3.15. Show how you can use the int function to truncate any floating point number
to two places to the right of the decimal point. In other words, you want to
truncate a number like 3.1415926 to 3.14. Your expression should work with
any value of number.

1.3.16* Show how you can use the int function to find the fractional part of any positive
floating point number. For example, if the value 3.14 is assigned to number, you
want to output 0.14. Your expression should work with any value of number.

1.3.17. Show how to round a floating point number to the nearest tenth in Python.

1.3.18. What happens when you execute the following statements? Explain why.

>>> value = print(42)
>>> print(value * 2)

1.3.19* Fix the following sequence of statements

>>> radius = input('Radius of your circle? ')
>>> area = 3.14159 * radius * radius
>>> print('The area of your circle is ' + area + '.')

1.3.20. Write a sequence of statements that

(a) prompt for a person’s age,

(b) compute the number of days that person has been alive (assume 365.25
days in a year to account for leap years),

(c) round the number of days to the nearest integer, and then

(d) print the result, nicely formatted.

1.3.21* Repeat Exercise 1.3.14, but this time prompt for the temperature and wind
chill using the input function, and print the result formatted like

The wind chill is -2 degrees Celsius.
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1.3.22. The following program implements a Mad Lib.

adj1 = input('Adjective: ')
noun1 = input('Noun: ')
noun2 = input('Noun: ')
adj2 = input('Adjective: ')
noun3 = input('Noun: ')

print('How to Throw a Party')
print()
print('If you are looking for a/an', adj1, 'way to')
print('celebrate your love of', noun1 + ', how about a')
print(noun2 + '-themed costume party? Start by')
print('sending invitations encoded in', adj2, 'format')
print('giving directions to the location of your', noun3 + '.')

Write your own Mad Lib program, requiring at least five parts of speech to
insert. (You can download the program above from the book website to get you
started.)

1.3.23* Write a sequence of statements that accepts three numbers as input, one at a
time, and prints the running sum of the numbers after each input. Use only two
variables, one for the input number and one for the running sum. Here is an
example of what your program should print (omitting the statements you type
at the prompt):

Number 1: 5.1

The current sum is 5.1.

Number 2: 7

The cu

rrent sum is 12.1.

Number 3: 12.3

The final sum is 24.4.

1.4 LOOK BACK

Fourth, look back. Check the result. Can you derive the result differently?

Not all algorithms are good algorithms, even if they are correct. And just about any
algorithm can be made better. Like writing prose or poetry, writing algorithms and
programming involve continual refinement. At every step of the process, we should
“look back” on what we have created to see if it can be improved.

Reflection 1.17 What characteristics might make one algorithm or program better than
another?

Here are some questions we should always ask about our algorithms and programs:

1. Is your program easy to understand?

Are you using descriptive variable names? Is there anything extraneous that
could be omitted? Is there a more elegant way to accomplish the same thing?

2. Does your program work properly?
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Is it solving the correct problem? Does it give the correct output for every
possible input?

3. How long does your algorithm take? Is it as efficient as it could be?

Is your algorithm doing too much work? Is there a way to streamline it?
Does your program use too much memory? Can it be done with less? Our
algorithms at this point are too simple to worry about this too much but,
as they grow more complex, we will see that efficiency becomes an issue of
paramount importance.

4. Are there ethical ramifications to consider?

How will your algorithm or program affect human welfare? Will your algorithm
unfairly impact some groups more than others? Are any of your assumptions
based on unexamined cultural or racial prejudices? Are there related privacy
or intellectual property issues? What is the environmental impact?

These are essential questions to ask at every step of the problem-solving
process. Sometimes even determining what problem you should solve requires
careful judgment. Similarly, poorly chosen inputs to some problems, e.g., facial
recognition and risk assessment algorithms used in the criminal justice system,
can have severely damaging effects on entire groups of people. And when
designing an algorithm, you may find that ethical considerations are at odds
with efficiency; shortcuts and overly simple solutions can lead to damaging
results.

Questions such as these are both complex and essential, but largely beyond
the scope of this book. Some additional resources well worth exploring are
given in Section 1.5.

We will discuss the first point in more detail in the next chapter, as we start to
develop more complete programs. We elaborate on the second and third points
below.

Testing
It should go without saying that we want our programs to be correct. That is, we
want our algorithms to produce the correct output for every possible input, and
we want our programs to be faithful to the design of our algorithms. There are
techniques that we can use to increase the likelihood that our functions and programs
are correct. The first two steps in our problem solving process are a good start:
making sure that we thoroughly understand the problem we are trying to solve and
spending quality time designing a solution, well before we start typing any code.

However, despite the best planning, errors, or “bugs,” will still creep into your
programs. To root out bugs from our programs, i.e., debug them, we have to test
them thoroughly with a variety of carefully chosen inputs. We started to do this when
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we refined our syllable-counting algorithm in Section 1.2. There are four important
categories of inputs that you should be thinking about as we move forward:

1. If there are disallowed inputs that don’t make sense for the problem and are
not guaranteed to work, this should be stated explicitly in the documentation,
as we will discuss further in the next section. We will also talk about how to
more formally specify and check for these inputs in Section 5.5.

2. Once you have identified the range of legal inputs, test your program with
several common inputs to make sure that its basic functionality is intact. It
is important to test with inputs that are representative of the entire range of
possibilities. For example, if your input is a number, try both negative and
positive integers and floats.

3. Boundary cases are inputs that rests on a boundary of the range of legal inputs.
For example, if your allowed inputs are all numbers between 0 and 100, be
sure to test both 0 and 100. In many problems, testing boundary cases can
identify issues with your algorithm that are easy to overlook.

4. Finally, corner cases are any other kind of rare input that might cause the
program to break. These are usually the hardest to identify and tend to be
quite specific to the problem being solved.

To illustrate, let’s look at the simple problem of converting an average course grade
between 0 and 100 to a GPA on a standard four-point scale, where 90–100 is a 4,
80–89 is a 3, 70–79 is a 2, 60–69 is a 1, and < 60 is a 0. (For simplicity, we will ignore
+/− grades.). As a first stab at an algorithm, we notice that dividing by 10 to get
the tens place of the input grade and then subtracting 5 seems to work.

Algorithm Convert grade — Draft

Input: grade
1 tens place ← the digit in the tens place of grade
2 GPA ← tens place − 5

Output: GPA

In Python, we can implement this algorithm in one line:

>>> grade = 87
>>> GPA = int(grade / 10) - 5
>>> GPA
3

Reflection 1.18 What are the disallowed inputs for this algorithm?

Assuming that no extra credit is possible, any grade less than zero or greater than
100 should be disallowed. We’ll look at how to more formally specify this in the
coming chapters. Next, we should try to some common inputs from 0 to 100. To
start, trying a grade in each of the five GPA categories makes sense.
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Reflection 1.19 Try a grade in each of the five GPA categories. What do you find?

Reflection 1.20 What boundary cases should you try?

Did you try grades on the boundaries of the categories (e.g., 60 and 90), grades
below 50, and the boundary cases of 0 and 100? Here we have some issues.

>>> grade = 42
>>> GPA = int(grade / 10) - 5
>>> GPA
-1
>>> grade = 0
>>> GPA = int(grade / 10) - 5
>>> GPA
-5
>>> grade = 100
>>> GPA = int(grade / 10) - 5
>>> GPA
5

To fix these problems, we want to ensure that GPA never falls below zero or exceeds
four. We can accomplish this with the min and max functions, which return the
minimum and maximum values among their arguments. To fix the negative GPA
issue, we want to return the maximum of GPA and zero.

>>> grade = 42
>>> GPA = int(grade / 10) - 5
>>> GPA = max(GPA, 0)
>>> GPA
0

To fix a GPA exceeding four, we want to return the minimum of the GPA and 4.

>>> grade = 100
>>> GPA = int(grade / 10) - 5
>>> GPA = min(GPA, 4)
>>> GPA
4

To fix both problems, we need to combine these solutions:

>>> GPA = int(grade / 10) - 5
>>> GPA = max(GPA, 0)
>>> GPA = min(GPA, 4)

At this point, you should try all of the test cases again to make sure everything
works correctly. We will revisit testing in Section 5.5.

Algorithm efficiency
Now let’s look a little more closely at the third question at the beginning of this
section:

3. How long does your algorithm take? Is it as efficient as it could be?
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To determine how much time an algorithm requires, we could implement it as
a program and execute it on a computer. However, this approach presents some
problems. First, which programming language do we use? Second, which inputs do
we use for our timing experiments? Third, which computer do we use? Once we
make these choices, will they give us a complete picture of our algorithm’s efficiency?
Will they allow us to predict the time required to execute the algorithm on different
computers? Will these predictions still be valid ten years from now?

A better way to predict the amount of time required by an algorithm is to count
the number of elementary steps that are required, independent of any particular
computer. An elementary step is one that always requires the same amount of time,
regardless of the input. Examples of elementary steps are

• arithmetic operations,

• assignments of values to variables,

• testing a condition involving numbers or a character, and

• examining a character in a string or a number in a list.

Each of these things takes the same amount of time regardless of the numbers being
operated upon, the types of values being assigned, or the values being examined.
The number of elementary steps required by an algorithm is called the algorithm’s
time complexity . By determining an algorithm’s time complexity, we can estimate
how long an algorithm will take on any computer, relative to another algorithm for
the same problem.

Constant-time algorithms

To make this more concrete, let’s count how many elementary steps there are in our
final Sphere Volume 2 algorithm on page 14, beginning with line 1:

1 volume ← 4 ÷ 3
Line 1 contains two elementary steps: an arithmetic operation followed by an
assignment of the result to a variable. Assignment and arithmetic (with two operands)
are elementary steps because they always require the same amount of time regardless
of the variable or the operands. Line 2, below, also contains two elementary steps
for the same reason.

2 volume ← volume × π

Lines 3–4 consist of a loop that instructs us to perform a similar arith-
metic/assignment statement three times:

3 repeat the following three times:
4 volume ← volume × r

Line 4 takes two elementary steps by itself, but it is executed three times, so lines
3–4 require a total of six elementary steps. Therefore, all together, this algorithm
requires 2 + 2 + 6 = 10 elementary steps.
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The most important takeaway from this analysis, however, is that the Sphere Volume 2

algorithm requires the same number of elementary steps regardless of what the input
is. It executes ten elementary steps whether the input is 10 or 10,000. Therefore, we
call it a constant-time algorithm .

Linear-time algorithms

Next let’s analyze our last Syllable Count algorithm from page 16. The first statement
in this algorithm counts the number of vowels in the input word:

1 count ← the number of vowels (a, e, i, o, u) in word

Although this may look like one elementary step at first glance, it is not. As we will
discuss more in Chapter 6, a computer algorithm cannot just look at a word and
instantly tell you how many vowels it has. Instead, it will need to check each letter,
one at a time, counting the number of vowels that it sees. In other words, line 1 is
equivalent to the following:

(a) count ← 0
(b) repeat for each letter in word:
(c) if letter is a vowel (a, e, i, o, u), then add 1 to count

Writing it in this way makes it more apparent that the number of elementary steps
required by line 1 depends on the number of letters in word. More specifically, a
word with n letters will require n iterations of the loop in lines (b)–(c); the longer
the word is (i.e., the bigger n is), the longer this will take. The body of the loop in
line (c) requires at most two elementary steps: one to examine a letter and one to
add to count. Therefore altogether, including the initialization of count to zero in
line(a), there are 2n + 1 elementary steps here.

Lines 2–3 of the algorithm contain a more explicit loop that is very similar to our
rewritten version of line 1:

2 repeat for each pair of adjacent letters in word:
3 if the letters are both vowels, then subtract 1 from count

The only difference from lines (b)–(c) above is that this loop looks at pairs of
letters instead of individual letters and it subtracts from, rather than adds to, count.
Regardless, once again, the number of elementary steps depends on the length of
word; if there are n letters in word, lines 2–3 repeat n − 1 times (because there
are n − 1 pairs of adjacent letters in a word with n letters). You can see this more
explicitly in the trace table in page 16. In that case, the input contained n = 7 letters
and there were n − 1 = 6 iterations of the loop. In the body of the loop, there are at
most two elementary steps, so the entire loop contains 2(n − 1) elementary steps.

Finally, line 4 is much simpler:

4 if word ends in e, then subtract 1 from count

We can safely say that the number of elementary steps in this line does not depend
on the length of word. This conclusion relies on the assumption, which will be
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Figure 1.5 A comparison of constant vs. linear time complexity.

verified in Chapter 6, that we can look at the end of any word directly, regardless of
its length. So we can say that this line requires at most two elementary steps, one to
check the last letter in word and one to subtract from count.
Putting it all together then, the entire algorithm requires about (2n+1)+2(n−1)+2 =
4n + 1 elementary steps. As with the sphere-volume algorithm, the exact number is
not terribly important. The important thing to notice is that the time complexity
of this algorithm is linearly proportional to the length of the input word. A linear
function is one that contains n but no higher powers of n like n2 or n3. We call
algorithms with time complexities that are linearly proportional to n, like Syllable

Count, linear-time algorithms.

The real issue underlying time complexity is scalability : how quickly the running
time grows as the input gets very large. The difference between a constant-time
algorithm and a linear-time algorithm is illustrated in Figure 1.5. The blue line
represents the time complexity of a constant-time algorithm that always requires ten
elementary steps regardless of how large the input becomes. The red line represents
the time complexity of a linear-time algorithm that requires 4n + 1 elementary
steps when the input has size n. Notice that the number of elementary steps in the
linear-time algorithm grows proportionally to the size of the input. As the input
gets larger, the difference between the constant-time algorithm and the linear-time
algorithm grows much larger. Therefore, for a particular problem, if we could choose
between a constant-time algorithm and a linear-time algorithm, especially if n is
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Figure 1.6 Examples of everyday algorithms: a fire alarm, an elevator, and a recipe.

large, we would clearly favor the constant-time algorithm. But even linear-time
algorithms are generally considered to be very fast. As will see later, some problems
require a lot more time to solve.

A linear-time algorithm is also said to have time complexity O(n) (pronounced “big
oh of n”). The uppercase letter O is shorthand for “order;” we can also say that a
linear-time algorithm has “order of n” time complexity. A constant-time algorithm
is said to have O(1) time complexity. We will study time complexity in more detail
in Section 6.7.

Although we have presented “looking back” as the last step in a four-step process,
the issues we have discussed here are important to keep in mind in every step.
The better your product is at each step, the less work you will have to do later to
clean it up. Designing algorithms can be a tricky business and first impressions can
sometimes be deceiving. For example, you have already seen that the number of lines
in an algorithm is often unrelated to its time complexity. Similarly, techniques that
seem to work at first glance may not work for some inputs. As in any worthwhile
endeavor, a careful and deliberate approach will pay dividends in the long run.

Exercises
1.4.1. Identify three algorithms from your everyday life and critique them with respect

to readability, correctness, and efficiency. Some examples of everyday algorithms
are shown in Figure 1.6.

1.4.2. What characteristics, other than the ones we discussed, might make one algo-
rithm better than another?

1.4.3. For each of the following algorithms, demonstrate that it is correct by testing it
with at least two common inputs and all boundary inputs you can identify. Say
what the algorithm’s output is in each case. Also, if there are any inputs that
should not be allowed, identify those.
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(a)* your revised Sphere Volume algorithm from Exercise 1.2.9

(b)* the Count votes algorithm from Exercise 1.2.7

(c) the Surface area of a box algorithm from Exercise 1.2.6

(d)
Algorithm Maximum value in a list

Input: a list of numbers
1 maxSoFar ← first item in numbers
2 repeat for each item in numbers:
3 if item > maxSoFar, then assign maxSoFar ← item

Output: maxSoFar

(e)
Algorithm Distance to lightning strike

Input: elapsed number of seconds
1 speed of sound ← 343 m/s
2 distance ← seconds × speed of sound
3 distance ← distance ÷ 1000

Output: distance

(f)
Algorithm Raise to the fifth

Input: a number
1 product ← 1
2 repeat 5 times:
3 product ← product × number

Output: product

(g)
Algorithm Count pronouns

Input: a text
1 countFeminine ← 0
2 countMasculine ← 0
3 repeat for each word in the text:
4 if the word is she, then add one to countFeminine
5 if the word is he, then add one to countMasculine
6 ratio ← countFeminine ÷ countMasculine

Output: ratio
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1.4.4. For each of the algorithms in the previous exercise, estimate the number of
elementary steps and decide whether it is a constant-time or a linear-time
algorithm.

1.4.5. Suppose that you have been asked to organize a phone tree for your organization
to personally alert everyone with a phone call in the event of an emergency.
You have to make the first call, but after that, you can delegate others to make
calls as well. Who makes which calls and the order in which they are made
constitutes an algorithm. For example, suppose there are only eight people in
the organization, and they are named Amelia, Beth, Caroline, Dave, Ernie, Flo,
Gretchen, and Homer. Then here is a simple algorithm:

Algorithm Alphabetical Phone Tree

Input: a list of eight people and their phone numbers
1 Amelia calls Beth.
2 Beth calls Caroline.
3 Caroline calls Dave.
⋮

7 Gretchen calls Homer.
Output: none (but phone calls were made)

For simplicity, assume that everyone answers the phone right away and every
phone call takes the same amount of time.

(a) For the phone tree problem, identify at least two criteria that would
make one algorithm better than another. For each criterion, design an
algorithm that satisfies it.

(b) In the interest of safety, one criterion for a phone tree would be to ensure
that everyone is notified as soon as possible. Design an algorithm that
ensures that all eight people are notified in a chain of at most three calls.
At the outset, only Amelia is aware of the emergency. (Multiple calls
can be made simultaneously.)

(c) Extend the algorithm you designed in the previous question to an
arbitrarily large number of people. In general, how many people are
called simultaneously during any step t = 1,2,3, . . .? First, think about
how many calls are made during steps 1, 2, and 3 in your algorithm.
Then think about how many calls would be made during time steps 4,
5, and 6. Can you generalize this process to any step t?

1.5 SUMMARY AND FURTHER DISCOVERY
In this chapter, we outlined the four steps in the computational problem solving
process. First, we need to understand the problem we are trying to solve, viewed as
the relationship between its inputs and the desired output. This may sound obvious,
but you would be surprised at how much time is often wasted solving the incorrect
problem! Solving some small examples by hand at this point can often help, and
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illuminate potential pitfalls. At the end of this step, the problem is viewed as a
functional abstraction because we understand what an algorithm for it should do,
but not yet what the algorithm looks like.

Second, we want to design an algorithm to solve the problem. It helps to use top-down
design to decompose the problem into smaller subproblems. Then we can design
algorithms for the simplest problems first and work our way up the decomposition
tree in a bottom-up fashion. Algorithm design is often the most challenging of the
four steps, which is why writing algorithms in pseudocode is so valuable. Pseudocode
allows us to think about how to solve the problem without being distracted by the
more demanding requirements of a programming language. In our algorithms, we
saw four categories of algorithmic statements:

1. assignment statements that assign a value to a variable,

2. arithmetic statements,

3. loops that repeat a set of statements some number of times, and

4. conditional statements that make decisions.

It may surprise you to know that these four types of statements are sufficient to
write any algorithm imaginable! So writing algorithms, and programs, in large part
amounts to putting this small palette to work in creative ways. As we progress
through this book, we will incrementally learn how to use these kinds of statements
in myriad combinations to solve a wide variety of problems.

In the third step, we translate the algorithm into a program in Python. We started
our introduction to programming by using variables, arithmetic, and simple functions.
In the next chapter, you will begin to write your own functions and incorporate
them into longer programs. By the end of this book, you will be amazed by the
kinds of things you can do!

Fourth, we need to remember to “look back” at our algorithms and programs in a
process of continual refinement. Just because a program seems to work on a few
simple inputs does not mean that it cannot be improved. We always want to strive
for the clearest, most efficient, and fairest solution we can.

Notes for further discovery
The first epigraph at the beginning of this chapter is from an article by computer
scientists Michael Fellows and Ian Parberry [16]. A similar quote is often attributed
to the late Dutch computer scientist Edsger Dijkstra.

The second epigraph is from the great Donald Knuth [33], Professor Emeritus of
The Art of Computer Programming at Stanford University. When he was still in
graduate school in the 1960s Dr. Knuth began his life’s work, a multi-volume set
of books titled, The Art of Computer Programming [31]. In 2011, he published
the first part of Volume 4, and has plans to write seven volumes total. Although
incomplete, this work was cited at the end of 1999 in American Scientist ’s list of
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“100 or so Books that Shaped a Century of Science” [42]. Dr. Knuth also invented the
typesetting program TEX, which was used to write this book. He is the recipient of
many international awards, including the Turing Award, named after Alan Turing,
which is considered to be the “Nobel Prize of computer science.”

Guido van Rossum is a Dutch computer programmer who invented the Python
programming language. IDLE is an acronym for “Integrated DeveLopment Environ-
ment,” but is also considered to be a tribute to Eric Idle, one of the founders of
Monty Python.

The “Hello world!” program is the traditional first program that everyone learns when
starting out. See http://en.wikipedia.org/wiki/Hello_world_program for an
interesting history.

As you continue to learn Python, it will be helpful to add the following documenta-
tion site to your “favorites” list: https://docs.python.org/3/index.html. There
are also a list of links and references for commonly used classes and functions
(Appendix A) on the book website.

There are many good resources for learning more about ethics in computing and
data science. The ACM Code of Ethics and Professional Conduct (https://www.
acm.org/code-of-ethics) is the main code followed by computing practitioners
around the world. For more in-depth coverage of moral theories and ethics, we
recommend Computer Ethics by Deborah Johnson [27], Ethics of Big Data by Kord
Davis [11], and Ethical and Secure Computing by Joseph Migga Kizza [30]. Race after
Technology by Ruha Benjamin [6], Algorithms of Oppression: How Search Engines
Reinforce Racism by Safiya Umoja Noble [44], and Weapons of Math Destruction
by Cathy O’Neil [45] delve deeper into the potentially damaging social impacts of
computing.

Finally, a note about “big oh” notation. Our use of O(n) is actually a slight,
but common, abuse of notation. Formally, to say that an algorithm has O(n)
time complexity means that its time complexity is asymptotically at most linearly
proportional to n. In other words, a constant-time algorithm also has O(n) time
complexity! The correct notation is Θ(n) (“big theta of n”), but “big oh” notation is
used so frequently in practice that we chose to also use it, despite some discomfort.

http://en.wikipedia.org/wiki/Hello_world_program
https://docs.python.org/3/index.html
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
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Visualizing Abstraction

We have seen that computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and especially because it
produces objects of beauty. A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it better.

Donald E. Knuth
Turing Award Lecture (1974)

We may say most aptly that the Analytical Engine weaves algebraical patterns just as the
Jacquard-loom weaves flowers and leaves.

Ada Lovelace
Notes (1843)

V isualizing large quantities of information can often provide insights that raw
data cannot. Compare the following partial list of earthquake epicenters in

(longitude, latitude) format with the visualization of these same data in Figure 2.1.

(−78.6,19.3), (144.8,19.1), (145.9,43.5), (26.6,45.7), (39.3,38.4), (90.8,26.3), . . .

Simply plotting the points on an appropriate background provides immediate insight
into recent seismic activity. A picture really is worth a thousand words, especially
when we are faced with a slew of data.

This image was created with turtle graphics. To draw in turtle graphics, we create
an abstraction called a “turtle” in a window and move it with directional commands.
As a turtle moves, its “tail” leaves behind a trail, as shown in Figure 2.2. If we lift a
turtle’s tail up, it can move without leaving a trace. In this chapter, in the course of
learning about turtle graphics, we will also explore how abstractions can be created,
used, and combined to solve problems.

49
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Figure 2.1 One month of magnitude 4.5+ earthquakes plotted.

+x-x

+y

-y

Figure 2.2 A turtle graphics window containing two turtles. The blue turtle moved

forward, turned left 45○, and then moved forward again. The red turtle turned left

120○, moved forward, turned left again 90○, and then moved forward again.
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2.1 DATA ABSTRACTION
The description of a turtle in turtle graphics is an example of an abstract data
type (ADT). Just as a functional abstraction describes how to use a function or
process without specifying how it works, an abstract data type describes how to
use a category of things without necessarily specifying how they work. An ADT is
composed of two parts:

(a) the types of information, called attributes , that we need to maintain about the
things, and

(b) the operations that we are allowed to use to access or modify that information.

In Python, an abstract data type is implemented with a class . In a class, attributes
are maintained in a set of instance variables and the operations that can access
these attributes are special functions called methods.

The Python class that implements the Turtle ADT is named Turtle. The Turtle

class contains several instance variables, some of which are listed below.

Instance Variable Description

position the turtle’s current (x,y) position
heading the turtle’s current heading (in degrees)
color the turtle’s current drawing color
width the turtle’s current pen width
tail position whether the turtle’s tail is up or down

But we will never actually see or manipulate any of these instance variables directly.
Instead, we will indirectly access and/or modify their values by calling the Turtle

methods below.

Method Argument Description

forward distance move the turtle forward in its current direction
backward distance move the turtle opposite to its current direction
right, left angle turn the turtle clockwise or counterclockwise
setheading angle set the turtle’s heading
goto (x, y) move the turtle to the given position

up, down — put the turtle’s tail up or down
pensize width set the turtle’s pen width
pencolor color set the turtle’s pen color

position — return the turtle’s (x,y) position
xcor, ycor — return the turtle’s x or y coordinate
heading — return the turtle’s heading

If the method requires an argument as input, that is listed in the second column of
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the table. The first group of methods move the turtle, the second group change its
other attributes, and the third group return information about its attributes. More
Turtle methods are listed in Appendix A.2.

The Turtle class is defined inside a module named turtle (notice the different
capitalization). A module is an existing Python program that contains predefined
values and functions that you can use. To access the contents of a module, we use
the import keyword.

>>> import turtle

After a module has been imported, we can access classes and functions in the module
by preceding the name of thing we want with the name of the module, separated by
a period (.). To confirm the existence of the Turtle class, try this:

>>> turtle.Turtle
<class 'turtle.Turtle'>

Just as a blueprint describes the structure of a house, but is not actually a house,
the Turtle class describes the structure (i.e., attributes and methods) of a drawing
turtle, but is not actually a drawing turtle. Actual turtles in turtle graphics, like
those pictured in Figure 2.2, are called turtle objects. An object is also called an
instance of a class, hence the term instance variable. When we create a new turtle
object belonging to the Turtle class, the turtle object is endowed with its own
independent values of orientation, position, color, and so on, as described in the class
definition. For this reason, there can be more than one turtle object, as illustrated
in Figure 2.2.

The distinction between a class and an object can also be loosely described by
analogy to animal taxonomy. A species, like a class, describes a category of animals
sharing the same general (morphological and/or genetic) characteristics. An actual
living organism is an instance of a species, like an object is an instance of a class. For
example, the species of Galápagos giant tortoise (Chelonoidis nigra) is analogous to
a class, while Lonesome George, the famous Galápagos giant tortoise who died in
2012, is analogous to an object of that class. Super Diego, another famous Galápagos
giant tortoise, is a member of the same species but, like another object of the same
class, is a distinct individual with his own unique attributes.

Reflection 2.1 Can you think of another analogy for a class and its associated objects?

Virtually any consumer product can also be thought of an object belonging to a class
of products. For example, a pair of headphones is an object belonging to the class of
all headphones with that particular make and model. The ADT or class specification
is analogous to the user manual since the user manual tells you how to use the
product without necessarily giving any information about how it works or how it is
made. A course assignment is also analogous to an ADT because it describes the
requirements for the assignment. When a student completes the assignment, she is
creating an object that (hopefully) adheres to those requirements.
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Turtle graphics
To create a turtle object in Python, we call a function with the class’s name, preceded
by the name of the module in which the class resides.

>>> george = turtle.Turtle()

The empty parentheses indicate that we are calling a function with no arguments.
The Turtle() function returns a reference to a new Turtle object, which is then
assigned to the name george. You should also notice that a window appears on your
screen with a little arrow-shaped “turtle” in the center, facing east. The center of
the window has coordinates (0,0) and is called the origin. In Figure 2.2, the axes are
superimposed on the window in light gray to orient you to the coordinate system.
We can confirm that george is a Turtle object by printing the object’s value.

>>> george
<turtle.Turtle object at 0x100522f10>

The odd-looking “0x100522f10” is the address in memory where this Turtle object
resides. The address is displayed in hexadecimal, or base 16, notation. The 0x at the
front is a prefix that indicates hexadecimal; the actual hexadecimal memory address
is 100522f10. If you’re curious, see Tangent 3.3 in the next chapter for more about
how hexadecimal works.

To call a method belonging to an object, we precede the name of the method with
the name of the object, separated by a period. For example, to ask george to move
forward 200 units, we write

>>> george.forward(200)

Since the origin has coordinates (0,0) and george is initially pointing east (toward
positive x values), george has moved to position (200,0); the forward method
silently changed george’s hidden position attribute to reflect this, which you can
confirm by calling george’s position method.

>>> george.position()
(200.00,0.00)

Notice that we did not change the object’s position attribute directly. Indeed, we do
not even know the name of that attribute because the class definition remains hidden
from us. This is by design. By interacting with objects only through their methods,
and not tinkering directly with their attributes, we maintain a clear separation
between the ADT specification and the underlying implementation. This allows for
the possibility that the underlying implementation may change, to make it more
efficient, for example, without affecting programs that use it. The formal term for
this is encapsulation , something we will discuss in more detail in Chapter 12.

Exercises
2.1.1. Explain the difference between an abstract data type and a Python class.

2.1.2* Design an ADT for a pair of wireless headphones using the same format we
used to describe the Turtle ADT. Include attributes that describe the state of
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the headphones at any given time and the operations that you can perform to
change or get information about those attributes. You do not need to explain
how to perform an operation, just what it does.

2.1.3. Choose an object from your everyday life and design an ADT for it using the
format we used to describe the Turtle ADT.

2.1.4. Give another analogy for the difference between a class and an object. Explain.

2.1.5. Why do we use methods to change the state of a Turtle object instead of
directly changing the values of its attributes?

2.1.6* In the Python shell, create a new turtle named ada and then turn ada 90 degrees
clockwise like this:

>>> ada.right(90)

Use the heading method to show how the heading attribute of ada changed.

2.1.7. Create a new turtle named gracie and then move gracie like this:

>>> gracie.left(75)
>>> gracie.forward(200)
>>> gracie.right(150)
>>> gracie.forward(200)
>>> gracie.backward(80)
>>> gracie.right(105)
>>> gracie.forward(70)

How did these statements change the position and heading attributes of the
turtle? Use the position and heading methods to find out.

2.1.8* Create two Turtle objects like this:

>>> thing1 = turtle.Turtle()
>>> thing2 = turtle.Turtle()

(a) What are the positions and headings of thing1 and thing2? Use the
position and heading methods.

(b) Using the right and forward methods, cause thing2 to turn right 30
degrees and then move forward 50 units.

(c) What are the positions and headings of thing1 and thing2 now? Explain
the values for each turtle and why they are different.

2.1.9. The following statements draw the red turtle in Figure 2.2.

>>> redTurtle = turtle.Turtle()
>>> redTurtle.pencolor('red')
>>> redTurtle.left(120)
>>> redTurtle.forward(100)
>>> redTurtle.left(90)
>>> redTurtle.forward(50)

Using this as an example and referring to the methods on page 51, create and
draw the blue turtle in Figure 2.2 in the same window.

2.1.10. What is the difference between the statements alice = turtle.Turtle and
bob = turtle.Turtle()? Which is the correct way to create a new Turtle

object?
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Figure 2.3 A garden of geometric flowers.

bloom stem

flower

growFlower

flower garden

Figure 2.4 Functional decomposition of

the flower garden problem.

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES
Before we look at how to plot the earthquakes in Figure 2.1, let’s have some fun
drawing flowers. Our ultimate goal, which we will complete in the next section,
will be to plant a virtual garden of geometric “flowers” like those in Figure 2.3. To
do this, we will implement the functional decomposition tree shown in Figure 2.4.
An algorithm for the flower garden problem at the root of the tree will repeatedly
call upon the growFlower algorithm to plant flowers at particular locations. The
growFlower algorithm will choose the flower’s size and color, and then call upon the
flower algorithm to actually draw the flower. The flower algorithm is decomposed
into two subproblems: one to draw the flower bloom and another to draw the stem.
In our bottom-up implementation of this design, we will work our way up from the
leaves of the tree toward the root, starting with the bloom subproblem, which will
draw geometric flower bloom in Figure 2.5.

To start the bloom, we can use the line we drew in the last section as the lower
horizontal line segment in the figure. Before we draw the next segment, we need to
ask george to turn left 135 degrees. This line is highlighted below, following the
three steps from the last section, in case you need to type them again.

>>> import turtle
>>> george = turtle.Turtle()
>>> george.forward(200)
>>> george.left(135)

With this method call, we have changed george’s hidden heading attribute, which
we can confirm by calling the heading method.

>>> george.heading()
135.0

To finish the drawing, we just have to repeat the previous forward and left calls
seven more times! (Hint: see IDLE help for how retrieve previous statements.)
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Figure 2.5 A simple geometric flower bloom drawn with turtle graphics.

>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)
>>> george.forward(200)
>>> george.left(135)

That was tedious. But before we look at how to avoid similar tedium in the future,
we are going to transition out of the Python shell. This will allow us to save our
programs so that we can easily modify them or fix mistakes, and then re-execute
them without retyping everything. In IDLE, we can create a new, empty program
file by choosing New Window from the File menu.1 In the new window, retype (or
copy and paste) the work we have done so far, plus the four additional highlighted
lines, shown below. (If you copy and paste, be sure to remove the >>> characters.)

import turtle

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)

1If you are using a different text editor, the steps are probably very similar.
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george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)
george.forward(200)
george.left(135)

screen = george.getscreen()
screen.exitonclick()

The two highlighted statements after the first assignment statement hide george

and speed up the drawing a bit. (The argument to the speed method is a number
from 0 to 10, with 1 being slow, 10 being fast, and 0 being fastest.) The second to
last statement assigns to the variable screen an object of the class Screen, which
represents the drawing area in which george lives. The last statement calls the
Screen method exitonclick which will close the window when we click on it. These
last two lines are only necessary if your programming environment closes the turtle
graphics window when the program is done. If it does not, you can omit these lines
and close the window yourself when you are finished. In the future, we will generally
leave these lines out, but feel free to include them in your programs as desired.

When you are done, save your file by selecting Save As. . . from the File menu. The
file name of a Python program must always end with the extension .py, for example,
george.py. To execute your new program in IDLE, select Run Module from the Run
menu. If IDLE prompts you to save your file again, just click OK. After the program
draws the flower, click on the turtle graphics window to dismiss it.

Iteration
Recall from Chapter 1 that we can use loops in algorithms to repeat statements
multiple times, a process called iteration .

Reflection 2.2 In pseudocode, how could we use a loop to simplify this long sequence of
statements?

Since we have eight identical pairs of calls to the forward and left methods, we
can replace these sixteen drawing statements with a loop that repeats one pair eight
times. In pseudocode, this would look something like this:

repeat the following eight times:
george.forward(200)

george.left(135)
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In Python, we can use a for loop, inserted into our program below.

1 import turtle

2 george = turtle.Turtle()
3 george.hideturtle()
4 george.speed(6)

5 for count in range(8):
6 george.forward(200)
7 george.left(135)

8 screen = george.getscreen()
9 screen.exitonclick()

This for loop, in lines 5–7, repeats the indented statements, called the body of the
loop, eight times. After the loop is done, the next non-indented statement on line 8
is executed.

Reflection 2.3 What happens if you forget the colon at the end of line 5? (Try it.)

It is easy to forget the colon. If you do, you will be notified by a syntax error, like
the following, that points to the end of the line containing the for keyword.

for count in range(8)
^

SyntaxError: invalid syntax

In the for loop syntax, for and in are Python keywords, and count is called the
index variable. The name of the index variable can be anything we want, but it
should be descriptive of its role in the program. In this case, we chose the name
count because it is counting the number of line segments that are being drawn. The
part after the in keyword is a sequence of some kind:

for count
´¹¹¹¹¹¸¹¹¹¹¹¶

index variable

in range(8)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sequence

:

At the beginning of each iteration of the loop, the next value in the sequence is
assigned to the index variable, and then the statements in the body of the loop are
executed. In this case, range(8) represents the sequence of eight integers from 0 to
7. So this for loop is saying

For each number in the range from 0 to 7, assign the number to count,
and then execute the body of the loop.

The following trace table shows the execution of the program in more detail. The
value of george is represented in the trace table by an image of what has been
drawn so far in the program.
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Trace

Step Line george count Notes

1–4 1–4 — initialize george

5 5 ” 0 count = 0

6 6 ” george.forward(200)

7 7 ” george.left(135)

8 5 ” 1 count = 1

9 6 ” george.forward(200)

10 7 ” george.left(135)

11 5 ” 2 count = 2

12 6 ” george.forward(200)

13 7 ” george.left(135)

⋮

26 5 ” 7 count = 7

27 6 ” george.forward(200)

28 7 ” george.left(135)

29 8 ” ” screen = george.getscreen()

30 9 — ” screen.exitonclick()

After the program initializes the turtle graphics window in lines 1–4, the for loop
is reached on line 5. In the first iteration, count is assigned the first value in the
range of numbers from 0 to 7. Then the body of the loop in lines 6–7 is executed.
Once the body of the loop is complete, we return to line 5 (step 8) to execute the
second iteration of the loop. This time, count is assigned 1 and the body of the loop
is executed again. This continues for six more iterations since there are six more
values in the range from 0 to 7 for count to be assigned. After all eight iterations of
the loop are complete, the last two lines in the program are executed.
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Tangent 2.1: Defining colors

The most common way to specify an arbitrary color is to specify its red, green, and
blue (RGB) components individually. Each of these components is often described by
an integer between 0 and 255. (These are the values that can be represented by 8 bits.
Together then, a color is specified by 24 bits. If you have heard a reference to “24-bit
color,” now you know its origin.) Alternatively, each component can be described by a
real number between 0 and 1.0. In Python turtle graphics, call screen.colormode(255)
or screen.colormode(1.0), where screen is a turtle’s Screen object, to choose the
desired representation.

A higher value for a particular component represents a brighter color. So, at the
extremes, (0,0,0) represents black, and (255,255,255) and (1.0,1.0,1.0) both represent
white. Other common colors include (255,255,0) for yellow, (127,0,127) for purple,
and (153,102,51) for brown. So, assuming george is a Turtle object and screen has
been assigned george’s Screen object,

screen.colormode(255)
george.pencolor((127, 0, 127))

would make george purple. So would

screen.colormode(1.0)
george.pencolor((0.5, 0, 0.5))

Reflection 2.4 Try different values between 1 and 10 in place of 8 in range(8). Can you
see the connection between the value and the picture?

Another way to see what is happening in this loop is to print the value of count in
each iteration. To do this, add print(count) to the body of the for loop:

for count in range(8):
george.forward(200)
george.left(135)
print(count)

Now, in each iteration, george is drawing a line segment and turning left, and then
the current value of count is printed. As you run the program, you should notice
that the numbers 0 through 7 are printed in the shell as the eight line segments are
drawn in the turtle graphics window.

Reflection 2.5 Try changing count to some other name. Did changing the name change
the behavior of the program? If you changed the name only in the for loop and not in the
print statement, you will get an error because count will no longer exist! You need to
change it to the same thing in both places because the variable in the print statement
refers to the index variable in the for loop.

Adding some color

To finish up the bloom, let’s add some color. To set the color that the turtle draws
in, we use the pencolor method. Insert

george.pencolor('red')
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Figure 2.6 A simple geometric flower bloom, outlined in red and filled in yellow.

before the for loop, and run your program again. A color can be specified in one of
two ways. First, common colors can be specified with strings such as 'red', 'blue',
and 'yellow'. Remember that a string must be enclosed in quotes to distinguish it
from a variable or function name. A color can also be defined by explicitly specifying
its red, green, and blue (RGB) components, as explained in Tangent 2.1.

Finally, we will specify a color with which to fill the “flower” shape. The fill color is
set by the fillcolor method. The statements that draw the area to be filled must
be contained between calls to the begin_fill and end_fill methods. To color our
flower yellow, precede the for loop with

george.fillcolor('yellow')
george.begin_fill()

and follow the for loop with

george.end_fill()

Be sure to not indent the call to george.end_fill() in the body of the for loop
since we want that statement to execute just once after the loop is finished. Your
flower should now look like Figure 2.6, and the complete flower bloom program
should look like the following:

import turtle

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

george.pencolor('red')
george.fillcolor('yellow')
george.begin_fill()
for count in range(8):

george.forward(200)
george.left(135)

george.end_fill()

screen = george.getscreen()
screen.exitonclick()
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Reflection 2.6 Can you figure out why the shape was filled this way?

In the next section, we will put some finishing touches on our flower bloom and flesh
out the decomposition tree in Figure 2.4. But first, let’s return to the earthquake
visualization from Figure 2.1 at the beginning of the chapter.

Data visualization
To create the earthquake visualization, we want to draw a dot at each earthquake
location in a list, so our pseudocode algorithm might look like this:

repeat for each earthquake location in a list:
draw a dot at the location

In Python, drawing a dot is actually a two step process. First, we have to move the
turtle to the location and then draw a dot there. The moving part is accomplished
by the goto method. For example,

george.goto(150, 30)

moves george to the coordinates (150, 30) in the turtle graphics window. Once there,
we can draw a dot with

george.dot()

To implement the loop in Python, we will use a for loop that iterates over a list of
earthquake locations like (-78.6, 19.3) rather than over a range of numbers. The
first value in each ordered pair is the earthquake’s longitude and the second value is
the latitude. A list of these locations looks like this:

quakes = [(-78.6, 19.3), (144.8, 19.1), (145.9, 43.5), (26.6, 45.7)]

The variable quakes is being assigned a list of ordered pairs.2 A list in Python is
always surrounded by square brackets ([ ]). This list only contains the locations of
four earthquakes; the full program with a longer list is available on the book website.
To iterate over this list, we use a for loop with the list quakes as the sequence:

for location
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

index variable

in quakes
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
sequence

:

In the body of the for loop, we will pass the index variable location to the goto

method and then draw a dot with the dot method. The full program follows, with
some extra pretty formatting. The core plotting statements are highlighted.

2Each ordered pair is actually called a tuple in Python. We will see tuples in more detail in
Chapter 7.
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1 import turtle

2 george = turtle.Turtle()
3 screen = george.getscreen()
4 screen.setup(1024, 512)
5 screen.bgpic('oceanbottom.gif')
6 screen.setworldcoordinates(-180, -90, 180, 90)

7 george.speed(0)
8 george.hideturtle()
9 george.up()

10 george.color('yellow')

11 quakes = [(-78.6, 19.3), (144.8, 19.1), (145.9, 43.5), (26.6, 45.7)]

12 for location in quakes:
13 george.goto(location)
14 george.dot()

As with the flower for loop, we can illustrate what is happening in more detail with
a trace table. We represent the value of george with an image of what the screen
looks like at each point in the program.

Trace

Step Line george location Notes
1–10 1–10 — initialize george and the window
11 11 ” — quakes = a list of ordered pairs
12 12 ” (-78.6, 19.3) location = (-78.6, 19.3)

13 13 ” george.goto((-78.6, 19.3))

14 14 ” george.dot()

15 12 ” (144.8, 19.1) location = (144.8, 19.1)

16 13 ” george.goto((144.8, 19.1))

17 14 ” george.dot()

18 12 ” (145.9, 43.5) location = (145.9, 43.5)

19 13 ” george.goto((145.9, 43.5))

20 14 ” george.dot()

21 12 ” (26.6, 45.7) location = (26.6, 45.7)

22 13 ” george.goto((26.6, 45.7))

23 14 ” george.dot()

The first ten lines set up the drawing window with a background picture of the earth.
The Screen method setworldcoordinates is used to set the coordinate system
inside the window to match geographical coordinates: longitude values run from
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−180 to 180 and latitude values run from −90 to 90. The first two arguments set the
bottom left corner of the window to be (−180,−90) and the last two arguments set
the top right corner to be (180,90). We encourage you to consult Appendix A.3 to
learn what the other methods do.

In the first iteration of the for loop on line 12, the index variable location

is assigned the first pair in the list quakes, which is (-78.6, 19.3). Next,
george.goto(location) is executed; since location was assigned (-78.6, 19.3),
this is equivalent to george.goto((-78.6, 19.3)). Then a dot is drawn at that
location. Once the first iteration is complete, we return to line 12 for the second itera-
tion, where location is assigned the second pair in the list, which is (144.8, 19.1).
Lines 13–14 are executed again, which draws a dot at this location. This process
continues for two more iterations since there are two more pairs remaining in the
list.

Reflection 2.7 What is the significance of george.up() in the program? What happens
if you omit it?

You can download oceanbottom.gif and this complete program with more earth-
quake locations from the book website.

Exercises
Write a short program to answer each of the following questions. Submit each as a separate
python program file with a .py extension (e.g., picture.py).

2.2.1. Write a program using turtle graphics that draws a national or state flag of
your choice. You might want to consult https://en.wikipedia.org/wiki/

Gallery_of_sovereign_state_flags for ideas and Appendices A.2 and A.3
for additional drawing methods.

2.2.2. Write a program that draws the following three shapes (resembling street signs)
using turtle graphics.

(a)* (b) (c)

2.2.3. Draw an interesting picture using turtle graphics. Consult Appendices A.2 and
A.3 for a list of methods. You might want to draw your picture on graph paper
first.

2.2.4. Modify the for loop in the flower bloom program so that it draws a flower with
18 line segments, using an angle of 100○.

2.2.5* Write a program that uses a for loop to draw a square with side length 200.

2.2.6. Write a program that uses a for loop to draw a rectangle with length 200 and
width 100.

https://en.wikipedia.org/wiki/Gallery_of_sovereign_state_flags
https://en.wikipedia.org/wiki/Gallery_of_sovereign_state_flags
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2.2.7. Write a program that instructs a turtle to repeat the following 180 times: draw
forward 200, return to the origin, turns 2 degrees left.

2.2.8* Suppose you have the coordinates of discovered artifacts from a 9 meter × 9
meter plot during an archaeological dig. The coordinates extend from (0,0) in
the bottom left corner of the plot to (9,9) in the upper right corner. Write a
program that plots a list of these coordinates to detect any patterns in their
locations. The list of coordinates is available on the book website.

2.2.9. Write a program that uses turtle graphics to draw a line graph of the world
population from 1950 to 2050 (projected). The data is stored in a list of (year,
population) pairs, available on the book website. The population is recorded
in billions, e.g., 2.5 represents 2.5 billion. Use setworldcoordinates to set the
bottom left corner of the window to be (1945,0) and the top right corner to be
(2055,10). You can draw vertical lines to mark the years in your plot with the
following loop:

for year in range(1950, 2051, 10):
george.up()
george.goto(year, 0)
george.write(str(year))
george.down()
george.goto(year, 10)

This range is equivalent to the list
1950,1960, . . . ,2050. As year is as-
signed to each of these values in the
loop, a vertical line is drawn from
bottom to top. The write method
prints the year, converted to a string,
at the bottom of each line. Using this
as a model, also draw horizontal lines
to mark each billion. Your final graph
should look like that to the right.

2.2.10. Suppose an ant is moving in a straight line toward its nest three meters away.
A hungry fly, exactly one meter above the ant, starts to fly directly toward it
at exactly the same speed. Will the fly catch the ant? If not, how close will it
come?

We can write a turtle graphics simulation of this scenario by modeling each
insect as a turtle. The ant turtle starts at position (0,0) and the fly turtle starts
at position (0,1), directly above the ant. At each step, the fly moves one step
directly toward the ant and the ant moves one step forward. The length of each
step is the distance to the nest divided by the total number of steps that we
want the insects to take. The more steps they take, the closer the simulation
becomes to a continuous real-life scenario.

Implement this simulation, based on the following pseudocode algorithm.
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Algorithm The ant and the fly

Input: none
1 nest distance ← 3
2 total steps ← 300
3 step length ← nest distance ÷ total steps
4 create the ant at position (0,0)
5 create the fly and move it to position (0,1)
6 repeat total steps times:
7 turn the fly toward the ant
8 move the fly forward step length
9 move the ant forward step length

Output: the final distance between the ant and the fly

In your program, before you move any turtles, use setworldcoordinates to
set the bottom left corner of the window to be (0,0) and the top right corner to
be (nest distance,1) so that you can see what is happening much more clearly.
Also, there are two new Turtle methods that will make your job easier. The
methods towards and distance return the angle and distance, respectively,
between the turtle and another turtle. For example, fly.towards(ant) will
return the angle between the fly turtle and the ant turtle (assuming you have
named them fly and ant, of course). The distance method works similarly.
At the end of your program, print the final distance between the two insects.
Does the result surprise you?

2.2.11. A random walk simulates a particle, or person, randomly moving in a two-
dimensional space. At each step, the particle turns in a random direction and
walks a fixed distance (e.g., 10 units) in the current direction. If this step is
repeated many times, it can simulate Brownian motion or animal foraging
behavior.

Write a program that uses turtle graph-
ics to draw a 1000-step random walk. To
randomly choose an angle in each step, use

angle = random.randrange(360)

You will need to import the random module
to use this function. (We will talk more
about random numbers and random walks
in Chapter 5.) One particular 1000-step
random walk is shown to the right.

2.3 FUNCTIONAL ABSTRACTION
To draw the garden of flowers from Figure 2.3, each with a different color and
size, we are going to need to repeat our flower bloom code many times. We could
do this by copying the drawing statements and changing method arguments to
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alter the sizes and colors. However, this strategy is a very bad idea. First, it is very
time-consuming and error-prone; when you repeatedly copy and paste, it is very
easy to make mistakes. Second, it makes your program unnecessarily long and hard
to read. Third, it is difficult to correctly make changes. For example, what if you
copied enough to draw twenty flowers, and then decided that you wanted to give all
of them six petals instead of eight?

Instead, we want to create a self-contained functional abstraction that will draw a
flower bloom when called upon to do so. In Python, we do this by creating a new
function. Functions are like our pseudocode algorithms in that they can take inputs,
produce outputs, and can be called upon by other algorithms to perform tasks. To
create a function in Python, we use the def keyword, followed by the function name
and, for now, empty parentheses (we will come back to those shortly). As with a
for loop, the def line must end with a colon (:).

def bloom():

The body of the function is then indented relative to the def line. The body of our
new function will consist of the flower bloom code. Insert this new function into your
program from the last section after the import statement:

import turtle

def bloom():
george.pencolor('red')
george.fillcolor('yellow')
george.begin_fill()
for count in range(8):

george.forward(200)
george.left(135)

george.end_fill()

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

bloom()

screen = george.getscreen()
screen.exitonclick()

The def construct only defines the new function; it does not execute it. We need to
call the function for it to execute. As we saw earlier, a function call consists of the
function name, followed by a list of arguments. Since this function does not have
any arguments (yet), and does not return a value, we can call it with

bloom()

inserted, at the outermost indentation level, where the flower bloom code used to be
(as shown above).
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Reflection 2.8 Try running the program with and without the bloom() function call.
What happens in each case?

Before continuing, let’s take a moment to look closely at what the program is doing.
As illustrated below, execution begins at the top, labeled “start.” After that, there
are seven labeled steps, explained below.
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def bloom():

The body of the function is then indented relative to the def line. The body of our
new function will consist of the flower bloom code. Insert this new function after the
import statement:

import turtle

def bloom():

george.pencolor('red')
george.fillcolor('yellow')
george.begin_fill()

for count in range(8):

george.forward(200)

george.left(135)

george.end_fill()

george = turtle.Turtle()

george.hideturtle()

george.speed(6)

bloom()

screen = george.getscreen()

screen.exitonclick()

The def construct only defines the new function; it does not execute it. We need to
call the function for it to execute. As we saw earlier, a function call consists of the
function name, followed by a list of arguments. Since this function does not have
any arguments (yet), and does not return a value, we can call it with

bloom()

inserted, at the outermost indentation level, where the flower bloom code used to be
(as shown above).

Reflection 2.9 Try running the program with and without the bloom() function call.
What happens in each case?

Before continuing, let’s take a moment to look closely at what the program is doing.
As illustrated below, execution begins at the top, labeled “start.” After that, there
are seven labeled steps, explained below.

1
start

4

5

6

7

end

2

3

1. Import the turtle module.

2. Define the bloom function. Note that the function is not executed yet; Python
is just learning of its existence so that it can be called later.

3. The next three statements are executed. They define a new Turtle object
named george, hide the turtle, and speed it up a bit.

4. Next, the bloom() function is called, which causes execution to jump up to
the beginning of the function.

5. The statements in the function then draw the flower.

6. When the function is complete, execution continues with the statement after
the function call.

7. And the program ends.
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Function parameters
The bloom function is not as useful as it could be because it always draws the same
yellow flower with segment length 200. We can generalize the function by accepting
the fill color and the segment length as arguments, as depicted below.

bloomcolor, length None

We do this by adding parameters to the function definition. A parameter is the
name of an input, like the inputs in our pseudocode algorithms. In the highlighted
lines of the new version below, we have defined two parameters in parentheses after
the function name to represent the fill color and the segment length, and replaced
the old constants ’yellow’ and 200 with the names of these new parameters.

import turtle

def bloom(color, length):
george.pencolor('red')
george.fillcolor(color)
george.begin_fill()
for count in range(8):

george.forward(length)
george.left(135)

george.end_fill()

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

bloom('yellow', 200)

screen = george.getscreen()
screen.exitonclick()

To replicate the old behavior, we added two arguments to the function call:

bloom('yellow', 200)

When this function is called, the value of the first argument 'yellow' is assigned to
the first parameter color and the value of the second argument 200 is assigned to the
second parameter length. Then the body of the function executes. Whenever color
is referenced, it is replaced with 'yellow', and whenever length is referenced, it
is replaced with 200. (Parameters and arguments are also called formal parameters
and actual parameters, respectively.)

Reflection 2.9 After making these changes, run the program again. Then try running it a
few more times with different arguments passed into the bloom function call. For example,
try bloom('orange', 50) and bloom('purple', 350). What happens if you switch the
order of the arguments in one these function calls?
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We are going to make one more change to this function before moving on, motivated
by the following question.

Reflection 2.10 Look at the variable name george that is used inside the bloom function.
Where is it defined?

When the bloom function executes, the Python interpreter encounters the variable
name george in the first line, but george has not been defined in that function.
Realizing this, Python looks for the name george outside the function. This behavior
is called a scoping rule . The scope of a variable name is the part of the program
where the name is defined, and hence can be used.

The scope of a variable name that is defined inside a function, such as count in
the bloom function, is limited to that function. Such a variable is called a local
variable . If we tried to refer to count outside of the the bloom function, we would
get an error. We will look at local variables in more detail in Section 2.6.

A variable name that is defined at the outermost indentation level can be accessed
from anywhere in the program, and is called a global variable . In our program,
george and screen are global variable names. It is generally a bad idea to have any
global variables at all in a program, a topic that we will further discuss in the next
sections. But even aside from that issue, we should be concerned that our function
is tied to one specific turtle named george that is defined outside our function. It
would be much better to make the turtle a parameter to the function, so that we
can call it with any turtle we want, as illustrated below:

bloomtortoise, color, length None

Replacing george with a parameter named tortoise gives us the following modified
function:

def bloom(tortoise, color, length):
tortoise.pencolor('red')
tortoise.fillcolor(color)
tortoise.begin_fill()
for count in range(8):

tortoise.forward(length)
tortoise.left(135)

tortoise.end_fill()

We also need to update the function call by passing george as the first argument,
to be assigned to the first parameter, tortoise.

bloom(george, 'yellow', 200)

Now that the bloom is finished, we need to create a function that draws a stem. Our
stem-drawing function will take two parameters: tortoise, which is the name of
the turtle object, and length, the length of the stem.
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Figure 2.7 A simple geometric “flower” with a stem.

stemtortoise, length None

In the following function, notice all the places, highlighted in red, where the parame-
ters are being used.

1 def stem(tortoise, length):
2 tortoise.pencolor('green')
3 tortoise.pensize(length / 20)
4 tortoise.up()
5 tortoise.forward(length / 2)
6 tortoise.down()
7 tortoise.right(90)
8 tortoise.forward(length)

For convenience, we assume that the stem length is the same as the length of a
segment in the associated flower. Since the bloom function nicely returns the turtle
to the origin, pointing east, we will assume that tortoise is in this state when stem

is called. We start the function by setting the pen color to green, and thickening
the turtle’s tail by calling the method pensize. Notice that the pen size on line 3 is
based on the parameter length, so that it scales properly with different size flowers.
Next, in lines 4–6, we move halfway across the flower to start drawing the stem. So
that we do not draw over the existing flower, we put the turtle’s tail up with the up

method before we move, and return it to its resting position again with down when
we are done. Finally, in lines 7–8, we turn to the south and move the turtle forward
to draw a thick green stem.

To draw a stem for our yellow flower, insert this function in your program after
where the bloom function is defined, and then call it with

stem(george, 200)

after the call to the bloom function. When you run your program, the flower should
look like Figure 2.7.
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We now have functions—functional abstractions—that implement the two subprob-
lems of the flower problem from our decomposition in Figure 2.4. So we are ready
to use these to create a function (another functional abstraction) that draws a flower,
as depicted below.

bloom stem

flowertortoise, color, length None

None None

tortoise, color, length tortoise, length

Because the bloom and stem functions together require a turtle, a fill color and a
length, and we want to be able to customize our flower in these three ways, these
are the parameters to our flower function. We pass all three of these parameters
through to the bloom function, and then we pass two of them to the stem function.
In Python, our function looks like this:

def flower(tortoise, color, length):
bloom(tortoise, color, length)
stem(tortoise, length)

A complete program incorporating these functions is shown in Figure 2.8.

Exercises 2.3.6–2.3.8 below challenge you to implement the remaining layers of the
decomposition tree to create a full garden of flowers, as illustrated in Figure 2.3.

Exercises
Write a short program to answer each of the following questions. Submit each as a separate
python program file with a .py extension (e.g., picture.py).

2.3.1. Modify the program in Figure 2.8 so that it calls the flower function three
times to draw three flowers, each with a different color and size. You will want
to move the turtle and reset its pen size and heading to their original values
before drawing each flower so that they are drawn correctly and not on top of
each other.

2.3.2* Modify the bloom function so that it draws 10 petals instead of 8. In each
iteration of the loop, the turtle will need to turn 108 degrees instead of 135.

2.3.3. Modify the bloom function so that it can draw any number of petals. The revised
function will need to take an additional parameter:

bloom(tortoise, color, length, petals)

The original function with eight petals has the turtle turn 1080/8 = 135 degrees
so that it travels a total of 1080 degrees, a multiple of 360. When you generalize
the number of petals, the sum of all of the angles that tortoise turns must
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import turtle

def bloom(tortoise, color, length):
tortoise.pencolor('red')
tortoise.fillcolor(color)
tortoise.begin_fill()
for count in range(8):

tortoise.forward(length)
tortoise.left(135)

tortoise.end_fill()

def stem(tortoise, length):
tortoise.pencolor('green')
tortoise.pensize(length / 20)
tortoise.up()
tortoise.forward(length / 2)
tortoise.down()
tortoise.right(90)
tortoise.forward(length)

def flower(tortoise, color, length):
bloom(tortoise, color, length)
stem(tortoise, length)

george = turtle.Turtle()
george.hideturtle()
george.speed(6)

flower(george, 'yellow', 200)

screen = george.getscreen()
screen.exitonclick()

Figure 2.8 The final flower program.

still be a multiple of 360 (like 1080). Are there any values of petals for which
your function does not work? Why?

2.3.4. Enhance the stem function so that it also draws a green leaf
one third of the way up the stem, as shown to the right. One
half of a pointed leaf can be drawn by repeatedly moving
and turning the turtle small distances in a loop until it has
turned a total of 90 degrees. The other half of the leaf can
then be drawn by turning 90 degrees and repeating the same
process.
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2.3.5* Modify the flower function so that it creates a daffodil-like
double bloom like the one to the right. The revised function
will need two fill color parameters:

flower(tortoise, color1, color2, length)

It might help to know that the distance between any two
opposite points of a bloom is about 1.08 times the segment
length.

2.3.6. Write a function

growFlower(x, y, flowerColor, flowerLength)

that creates a turtle and then calls the flower function to draw a flower with
that turtle at a particular (x,y) location. Test your new function by calling it
from the flower program in Figure 2.8 in place of calling the flower function.

2.3.7. In this exercise, you will modify the growFlower function from the previous
exercise so that it takes only x and y as parameters, and assigns flowerColor

and flowerLength to random values in the body of the function. To do this,
utilize two functions from the random module, which we will discuss more in
Chapter 5. First, the random.randrange function returns a randomly chosen
integer between its two arguments. To generate a random integer between 20
and 199 for the flower’s size, call

flowerLength = random.randrange(20, 200)

Second, the random.choice function returns a randomly chosen item from a
list. To generate a random color for the flower, call

flowerColor = random.choice(['yellow', 'pink', 'red', 'purple'])

Test your modified function as you did in the previous exercise. You will also
need to import the random module at the top of your program.

2.3.8. In this exercise, you will implement the complete garden-drawing program from
Figure 2.4 by modifying the program you wrote in the previous exercise so that
it draws random flowers wherever you click in the drawing window. This will be
accomplished by the following two methods of the Screen class:

screen.onclick(growFlower)
screen.mainloop()

Then the mainloop method repeatedly checks for mouse clicks and key presses,
and calls designated functions when they happen. The onclick method indicates
that mainloop should call growFlower(x, y) every time the mouse is clicked
in the window at coordinates (x,y). To incorporate this functionality into your
program, simply replace screen.exitonclick() in your program with these
two statements.

2.3.9. Write a program that draws the word “CODE,” as
shown to the right. Use the circle method to draw the
arcs of the “C” and “D.” The circle method takes two
arguments: the radius of the circle and the extent of the
circle in degrees. For example, george.circle(100,
180) would draw half of a circle with radius 100. Mak-
ing the extent negative draws the arc in the reverse
direction.
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2.3.10. Rewrite your program from Exercise 2.3.9 so that each letter is drawn by its
own function. Then use your functions to draw “DECODE.” (Call your “D”
and “E” functions twice.)

2.3.11. Write a function

drawSquare(tortoise, width)

that uses the turtle named tortoise to draw a square with the given width.
This function generalizes the code you wrote for Exercise 2.2.5 so that it can
draw a square with any width. Use a for loop.

2.3.12. Write a function

drawRectangle(tortoise, length, width)

that uses the turtle named tortoise to draw a rectangle with the given length

and width. This function generalizes the code you wrote for Exercise 2.2.6 so
that it can draw a rectangle of any size. Use a for loop.

2.3.13. Write a function

drawPolygon(tortoise, sideLength, numSides)

that uses the turtle named tortoise to draw a regular polygon with the given
number of sides and side length. This function is a generalization of your
drawSquare function from Exercise 2.3.11. Use the value of numSides in your
for loop and create a new variable for the turn angle that depends on numSides.
The turtle will need to travel a total of 360 degrees over the course of the loop.

2.3.14. Write a function

drawCircle(tortoise, radius)

that calls your drawPolygon function from Exercise 2.3.13 to approximate a
circle with the given radius.

2.3.15* Write a function

horizontalCircles(tortoise)

that draws ten non-overlapping circles, each with radius 50, that run horizontally
across the graphics window. Use a for loop.

2.3.16. Write a function

diagonalCircles(tortoise)

that draws ten non-overlapping circles, each with radius 50, that run diagonally,
from the top left to the bottom right, of the graphics window. Use a for loop.

2.3.17. Write a function

drawRow(tortoise)

that draws one row of an 8 × 8 red/black checkerboard. Use a for loop and the
drawSquare function you wrote in Exercise 2.3.11.

2.3.18. Write a function

drawRow(tortoise, color1, color2)

that draws one row of an 8 × 8 checkerboard in which the colors of the
squares alternate between color1 and color2. The parameters color1

and color2 are both strings representing colors. For example, calling
drawRow(george, 'red', 'black') should draw a row that alternates be-
tween red and black.



76 � 2 Visualizing Abstraction

2.3.19. Write a function

checkerBoard(tortoise)

that draws an 8 × 8 red/black checkerboard, using a for loop and the function
you wrote in Exercise 2.3.18.

2.3.20. Interesting flower-like shapes can also be drawn by repeatedly drawing polygons
that are rotated some number of degrees each time. Write a new function

polyFlower(tortoise, sideLength, numSides, numPolygons)

that calls the drawPolygon function from Exercise 2.3.13
to draw an interesting flower design. The function will re-
peatedly call drawPolygon a number of times equal to the
parameter numPolygons, rotating the turtle each time to
make a flower pattern. You will need to figure out the
rotation angle based on the number of polygons drawn.
For example, the image to the right was drawn by calling
drawFlower(george, 40, 12, 7).

2.3.21. Rewrite your program from Exercise 2.2.8 so that all of the drawing is done
inside a function

plotSites(sites)

that takes the list of sites as a parameter. In other words, modify your program
so that it looks like this:

import turtle

def plotSites(sites):
drawing statements here...

sites = [(1.45, 7.31), (2.99, 7.55), (7.58, 6.29), (2.17, 4.71),
(1.07, 5.56), ... ]

plotSites(sites)

2.3.22. Rewrite your program from Exercise 2.2.9 so that all of the drawing is done
inside a function

plotPopulation(population)

that takes the population list as a parameter. In other words, modify your
program so that it looks like this:

import turtle

def plotPopulation(population):
drawing statements here...

population = [(1950, 2.557), (1951, 2.594), (1952, 2.636),
(1953, 2.681), (1954, 2.73), (1955, 2.782), ... ]

plotPopulation(population)

2.3.23. Write a function

randomWalk(steps)
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that generalizes your random walk code from Exercise 2.2.11 so that it draws a
random walk for the given number of steps.

The following additional exercises ask you to write functions that do not involve turtle
graphics. Test each one by calling it with both common and boundary case arguments, as
described on page 38, and document your test cases. Use a trace table on at least one test
case.

2.3.24. Write a function

basketball(fieldGoals, threePointers)

that prints your team’s basketball score if the numbers of two pointers and three
pointers are given in the parameters fieldgoal and threePointers.

2.3.25. Write a function

age(birthYear)

that prints a person’s age when given his or her birth year as a parameter. You
can assume that this function only works this year and that the person has not
had his or her birthday yet this year.

2.3.26. Write a function

cheer(teamName)

that takes as a parameter a team name and prints “Go” followed by the team
name. For example, if the function is called as cheer('Buzzards'), it should
print the string 'Go Buzzards' to the screen.

2.3.27. Write a function

sum(number1, number2)

that prints the sum of number1 and number2 to the screen.

2.3.28. Write a function

printTwice(word)

that prints its parameter twice on two separate lines.

2.3.29. Write a function

printMyName()

that uses a for loop to print your name 100 times.

2.4 PROGRAMMING IN STYLE
Programming style and writing style share many of the same concerns. When we
write an essay, we want the reader to clearly understand our thesis and the arguments
that support it. We want it to be clear and concise, and have a logical flow from
beginning to end. Similarly, when we write a program, we want to help collaborators
understand our program’s goal, how it accomplishes that goal, and how it flows from
beginning to end. Even if you are the only one to ever read your program, good
style will pay dividends both while you are working through the solution, and in the
future when you try to reacquaint yourself with your work. We can accomplish these
goals by organizing our programs neatly and logically, using descriptive variable and
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function names, writing programs that accomplishes their goal in a non-obfuscated
manner, and documenting our intentions within the program.

Program structure
Let’s return to the program that we wrote in the previous section (Figure 2.8), and
reorganize it a bit to reflect better programming habits. As shown in Figure 2.9,
every program should begin with documentation that identifies the program’s author
and its purpose. This type of documentation, which starts and ends with three
double quotes ("""), is called a docstring ; we will look more closely at docstrings
and other types of documentation shortly.

We follow this with our import statements. Putting these at the top of our program
both makes our program neater and ensures that the imported modules are available
anywhere later on.

Next, we define all of our functions. Because programs are read by the interpreter
from top to bottom, you need to define your functions above where you call them.
For example, if we tried to call the bloom function at the very top of the program,
before it was defined, we would generate an error message.

At the end of the flower-drawing program in Figure 2.8, there are six statements
at the outermost indentation level. The first and fifth of these statements define
global variable names that are visible and potentially modifiable anywhere in the
program. When the value assigned to a global variable is modified in a function,
it is called a side effect . In large programs, where the values of global variables
can be potentially modified in countless different places, errors in their use become
nearly impossible to find. For this reason, we should get into the habit of never using
them, unless there is a very good reason, and these are pretty hard to come by. See
Tangent 2.2 for more information on how global names are handled in Python.

To prevent the use of global variables, and to make programs more readable, we will
move statements at the global level of our programs into a function named main,
and then call main as the last statement in the program, as shown at the end of the
program in Figure 2.9. With this change, the call to the main function is where the
action begins in this program. (Remember that the function definitions above only
define functions; they do not execute them.) The main function sets up a turtle, then
calls our flower function, which then calls the bloom and stem functions. Getting
used to this style of programming has an additional benefit: it is very similar to the
style of other common programming languages (e.g., C, C++, Java) so, if you go on
to use one of these in the future, it should seem relatively familiar.

The functions in a program are generally determined by how the problem was
decomposed during the top-down design process. Even so, identifying functions can
be as much an art as a science, so here are a few guidelines to keep in mind:

1. A function should accomplish something relatively small, and make sense
standing on its own.
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program docstring

import statements

function
definitions

main function

main function call
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"""

Purpose: Draw a flower

Author: Ima Student

Date: September 15, 2020

CS 111, Fall 2020

"""

import turtle

def bloom(tortoise, color, length):

"""Draws a geometric flower bloom.

Parameters:

tortoise: a Turtle object with which to draw the bloom.

color: a color string to use to fill the bloom.

length: the length of each segment of the bloom.

Return value:

None

"""

tortoise.pencolor('red') # set tortoise's pen color to red

tortoise.fillcolor(color) # and fill color to fcolor

tortoise.begin_fill()

for segment in range(8): # draw a filled 8-sided

tortoise.forward(length) # geometric flower bloom

tortoise.left(135)

tortoise.end_fill()

# other functions omitted...

def main():

"""Draws a yellow flower with segment length 200, and

waits for a mouse click to exit.

"""

george = turtle.Turtle()

george.hideturtle()

george.speed(6)

flower(george, 'yellow', 200)

screen = george.getscreen()

screen.exitonclick()

main()

Figure 2.9 An overview of a program’s structure.

2. Functions should be written for subproblems that are called upon frequently,
perhaps with different arguments. If you find yourself duplicating some part of
a program, write a function for it instead.

3. A function should generally fit on a page or, in many cases, less.

4. The main function should be short, generally serving only to set up the program
and call other functions that carry out the work.

Documentation
Python program documentation comes in two flavors: docstrings and comments.
A docstring is meant to articulate everything that someone needs to know to use a
program or module, or to call a function. Comments, on the other hand, are used to
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Tangent 2.2: Global variables

The Python interpreter handles global names inside functions differently, depending on
whether the name’s value is being read or the name is being assigned a value. When
the Python interpreter encounters a name that needs to be evaluated (e.g., on the
righthand side of an assignment statement), it first looks to see if this name is defined
inside the scope of this function. If it is, the name in the local scope is used. Otherwise,
the interpreter successively looks at outer scopes until the name is found. If it reaches
the global scope and the name is still not found, we see a “name error.”

On the other hand, if we assign a value to a name, that name is always considered to
be local, unless we have stated otherwise by using a global statement. For example,
consider the following program:

spam = 13

def func1():
spam = 100

def func2():
global spam
spam = 200

func1()
print(spam)
func2()
print(spam)

The first print will display 13 because the assignment statement that is executed in
func1 defines a new local variable; it does not modify the global variable with the same
name. But the second print will display 200 because the global statement in func2

indicates that spam should refer to the global variable with that name, causing the
subsequent assignment statement to change the value assigned to the global variable.
This convention prevents accidental side effects because it forces the programmer to
explicitly decide to modify a global variable. In any case, using global is strongly
discouraged.

document individual program statements or groups of statements. In other words, a
docstring explains what a program or function does, while comments explain how it
works; a docstring describes an abstraction while comments describe what happens
inside the black box. The Python interpreter ignores both docstrings and comments
while it is executing a program; both are intended for human eyes only.

Docstrings

A docstring is enclosed in a matching pair of triple double quotes ("""), and may
occupy several lines. We use a docstring at the beginning of every program to identify
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the program’s author and its purpose, as shown at the top of Figure 2.9.3 We also
use a docstring to document each function that we write, to ensure that the reader
understands what it does. A function docstring should articulate everything that
someone needs to know to call the function: the overall purpose of the function, and
descriptions of the function’s parameters and return value.

The beginning of a function’s docstring is indented on the line immediately following
the def statement. Programmers prefer a variety of different styles for docstrings; we
will use one that closely resembles the style in Google’s official Python style guide.
Docstrings for the three functions from Figure 2.8 are shown below. (The bodies of
the functions are omitted.)

def bloom(tortoise, color, length):
"""Draws a geometric flower bloom.

Parameters:
tortoise: a Turtle object with which to draw the bloom
color: a color string to use to fill the bloom
length: the length of each segment of the bloom

Return value:
None

"""

def stem(tortoise, length):
"""Draws a flower stem.

Parameters:
tortoise: a Turtle object, initially at the bloom starting

position
length: the length of the stem and each segment of the bloom

Return value:
None

"""

def flower(tortoise, color, length):
"""Draws a flower.

Parameters:
tortoise: a Turtle object with which to draw the flower
color: a color string to use to fill the bloom
length: the length of each segment of the bloom

Return value:
None

"""

3Your instructor may require a different format, so be sure to ask.
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In the first line of the docstring, we succinctly explain what the function does. This is
followed by a parameter section that lists each parameter with its intended purpose
and the class to which it should belong. If there are any assumptions made about
the value of the parameter, these should be stated also. For example, the turtle
parameter of the stem function is assumed to start at the origin of the bloom. Finally,
we describe the return value of the function. We did not have these functions return
anything, so they return None. We will look at how to write functions that return
values in Section 2.5.

Another advantage of writing docstrings is that Python can automatically produce
documentation from them, in response to calling the help function. For example,
try this short example in the Python shell:

>>> def printName(first, last):
"""Prints a first and last name.

Parameters:
first: a first name
last: a last name

Return value:
None

"""

print(first + ' ' + last)

>>> help(printName)
Help on function printName in module __main__:

printName(first, last)
Prints a first and last name.

Parameters:
first: a first name
last: a last name

Return value:
None

You can also use help with modules and built-in functions. For example, try this:

>>> import turtle
>>> help(turtle.color)

Comments

A comment is anything between a hash symbol (#) and the end of the line. As with
docstrings, the Python interpreter ignores comments. Comments should generally
be neatly lined up to the right of the statements they document. However, there are
times when a longer comment is needed to explain a complicated section. In this
case, you might want to precede that section with a comment on one or more lines
by itself.
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There is a fine line between under-commenting and over-commenting. As a general
rule, you want to supply high-level descriptions of what your code intends to do.
You do not want to literally repeat what each individual line does, as this is not at
all helpful to someone reading your code. Doing so tends to clutter it up and make
it harder to read! Here are examples of good comments for the body of the bloom

function.

tortoise.pencolor('red') # set tortoise's pen color
tortoise.fillcolor(color) # and fill color
tortoise.begin_fill()
for count in range(8): # draw a filled 8-sided

tortoise.forward(length) # geometric flower bloom
tortoise.left(135)

tortoise.end_fill()

Notice that the five lines that draw the bloom are commented together, just to note
the programmer’s intention. In contrast, the following comments illustrate what not
to do. The following comments are both hard to read and uninformative.

tortoise.pencolor('red') # set tortoise's pen color to red
tortoise.fillcolor(color) # set tortoise's fill color to color
tortoise.begin_fill() # begin to fill a shape
for count in range(8): # for count = 0, 1, 2, ..., 7

tortoise.forward(length) # move tortoise forward length
tortoise.left(135) # turn tortoise left 135 degrees

tortoise.end_fill() # stop filling the shape

Notice that these comments never actually explain the purpose of the for loop; they
just repeat each line. Instead, as above, you want to step back and explain the
purpose of the code and, only if it is not obvious, how it is accomplished. We leave
the task of commenting the other functions in this program as an exercise.

Self-documenting code
As we discussed in Section 1.3, using descriptive variable names is a very important
step in making your program’s intentions clear. The variable names in the flower
program are already in good shape, so let’s look at a different example. Consider
the following statements.

x = 462
y = (3.95 - 1.85) * x - 140

Without any context, it is impossible to infer what this is supposed to represent.
However, if we rename the two variables, as follows, the meaning becomes clearer.

cupsSold = 462
profit = (3.95 - 1.85) * cupsSold - 140

Now it is clear that this code is computing the profit generated from selling cups of
something. But the meaning of the numbers is still a mystery. These are examples of
magic numbers, so-called in programming parlance because they seem to appear
out of nowhere. There are at least two reasons to avoid magic numbers. First, they
make your code less readable and obscure its meaning. Second, they make it more
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difficult and error-prone to change your code, especially if you use the same value
multiple times. By assigning these numbers to descriptive variable names, the code
becomes even clearer.

cupsSold = 462
pricePerCup = 3.95
costPerCup = 1.85
fixedCost = 140
profit = (pricePerCup - costPerCup) * cupsSold - fixedCost

We now have self-documenting code . Since we have named all of our variables
and values with descriptive names, just reading the code is enough to deduce its
intention. These same rules, of course, apply to function names and parameters. By
naming our functions with descriptive names, we make their purposes clearer and we
contribute to the readability of the functions from which we call them. This practice
will continue to be demonstrated in the coming chapters.

In this book, we use a naming convention that is sometimes called camelCase,
in which the first letter is in lowercase and then the first letters of subsequent
words are capitalized. But other programmers prefer different styles. For example,
some programmers prefer snake_case, in which an underscore character is placed
between words (cupsSold would be cups_sold). Unless you are working in an
environment with a specific mandated style, the choice is yours, as long as it results
in self-documenting code.

Exercises
2.4.1* Incorporate all the changes we discussed in this section into your flower-drawing

program, and finish commenting the bodies of the remaining functions.

2.4.2. Reorganize the earthquake plotting program from page 63 so that it follows all
of the style guidelines from this section, and the actual drawing is encapsulated
in a function plotQuakes(tortoise, earthquakes). A main function should
create a turtle, assign the list of earthquakes to a variable, and then call your
function with these two arguments.

2.4.3* Rewrite this simple program so that it adheres to the guidelines in this section.
All of the drawing should happen in a new function that takes the name of a
turtle as its parameter. The main function should create a turtle and pass it
into the drawing function. Be sure to include docstrings and comments.

import turtle

beth = turtle.Turtle()

beth.hideturtle()

beth.speed(9)

beth.fillcolor('blue')
beth.begin_fill()

beth.pencolor('red')
for count in range(8):

beth.circle(75)

beth.left(45)

beth.forward(10 * 1.414) # 10 * sqrt(2)

beth.end_fill()



2.4 PROGRAMMING IN STYLE � 85

2.4.4. Run the following program to see what it does and then edit it to make it
more understandable. Give all of the variables more descriptive names and add
appropriate docstrings and comments.

import turtle

import math # math module (more in the next chapter)

def doSomething(z):

a = turtle.Turtle()

b = turtle.Turtle()

c = a.getscreen()

c.setworldcoordinates(-z - 1, -z - 1, z + 1, z + 1)

a.hideturtle()

b.hideturtle()

a.up()

b.up()

a.goto(-z, 0)

b.goto(-z, 0)

a.down()

b.down()

for d in range(-z, z + 1):

a.goto(d, math.sqrt(z ** 2 - d ** 2)) # sqrt is square root

b.goto(d, -math.sqrt(z ** 2 - d ** 2))

def main():

doSomething(100)

main()

2.4.5* Write a program that prompts for a person’s age and then prints the equivalent
number of days. All of the statements should be in a main function.

2.4.6. Write a program that prompts for a person’s favorite color and the last thing
they ate. Then print the concatenation of these as their rock band name. All of
the statements should be in a main function. For example:

Your favorite color? pink

Your last meal? burrito

Your band name is The pink burritos!

2.4.7. Write a function that implements your Mad Lib from Exercise 1.3.22, and then
write a complete program (with main function) that calls it. Your Mad Lib
function should take the words needed to fill in the blanks as parameters. Your
main function should get these values with calls to the input function, and then
pass them to your function. Include docstrings and comments in your program.
For example, here is a new version of the example in Exercise 1.3.22 (without
docstrings or comments).
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def party(adj1, noun1, noun2, adj2, noun3):

print('How to Throw a Party')
print()

print('If you are looking for a/an', adj1, 'way to')
print('celebrate your love of', noun1 + ', how about a')
print(noun2 + '-themed costume party? Start by')
print('sending invitations encoded in', adj2, 'format')
print('giving directions to the location of your', noun3 + '.')

def main():

firstAdj = input('Adjective: ')
firstNoun = input('Noun: ')
secondNoun = input('Noun: ')
secondAdj = input('Adjective: ')
thirdNoun = input('Noun: ')
party(firstAdj, firstNoun, secondNoun, secondAdj, thirdNoun)

main()

2.4.8. Study the following program (also available on the book website), and then
reorganize it with a main function that calls one or more other functions. Your
main function should only create a turtle and call your functions. Document
your program with appropriate docstrings and comments.

import turtle

george = turtle.Turtle()

george.setposition(0, 100)

george.pencolor('red')
george.fillcolor('red')
george.begin_fill()

george.circle(-100, 180)

george.right(90)

george.forward(200)

george.end_fill()

george.up()

george.right(90)

george.forward(25)

george.right(90)

george.forward(50)

george.left(90)

george.down()

george.pencolor('white')
george.fillcolor('white')
george.begin_fill()

george.circle(-50, 180)

george.right(90)

george.forward(100)

george.end_fill()
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2.4.9. The following program (also available on the book website) draws a truck. Edit
it so that it conforms to all of the guidelines discussed in this section. Include
all code in appropriate functions and replace duplicate code with appropriate
function calls.

import turtle

truck = turtle.Turtle()
truck.speed(5)
truck.hideturtle()

truck.fillcolor('red')
truck.begin_fill()
truck.forward(300)
truck.left(90)
truck.forward(75)
truck.left(45)
truck.forward(25)
truck.left(45)
truck.forward(100)
truck.right(45)
truck.forward(100)
truck.left(45)
truck.forward(75)
truck.left(90)
truck.forward(70.71)
truck.right(90)
truck.forward(200)
truck.left(90)
truck.forward(92.677)
truck.left(90)
truck.forward(167.677)
truck.end_fill()

truck.up()
truck.forward(220)
truck.right(90)
truck.forward(50)
truck.left(90)
truck.down()

truck.fillcolor('black')
truck.begin_fill()
truck.circle(50)
truck.end_fill()
truck.up()
truck.right(90)
truck.backward(25)
truck.left(90)
truck.down()
truck.fillcolor('lightgray')
truck.begin_fill()
truck.circle(25)
truck.end_fill()

truck.up()
truck.right(90)
truck.forward(25)
truck.left(90)
truck.backward(300)
truck.down()
truck.fillcolor('black')
truck.begin_fill()
truck.circle(50)
truck.end_fill()

truck.up()
truck.right(90)
truck.backward(25)
truck.left(90)
truck.down()
truck.fillcolor('lightgray')
truck.begin_fill()
truck.circle(25)
truck.end_fill()

2.5 A RETURN TO FUNCTIONS
We previously described a function as a computation that takes one or more inputs,
called parameters , and produces an output, called a return value. But, up until now,
very few of the functions we have used, and none of the functions we have written,
have had return values. In this section, we will remedy that.
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The math module
The math module contains a rich set of functions that return useful mathematical
quantities. For example, to take the square root of 5, we can use math.sqrt:

>>> import math
>>> result = math.sqrt(5)
>>> result
2.23606797749979

Function calls with return values can also be used in longer expressions, and as
arguments of other functions. In this case, it is useful to think about a function call
as equivalent to the value that it returns. For example, we can use the math.sqrt

function in the computation of the volume of a tetrahedron with edge length h = 7.5,
using the formula V = h3/(6

√
2).

>>> height = 7.5
>>> volume = height ** 3 / (6 * math.sqrt(2))
>>> volume
49.71844555217912

In the parentheses, the value of math.sqrt(2) is computed first, and then multiplied
by 6. Finally, height ** 3 is divided by this result, and the answer is assigned
to volume. If we wanted the rounded volume, we could use the entire volume
computation as the argument to the round function:

>>> volume = round(height ** 3 / (6 * math.sqrt(2)))
>>> volume
50

We illustrate below the complete sequence of events in this evaluation:

round(height ** 3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

421.875

/(6 * math.sqrt(2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1.4142...

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
8.4852...

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
49.7184...

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
50

Now suppose we wanted to find the cosine of a 52○ angle. We can use the math.cos

function to compute the cosine, but the Python trigonometric functions expect
their arguments to be in radians instead of degrees. (360 degrees is equivalent to
2π radians.) Fortunately, the math module also provides a function named radians

that converts degrees to radians. So we can find the cosine of a 52○ angle like this:

>>> math.cos(math.radians(52))
0.6156614753256583

The function call math.radians(52) is evaluated first, giving the equivalent of 52○

in radians, and this result is used as the argument to the math.cos function:

math.cos(math.radians(52)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0.9075...

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0.6156...
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Other commonly used functions from the math module are listed in Appendix A.1.
The math module also contains two commonly used constants: pi and e. Our sphere
volume computation earlier would have been more accurately computed with:

>>> radius = 20
>>> volume = (4 / 3) * math.pi * (radius ** 3)
>>> volume
33510.32163829113

Notice that, since pi and e are variable names, not functions, there are no parentheses
after their names.

Writing functions with return values
When we computed Flesch-Kincaid grade levels back in Section 1.3, they looked like
this:

>>> averageWords = 16
>>> averageSyllables = 1.78
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print(readingLevel)
11.654

The problem with this approach is that, if we want the reading level of a different
text, we need to type the whole thing again. For example,

>>> averageWords = 4.8
>>> averageSyllables = 1.9
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> print(readingLevel)
8.702000000000002

This is obviously tedious and error-prone, analogous to building a new microwave
oven from scratch every time we want to pop a bag of popcorn. Instead, we want
to define a function that takes the average words per sentence and the average
syllables per word as inputs and returns the reading level as output. Once we have
this function in hand, we can get the reading levels of as many books as we want
just by passing in different arguments. Back in Chapter 1, we visualized the problem
as a black box like this:

average words, 
average syllables

reading level of the textFlesch-Kincaid 
grade level score

And we wrote the algorithm in pseudocode like this:

Algorithm Flesch Kincaid

Input: average words, average syllables
1 reading level ← 0.39 × average words + 11.8 × average syllables − 15.59

Output: reading level
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In Python, these translate into the following function definition.

def fleschKincaid(averageWords, averageSyllables):
"""Computes the reading level of a text using the Flesch-Kincaid

reading level formula.

Parameters:
averageWords: average number of words per sentence in a text
averageSyllables: average number of syllables per word in a text

Return value: the Flesch-Kincaid reading level score
"""

return 0.39 * averageWords + 11.8 * averageSyllables - 15.59

The return statement defines the output of the function. Remember that the
function definition by itself does not compute anything. We must call the function
for it to be executed. For example, to get the two reading levels above, we can call
the function twice like this:

def main():
readingLevel1 = fleschKincaid(16, 1.78)
readingLevel2 = fleschKincaid(4.8, 1.9)

print('The reading level of book 1 is ' + str(readingLevel1) + '.')
print('The reading level of book 2 is ' + str(readingLevel2) + '.')
print('The difference in reading level is ' +

str(readingLevel1 - readingLevel2) + '.')

main()

When each assignment statement is executed, the righthand side calls the function
fleschKincaid with two arguments. Then the function fleschKincaid is executed
with the two arguments assigned to its two parameters. Next, the value after the
return statement is computed and returned by the function. In main, this return
value is assigned to the variable on the left of the assignment statement. So when
this program is run, it prints:

The reading level of book 1 is 11.654.
The reading level of book 2 is 8.702000000000002.
The difference in reading level is 2.951999999999998.

The return value becomes the value associated with the function call itself. For
example, the first print statement could be changed to

print('The reading level of book 1 is ' + str(fleschKincaid(6, 2.2)) + '.')

In addition to defining a function’s return value, the return statement also causes
the function to end and return this value back to the function call. So the return

statement actually does two things:
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1. defines the function’s return value, and

2. causes the function to end.

This second point is important to remember because it means that any statements
we add to a function after the return statement will never be executed.

Reflection 2.11 Add the statement

print('This will never, ever be printed.')

to the fleschKincaid function after the return statement. What does it do?

Functions can have many statements in them before the return statement. The
following function gets characteristics about a text by prompting for them, then
calls our new fleschKincaid function and returns the result.

def fleschKincaid2():
"""Prompt for characteristics about a text and then return the

text's reading level according to the Flesch-Kincaid formula.

Parameters: none

Return value: the Flesch-Kincaid reading level score
"""

averageWords = float(input('Average words per sentence: '))
averageSyllables = float(input('Average syllables per word: '))

readingLevel = fleschKincaid(averageWords, averageSyllables)

return readingLevel

By defining functions that return values, we can also add to the existing palette
of mathematical functions supplied by Python. For example, our familiar sphere
volume computation looks like this as a Python function:

import math

def volumeSphere(radius):
"""Computes the volume of a sphere.

Parameter:
radius: radius of the sphere

Return value: volume of a sphere with the given radius
"""

return (4 / 3) * math.pi * (radius ** 3)

Now suppose we want to approximate the volume of the earth’s mantle, which is
the layer between the earth’s core and its crust. This is the same as computing the
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difference of two volumes: the volume of the earth and the volume of the earth’s
core, as illustrated below.

6371 km
3485 km

core

mantle

earthRadius = 6371 # km
coreRadius = 3485 # km
mantleVolume = volumeSphere(earthRadius) - volumeSphere(coreRadius)
print("The volume of the mantle is " + str(mantleVolume) + ' cubic km.')

Notice how we used two function calls in an arithmetic expression, exactly like we
previously used the int and math.sqrt functions. This expression is evaluated from
the inside out, just as one would expect:

mantleVolume = volumeSphere(earthRadius
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

6371

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1083206916845.7535

- volumeSphere(coreRadius
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3485

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
177295191309.51987

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
905911725536.2336

Return vs. print
A common beginner’s mistake is to forget the return statement or end a function
with a print instead of a return. For example, suppose we replaced the return

with print in the volumeSphere function:

def fleschKincaid(averageWords, averageSyllables):
""" (docstring omitted) """

print(0.39 * averageWords + 11.8 * averageSyllables - 15.59) # WRONG!

Reflection 2.12 Make this modification to your fleschKincaid function and then run
your program again. Did you get the correct answer?

When you run your program now, you will see something puzzling:

11.654
8.702000000000002
The reading level of book 1 is None.
The reading level of book 2 is None.
TypeError: unsupported operand type(s) for -: 'NoneType' and 'NoneType'

The first two lines where the reading levels are printed are coming from the print
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in the fleschKincaid function. Because there is no return in the function, the
return value is None, which is assigned to readingLevel1 and readingLevel2, and
printed in the third and fourth lines. The fifth line is the error generated by trying to
compute readingLevel1 - readingLevel2, which is None - None, a nonsensical
operation.

Reflection 2.13 A similar problem will arise if you replace the last statement in
fleschKincaid function with

readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59

and omit a return statement. Try it. What happens and why?

Before continuing, be sure to fix your function so that it has a proper return

statement.

Exercises
The following exercises ask you to write functions that return (not print) values. When
a program is called for, be sure to follow the guidelines in the previous section. Test each
function with both common and boundary case arguments, as described on page 38, and
document these test cases.

2.5.1* The geometric mean of two numbers is the square root of their product. Write
a function

geometricMean(value1, value2)

that returns the geometric mean of the two values. Use your function to compute
the geometric mean of 18 and 31.

2.5.2. If you have P (short for principal) dollars in a savings account that will pay
interest rate r, compounded at a frequency of n times per year, then after t
years, you will have

P (1 + r

n
)
nt

dollars in your account. If the interest were compounded continuously (i.e., with
n approaching infinity), you would instead have

Pert

dollars after t years, where e is Euler’s number, the base of the natural logarithm.
Write a function

compoundDiff(principal, rate, frequency, years)

that returns the difference in your savings between compounding at the given
frequency and continuous compounding. (Use the math.exp function.)

Suppose you have P = $10,000 in an account paying 1% interest (r = 0.01),
compounding monthly. Use your function to determine how much more money
will you have after t = 10 years if the interest were compounded continuously.

2.5.3. Write a program that prompts for a principal, rate, compounding frequency, and
number of years, and then uses your function from Exercise 2.5.2 to display how
much more money will you have if the interest were compounded continuously.
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2.5.4* Write a function

quadratic(a, b, c)

that uses the quadratic formula to return the two solutions to the equation
ax2 + bx + c = 0. Your function can return two values like this:

return x1, x2

Show how to use your function to find the solutions to 3x2 + 4x − 5 = 0.

2.5.5. Write a program that prompts for values of a, b, and c using the input function,
calls your function from Exercise 2.5.4 to find the solutions to the quadratic
equation ax2 + bx + c = 0, and then prints the results.

2.5.6* Suppose we have two points (x1, y1) and (x2, y2). The distance between them
is equal to √

(x1 − x2)2 + (y1 − y2)2.
Write a function

distance(x1, y1, x2, y2)

that returns the distance between points (x1,y1) and (x2,y2).

2.5.7. A parallelepiped is a three-dimensional box in which the six sides are parallelo-
grams. The volume of a parallelepiped is

V = abc
√

1 + 2 cos(x) cos(y) cos(z) − cos(x)2 − cos(y)2 − cos(z)2

where a, b, and c are the edge lengths, and x, y, and z are the angles between
the edges, in radians. Write a function

ppdVolume(a, b, c, x, y, z)

that returns the volume of a parallelepiped with the given dimensions.

2.5.8. Repeat the previous exercise, but now assume that the angles passed into the
function are in degrees.

2.5.9. Write a function

total(number1, number2)

that returns the sum of number1 and number2. Also write a complete program
(with a main function) that gets these two values using the input function,
passes them to your total function, and then prints the value returned by the
total function.

2.5.10* Write a function

power(base, exponent)

that returns the value baseexponent. Also write a complete program (with a main

function) that gets these two values using the input function, passes them to
your power function, and then prints the returned value of baseexponent.

2.5.11* Write a function

football(touchdowns, fieldGoals, safeties)

that returns your team’s football score if the number of touchdowns (worth 7
points), field goals (worth 3 points), and safeties (worth 2 points) are passed
as parameters. Then write a complete program (with main function) that gets
these three values using the input function, passes them to your football

function, and then prints the score.
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2.5.12. The ideal gas law states that PV = nRT where

• P = pressure in atmospheres (atm)

• V = volume in liters (L)

• n = number of moles (mol) of gas

• R = gas constant = 0.08 L atm / mol K

• T = absolute temperature of the gas in Kelvin (K)

Write a function

moles(V, P, T)

that returns the number of moles of an ideal gas in V liters contained at pressure
P and T degrees Celsius. (Be sure to convert Celsius to Kelvin in your function.)
Also write a complete program (with a main function) that gets these three
values using the input function, passes them to your moles function, and then
prints the number of moles of ideal gas.

2.5.13. Suppose we have two containers of an ideal gas. The first contains 10 L of gas at
1.5 atm and 20 degrees Celsius. The second contains 25 L of gas at 2 atm and
30 degrees Celsius. Show how to use two calls to your function in the previous
exercise to compute the total number of moles of ideal gas in the two containers.

Now replace the return statement in your moles function with a call to print

instead. (So your function does not contain a return statement.) Can you still
compute the total number of moles in the same way? If so, show how. If not,
explain why not.

2.5.14* Most of the world is highly dependent upon groundwater for survival. Therefore,
it is important to be able to monitor groundwater flow to understand potential
contamination threats. Darcy’s law states that the flow of a liquid (e.g., water)
through a porous medium (e.g., sand, gravel) depends upon the capacity of the
medium to carry the flow and the gradient of the flow:

Q =Kdh

dl

where

• K is the hydraulic conductivity of the medium, the rate at which the
liquid can move through it, measured in area/time

• dh/dl is the hydraulic gradient

• dh is the drop in elevation (negative for flow down)

• dl is the horizontal distance of the flow

Write a function

darcy(K, dh, dl)

that computes the flow with the given parameters.

Use your function to compute the amount of groundwater flow inside a hill
with hydraulic conductivity of 130 m2/day, and a 50 m drop in elevation over a
distance of 1 km.
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2.5.15. A person’s Body Mass Index (BMI) is calculated by the following formula:

BMI = w

h2
⋅ 703

where w is the person’s weight in pounds and h is the person’s height in inches.
Write a function

bmi(weight, height)

that uses this formula to return the corresponding BMI.

2.5.16* When you (or your parents) rip songs from a CD, the digital file is created by
sampling the sound at some rate. Common rates are 128 kbps (128 × 210 bits
per second), 192 kbps, and 256 kbps. Write a function

songs(capacity, bitrate)

that returns the number of 4-minute songs someone can fit locally on his or her
music player. The function’s two parameters are the capacity of the music player
in gigabytes (GB) and the sampling rate in kbps. A gigabyte is 230 bytes and
a byte contains 8 bits. Also write a complete program (with a main function)
that gets these two values using the input function, passes them to your songs
function, and then prints the number of songs.

2.5.17. The speed of a computer is often (simplistically) expressed in gigahertz (GHz),
the number of billions of times the computer’s internal clock “ticks” per second.
For example, a 2 GHz computer has a clock that “ticks” 2 billion times per
second. Suppose that a single computer instruction requires 3 “ticks” to execute.
Write a function

time(instructions, gigahertz)

that returns the time in seconds required to execute the given number
of instructions on a computer with clock rate gigahertz. For example,
time(10 ** 9, 3) should return 1 (second).

2.5.18* Exercise 1.3.8 asked how to swap the values in two variables. Can we write a
function to swap the values of two parameters? In other words, can we write a
function

swap(a, b)

and call it like

x = 10
y = 1
swap(x, y)

so that after the function returns, x has the value 1 and y has the value 10?
(The function should not return anything.) If so, write it. If not, explain why
not.

2.5.19. Given an integer course grade from 0 to 99, we convert it to the equivalent grade
point according to the following scale: 90–99: 4, 80–89: 3, 70–79: 2, 60–69: 1,
< 60: 0. Write a function

gradePoint(score)

that returns the grade point (i.e., GPA) equivalent to the given score.
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2.5.20. The function time.time() (in the time module) returns the current time in
seconds since January 1, 1970. Write a function

year()

that uses this function to return the current year as an integer value.

2.5.21* Write a function

twice(text)

that uses the string concatenation operator * to return the string text repeated
twice, with a space in between. For example, twice('bah') should return the
string 'bah bah'.

2.5.22. Write a function

repeat(text, n)

that returns a string that is n copies of the string text. For example,
repeat('AB', 3) should return the string 'ABABAB'.

2.6 SCOPE AND NAMESPACES
We have been using local variables inside functions for a few sections now, relying
on somewhat informal explanations for how they work. In this section, we will look
more formally at scoping rules for variables so that you better understand how to use
them and can hopefully prevent difficult-to-find errors in the future. As an example,
let’s consider the wind chill computation from Exercise 1.3.14, implemented as a
function that is called from a main function.

def windChill(temperature, windSpeed):
"""Gives the North American metric wind chill equivalent

for the given temperature and wind speed.

Parameters:
temperature: temperature in degrees Celsius
windSpeed: wind speed at 10m in km/h

Return value:
equivalent wind chill in degrees Celsius, rounded to
the nearest integer

"""

chill = 13.12 + 0.6215 * temperature \
+ (0.3965 * temperature - 11.37) * windSpeed ** 0.16

temperature = round(chill)
return temperature

def main():
temp = -3
wind = 13
chilly = windChill(temp, wind)
print('The wind chill is ' + str(chilly) + ' degrees Celsius.')

main()
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(The “backslash” (\) character above is the line continuation character . It indicates
that the line that it ends is continued on the next line. This is sometimes handy for
splitting very long lines of code.) Notice that we have introduced a variable inside
the windChill function named chill to break up the computation a bit. Because
we created chill inside the function windChill, its scope is local to the function.
If we tried to refer to chill anywhere outside of the function windChill (e.g., in
the main function), we would get the following error:

NameError: name 'chill' is not defined

Because chill has a local scope, it is called a local variable. The parameters
temperature and windSpeed are also local variables and have the same local scope
as chill.

Local namespaces
Let’s look more closely at how local variable and parameter names are managed
in Python. In this program, just after we call the windChill function, but just
before the values of the arguments temp and wind are assigned to the parameters
temperature and windSpeed, we can visualize the situation like this:

-3 13

windChillmain

temperature windSpeedtemp wind

The box around temp and wind represents the scope of the main function, and the
box around temperature and windSpeed represents the scope of the windChill

function. In each case, the scope defines what names have been defined, or have
meaning, in that function. In the picture, we are using arrows instead of affixing the
“Sticky notes” directly to the values to make clear that the names, not the values,
reside in their respective scopes. The names are references to the memory cells in
which their values reside.

The scope corresponding to a function in Python is managed with a namespace . A
namespace of a function is simply a list of names that are defined in that function,
together with references to their values. We can view the namespace of a particular
function by calling the locals function from within it. For example, insert the
following statement into the main function, just before the call to windChill:

print('Local namespace in main before windChill is\n\t', locals())

(The \n\t represents a newline and tab character.) When we run the program, we
will see
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1 def windChill(temperature, windSpeed):
2 """ (docstring omitted) """
3

4 print('Local namespace at the start of windChill is\n\t', locals())
5 chill = 13.12 + 0.6215 * temperature \
6 + (0.3965 * temperature - 11.37) * windSpeed ** 0.16
7 temperature = round(chill)
8 print('Local namespace at the end of windChill is\n\t', locals())
9 return temperature

10

11 def main():
12 temp = -3
13 wind = 13
14 print('Local namespace in main before windChill is\n\t', locals())
15 chilly = windChill(temp, wind)
16 print('Local namespace in main after windChill is\n\t', locals())
17 print('The wind chill is ' + str(chilly) + ' degrees Celsius.')
18

19 main()

Figure 2.10 The complete wind chill program, with calls to the locals function.

Local namespace in main before windChill is

{'temp': -3, 'wind': 13}

The wind chill is -8 degrees Celsius.

This is showing us that, at that point in the program, the local namespace in the
main function consists of two names: temp, which is assigned the value -3, and wind,
which is assigned the value 13, just as we visualized above. The curly braces ({ })
around the namespace representation indicate that the namespace is a dictionary ,
another abstract data type in Python. We will explore dictionaries in more detail in
Chapter 7.

Returning to the program, when windChill is subsequently called from main, it is
implicitly assigning temperature = temp and windSpeed = wind, so the picture
changes to this:

-3 13

windChillmain

temperature windSpeedtemp wind

To see all of the namespace changes in the program, insert three more calls to the
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locals function, as shown in Figure 2.10. Now when we run the program, we see
(line numbers added):

1 Local namespace in main before windChill is

{'temp': -3, 'wind': 13}

3 Local namespace at the start of windChill is

{'temperature': -3, 'windSpeed': 13}

5 Local namespace at the end of windChill is

{'temperature': -8, 'windSpeed': 13, 'chill': -7.676796032159553}

7 Local namespace in main after windChill is

{'temp': -3, 'wind': 13, 'chilly': -8}

9 The wind chill is -8 degrees Celsius.

Line 3 above, which corresponds to the preceding “sticky note” illustration, shows
us that, at the beginning of the windChill function (line 4 in Figure 2.10), the only
visible names are temperature and windSpeed, which have been assigned the values
of temp and wind, respectively. Notice, however, that temp and wind do not exist
inside windChill, and there is no direct connection between temp and temperature,
or between wind and windSpeed; rather they are only indirectly connected through
the values to which they are both assigned.

Lines 5–6 in the windChill function insert the new name chill into the local
namespace, assign it the result of the wind chill computation, and reassign the local
parameter temperature to the rounded wind chill value:

-3 13

windChillmain

 -7.67… -8

temperature windSpeedtemp wind chill

This corresponds to line 5 of the output above.

After the windChill function returns −8, the namespace of windChill, and all of
the local names in that namespace, cease to exist, leaving temp and wind untouched
in the main namespace. However, as shown below and in line 7 of the output above,
a new name, chilly, is created in the main namespace and assigned the return value
of the windChill function:

-3 13

main

-8

temp wind chilly
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When the main function ends, its local namespace also disappears.

The global namespace
The namespace in which global variable names reside is called the global namespace .
We can view the contents of the global namespace by calling the globals function.
For example, add the following call to globals to the end of main in our program:

print('The global namespace is\n\t', globals())

The result will be something like the following (some names are not shown):

The global namespace is

{'__name__': '__main__', '__doc__': None, ...,

'__builtins__': <module 'builtins' (built-in)>, ...,

'windChill': <function windChill at 0x10dde8b80>,

'main': <function main at 0x10dde8c10>}

Notice that the only global names that we created are the names of our two
functions, windChill and main. We can think of each of these names as referring
to the functions’ respective namespaces, as illustrated below (references for some
names are omitted):

__main__

...

builtins

...

-3 13

windChillmain

 -7.67… -8

temperature windSpeedtemp wind chill

print round locals

main windChill __name__ __builtins__

The other names defined in the global namespace are standard names defined in every
Python program. The name __name__ refers to the name of the current module,
which, in this case, is '__main__' (not to be confused with the main function);
__name__ always refers to '__main__' when the program is executed directly by
the Python interpreter (vs. being imported from another program). The name
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__builtins__ refers to an implicitly imported module that contains all of Python’s
built-in functions.

As the illustration suggests, we can think of these namespaces as being nested inside
each other because names that are not located in a local namespace are sought
in enclosing namespaces. For example, when we are in the main function and call
the function print, the Python interpreter first looks in the local namespace for
this function name. Not finding it there, it looks in the next outermost namespace,
__main__. Again, not finding it there, it looks in the builtins namespace.

Each module that we import also defines its own namespace. For example, when
we import the math module with import math, a new namespace is created within
builtins, at the same nesting level as the __main__ namespace, as illustrated below.

__main__

...

builtins

...

math

...

3.14…-3 13

windChillmain

 -7.67… -8

temperature windSpeedtemp wind chill

print round locals
sqrt pi

main windChill __name__ __builtins__

When we preface each of the function names in the math module with math (e.g.,
math.sqrt(7)), we are telling the Python interpreter to look in the math namespace
for the function.

Maintaining a mental model like this should help you manage the names that you
use in your programs, especially as they become longer.

Exercises
2.6.1* When the windChill function in Figure 2.10 is called from main, the value of

the argument temp is assigned to the parameter named temperature. Then, in
the function, temperature is assigned a new value. Does this affect the value of
temp? Use the pictures in this section to explain your answer.
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2.6.2* Exercise 2.5.6 asked you to write a distance function to find the distance
between two points. Here is that function in a simple but complete program.

1 import math
2

3 def distance(x1, y1, x2, y2):
4 dist = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
5 return dist
6

7 def main():
8 theDistance = distance(3, 7.25, 9.5, 1)
9 print(theDistance)

10

11 main()

(a) Show how to use the locals function to print all of the local variable
names in the distance function just before the function returns. What
does the namespace look like?

(b) Show how to use the globals function to print the global namespace at
the end of the main function. Which of the names from the program are
in the global namespace?

(c) Insert a statement in the main function between lines 8 and 9 to print
the local variable dist. What happens and why?

2.6.3. Look back at the program in Figure 2.8 on page 73.

(a) In what namespace is the variable george. Why?

(b) In the bloom, stem, and flower functions, we used a turtle parameter
named tortoise instead of george. Would the program still work if we
replaced every instance of tortoise with george? Explain your answer.

(c) If you made the changes in part (b), the name george would exist in
two different namespaces while each of the three functions was executing.
Explain why. While the bloom function is executing, which george is
being used?

2.6.4. Insert a call to the locals function inside the for loop in this program. What
values is the variable line assigned in the loop?

import turtle

def draw(tortoise, numLines):
for line in range(numLines):

tortoise.up()
tortoise.goto(line * 10, 0)
tortoise.down()
tortoise.goto((numLines - line + 1) * 10, 200)

def main():
george = turtle.Turtle()
draw(george, 12)

main()
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2.6.5* Sketch a picture like that on page 100 depicting the namespaces in the program
in the previous exercise just before returning from the draw function. Here is a
picture to get you started:

Turtle
object

tortoise numLines

draw

george

main

line

2.6.6. Consider the following program:

import turtle

def drawStar(tortoise, length):
for count in range(5):

tortoise.forward(length)
tortoise.left(144)

def main():
george = turtle.Turtle()
sideLength = 200
drawStar(george, sideLength)

main()

Sketch a picture like that on page 100 depicting the namespaces in this program
just before returning from the drawStar function. Here is a picture to get you
started:

Turtle
object

tortoise length

drawStar

george

main

countsideLength

2.6.7. In economics, a demand function gives the price a consumer is willing to pay for
an item, given that a particular quantity of that item is available. For example,
suppose that in a coffee bean market the demand function is given by

D(Q) = 45 − 2.3Q

1000
,

where Q is the quantity of available coffee, measured in kilograms, and the
returned price is for 1 kg. So, for example, if there are 5000 kg of coffee beans
available, the price will be 45 − (2.3)(5000)/1000 = 33.50 dollars for 1 kg. The
following program computes this value.
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def demand(quantity):
quantity = quantity / 1000
return 45 - 2.3 * quantity

def main():
coffee = 5000
price = demand(coffee)
print(price)

main()

Sketch a picture like that on page 100 depicting the namespaces in this program
just before returning from the demand function and also just before returning
from the main function.

2.6.8. In the program from the previous exercise, change return 45 - 2.3 * quantity

to print(45 - 2.3 * quantity). How does this change your pictures?

2.6.9. Here is a simple program with the fleshKincaid function from the previous
section.

def fleschKincaid(averageWords, averageSyllables):
""" (docstring omitted) """

readingLevel = 0.39 * averageWords \
+ 11.8 * averageSyllables - 15.59

return readingLevel

def main():
theReadingLevel = fleschKincaid(4.0, 1.5)
print('Local namespace:', locals())
print('The reading level is ' + str(theReadingLevel) + '.')

main()

(a) Run this program. What is printed by the highlighted line above? How
does theReadingLevel get this value?

(b) In the fleschKincaid function, replace return readingLevel with
print(readingLevel), and run the program again. Now what is printed
by the highlighted line above? Why?

2.7 SUMMARY AND FURTHER DISCOVERY
In this chapter, we made progress toward writing more sophisticated programs. The
key to successfully solving larger problems is to break the problem into smaller,
more manageable pieces, and then treat each of these pieces as an abstract “black
box” that you can use to solve the larger problem. There are two types of “black
boxes,” those that represent things (i.e., data, information) and those that represent
actions. A “black box” representing a thing is described by an abstract data type
(ADT), which contains both hidden data and a set of functions that we can call
to access or modify that data. In Python, an ADT is implemented with a class,
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and instances of a class are called objects. The class, such as Turtle, to which an
object belongs specifies what (hidden) data the object has and what methods can be
called to access or modify that data. Remember that a class is the “blueprint” for a
category of objects, but is not actually an object. We “built” new Turtle objects
by calling a function with the class’ name:

george = turtle.Turtle()

Once the object is created, we can do things with it by calling its methods, like
george.forward(100), without worrying about how it actually works.

A ”black box” that performs an action is called a functional abstraction. We imple-
ment functional abstractions in Python with functions. Earlier in the chapter, we
designed functions to draw things in turtle graphics, gradually making them more
general (and hence more useful) by adding parameters. We also started using for

loops to create more interesting iterative algorithms. Later in the chapter, we also
looked at how we can add return values to functions, and how to properly think
about all of the names that we use in our programs. By breaking our programs up
into functions, like breaking up a complex organization into divisions, we can more
effectively focus on how to solve the problem at hand.

This increasing complexity becomes easier to manage if you follow the guidelines for
structuring and documenting your programs that we laid out in Section 2.4.

Notes for further discovery
The chapter’s first epigraph is once again from Donald Knuth, specifically his address
after receiving the 1974 Turing award [32]. You can read or watch other Turing
award lectures at http://amturing.acm.org.

The second epigraph is from Ada Lovelace, considered by many to be the first
computer programmer. She was born Ada Byron in England in 1815, the daughter of
the Romantic poet Lord Byron. (However, she never knew her father because he left
England soon after she was born.) In marriage, Ada acquired the title “Countess of
Lovelace,” and is now commonly known simply as Ada Lovelace. She was educated
in mathematics by several prominent tutors and worked with Charles Babbage, the
inventor of two of the first computers, the Difference Engine and the Analytical
Engine. Although the Analytical Engine was never actually built, Ada wrote a set
of “Notes” about its design, including what many consider to be the first computer
program. (The quote is from Note A, page 696.) In her “Notes” she also imagined
that future computers would be able to perform tasks far more interesting than
arithmetic (like make music). Ada Lovelace died in 1852, at the age of 37.

The giant tortoise named Lonesome George was, sadly, the last surviving member of
his subspecies, Chelonoidis nigra abingdonii. The giant tortoise named Super Diego
is a member of a different subspecies, Chelonoidis nigra hoodensis.

The commenting style we use in this book is based on Google’s official Python style
guide at https://google.github.io/styleguide/pyguide.html.

http://amturing.acm.org
https://google.github.io/styleguide/pyguide.html
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Inside a Computer

One day ladies will take their computers for walks in the park and tell each other, “My little
computer said such a funny thing this morning.”

Alan Turing
1951

And now for something completely different!

Monty Python’s Flying Circus

There are only 10 types of people in the world: those who understand binary, and those
who don’t.

Unknown

A lan Turing, the father of Computer Science, optimistically predicted that by
now computers would be carrying on meaningful conversations with human

beings. While this has not yet come to pass, by executing clever algorithms very
fast, computers can sometimes appear to exhibit primitive intelligence. In a historic
example, in 1997, the IBM Deep Blue computer defeated reigning world champion
Garry Kasparov in a six-game match of chess. In 2011, IBM’s Watson computer beat
two champions in the television game show Jeopardy. Five years later, the AlphaGo
program defeated the world Go champion over a five match series. And now we are
on the cusp of seeing autonomous vehicles almost entirely replacing human drivers.

The intelligence that we sometimes attribute to computers, however, is actually
human intelligence that was originally expressed as an algorithm, and then as a
program. Contemporary computers at their cores remain dumb machines. Even the

107
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Computer 
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Protocols

Network Interface

Bus

Figure 3.1 A simplified look at layers of abstraction when using a computer.

statements in a high-level programming language are themselves abstract conve-
niences built upon a much more rudimentary set of instructions that a computer
can execute natively.

3.1 COMPUTERS ARE DUMB
When you use a computer, you are utilizing layers of functional abstractions. As
illustrated in Figure 3.1, at the highest layer, you are presented with a “desktop”
abstraction on which you can store files and use applications (or programs) to
do work. That there appear to be many applications active simultaneously on
this desktop is also an abstraction. In reality, some applications may be working
in parallel while others are not, but the computer is alternating among them so
quickly that they appear to be working in parallel. Each of these applications is a
sequence of machine language instructions that can be executed by the computer
hardware. Some of these instructions rely on various functional abstractions provided
by the computer’s operating system to save files, access the computer’s memory,
retrieve information from the Internet, etc. In other words, the operating system
provides functional abstractions that allow us, via the applications we use, to more
conveniently and efficiently use the computer’s resources.

Since machine language is the only thing that a computer “understands,” every
statement in a Python program must be translated by the Python interpreter into
a sequence of equivalent machine language instructions before it can be executed.
An interpreter translates one line of a high-level program into machine language,
executes it, then translates the next line and executes it, etc. Other languages
(such as C++) use a compiler instead. A compiler translates a high-level language
program all at once into machine language. Then the compiled machine language
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Tangent 3.1: High performance computing

Although today’s computers are extremely fast, there are some problems that are so big
that additional power is necessary. These include weather forecasting, molecular modeling
and drug design, aerodynamics, and deciphering encrypted data. For these problems,
scientists use supercomputers . A supercomputer, or high performance computer , is made
of up to tens of thousands of nodes, connected by a very fast data network that shuttles
information between nodes. A node, essentially a standalone computer, can contain
multiple processors, each with multiple cores. The fastest supercomputers today have
millions of cores and a million gigabytes of memory.

To realize the power of these computers, programmers need to supply their cores with a
constant stream of data and instructions. The results computed by the individual cores
are then aggregated into an overall solution. The algorithm design and programming
techniques, known as parallel programming , are beyond the scope of this book, but
we provide additional resources at the end of the chapter if you would like to learn
more.

program can be executed from start to finish without additional translation. This
tends to make compiled programs faster than interpreted ones. However, interpreted
languages allow us to more closely interact with a program during its execution.

The types of instructions that constitute a machine language are based on the internal
design of a modern computer. As illustrated in Figure 3.1, a computer essentially
consists of one or more processors connected to a memory . A computer’s memory,
often called RAM (short for random access memory), is conceptually organized as a
long sequence of cells, each of which can contain one unit of information. Each cell
is labeled with a unique memory address that allows the processor to reference
it specifically. So a computer’s memory is like a huge sequence of equal-sized post
office boxes, each of which can hold exactly one letter. Each P.O. box number is
analogous to a memory address and a letter is analogous to one unit of information.
The information in each cell can represent either one instruction or one unit of data.1

So a computer’s memory stores both programs and the data on which the programs
work. A variable name in Python is essentially a reference to a memory address.

A processor , often called a CPU (short for central processing unit) or core, contains
both the machinery for executing instructions and a small set of memory locations
called registers that temporarily hold data values needed by the current instruction.
If a computer contains more than one core, as most modern computers do, then it
is able to execute more than one instruction at a time. These instructions may be
from different programs or from the same program. This means that our previous
definition of an algorithm as a sequence of instructions is not strictly correct. In fact,
an algorithm (or a program) may consist of several semi-independent sequences of
steps called threads that cooperatively solve a problem.

1In reality, each instruction or unit of data usually occupies multiple contiguous cells.
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Figure 3.2 Inside an Apple MacBook Pro. Image courtesy of iFixit (ifixit.com).

The processors and memory are connected by a communication channel called a bus .
When a processor needs a value in memory, it transmits the request over the bus, and
then the memory returns the requested value the same way. The bus also connects
the processors and memory to several other components that either improve the
machine’s efficiency or its convenience, like the Internet and secondary storage
devices like hard drives (HD), solid state drives (SSD), and flash memory. As you
probably know, the contents of a computer’s memory are lost when the computer
loses power, so we use secondary storage to preserve data for longer periods of time.
We interact with these devices through a “file system” abstraction that makes it
appear as if our hard drives are really filing cabinets. When you execute a program or
open a file, it is first copied from secondary storage into memory where the processor
can access it.

Figure 3.2 shows what these components look like inside a laptop computer. In
addition to the processor, memory, and flash storage, which acts as secondary
storage, a lot of real estate is occupied by the graphics processor and its dedicated
memory, which are responsible for our computers’ abilities to display high resolution
video and fast-paced video games. The Thunderbolt controllers are responsible for
transferring data between the computer and external devices (and the network)

ifixit.com
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connected through Thunderbolt 3 (USB-C) ports. The security chip encrypts data
in flash storage, prevents unauthorized software from running, and stores fingerprint
data for securely logging in.

Reflection 3.1 Look up the technical specifications for your computer. On a Mac, select
“About This Mac” from the Apple menu. In Windows, search for “System Information” or
“msinfo32.”

Machine language
The machine language instructions that a processor can execute are very limited in
their abilities.2 For example, consider something as simple as addition in Python:

>>> total = number1 + number2

Even something this simple is too complex for one machine language instruction.
The machine language equivalent likely, depending on the computer, consists of four
instructions that do the following.

1. Load the value in the memory cell referred to by the variable number1 into a
register in the processor.

2. Load the value in the memory cell referred to by the variable number2 into
another register in the processor.

3. Add the values in these two registers and store the result in a third register.

4. Store the value in the third register in the memory cell referred to by the
variable total.

From the moment a computer is turned on, its processors are operating in a continuous
loop called the fetch and execute cycle (or machine cycle). In each cycle, the
processor fetches one machine language instruction from memory and executes it.
This cycle repeats until the computer is turned off or loses power. This is essentially
all a computer does. The rate at which a computer performs the fetch and execute
cycle is related to the rate at which its internal clock “ticks” (the processor’s clock
rate). The ticks of this clock keep the machine’s operations synchronized. Modern
personal computers have clocks that tick a few billion times each second; a 3 gigahertz
(GHz) processor ticks 3 billion times per second (“giga” means “billion” and a “hertz”
is one tick per second).

So computers, at their most basic level, really are quite dumb; the processor blindly
follows the fetch and execute cycle, dutifully executing whatever sequence of simple
instructions we give it. The frustrating errors that we yell at computers about are,
in fact, human errors. The great thing about computers is not that they are smart,
but that they follow our instructions so quickly; they can accomplish an incredible
amount of work in a very short amount of time. Whether that work is useful, however,
is up to us.

2Python programs are actually translated into an intermediate form called byte code first. See
Tangent 3.2 for details.
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Tangent 3.2: Byte code

In Python, the translation process is actually a little more complicated than the
more generic discussion in this section. Before they are executed, Python programs
are compiled into an intermediate language called byte code. Then the byte code
instructions are executed by a virtual machine that understands how to translate them
into machine language. A virtual machine is a program that emulates a computer.

The Python virtual machine uses a stack instead of registers to store references to
objects. A stack is conceptually a “pile” of values that can only be accessed from the top.
The only operations on a stack are pushing a value onto the top of the stack and popping
the value off the top of the stack. The following sequence of byte code instructions is
what is actually produced for total = number1 + number2 by the Python interpreter.

0 LOAD_FAST 0 (number1)
2 LOAD_FAST 1 (number2)
4 BINARY_ADD
6 STORE_FAST 2 (total)

The first two instructions push references to the variables number1 and number2 onto
the stack. The BINARY_ADD instruction pops the two values off the stack, adds them
together (in binary) and pushes the result onto the top of the stack. The final instruction
pops the result off the stack and stores it at the memory location referred to by the
variable total.

If you would like see byte code for yourself, you can. To see the byte code generated for
a function named myFunction, do this:

import dis
dis.dis(myFunction)

3.2 EVERYTHING IS BITS
Our discussion so far has glossed over a very important consideration: in what
form does a computer store programs and data? In addition to machine language
instructions, we need to store numbers, documents, maps, images, sounds, presenta-
tions, spreadsheets, and more. Using a different storage medium for each type of
information would be insanely complicated and inefficient. Instead, we need a simple
storage format that can accommodate any type of data. The answer is bits. A bit
is the simplest possible unit of information, capable of taking on one of only two
values: 0 or 1 (or equivalently, off/on, no/yes, or false/true). Storing data as bits
makes perfect sense because bit storage is simple, bits can represent anything, and
computing with bits is almost trivial.

Bits are switches
Storing the value of a bit is absurdly simple: a bit is equivalent to an on/off switch,
and the value of the bit is equivalent to the state of the switch: off = 0 and on = 1.
A computer’s memory is essentially composed of billions of microscopic switches,
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organized into memory cells. Each memory cell contains 8 switches, so each cell
can store 8 bits, called a byte . We represent a byte simply as a sequence of 8 bits,
such as 01101001. A computer with 8 gigabytes (GB) of memory contains about 8
billion memory cells, each storing one byte. (Similarly, a kilobyte (KB) is about one
thousand bytes, a megabyte (MB) is about one million bytes, and a terabyte (TB)
is about one trillion bytes.)

Bits can represent anything
A second advantage of storing information with bits is that, as the simplest possible
unit of information, it serves as a “lowest common denominator.” All information
can be converted to bits in a fairly straightforward manner. Numbers, words, images,
music, and machine language instructions are all encoded as sequences of bits before
they are stored in memory. Information stored as bits is also said to be in binary
notation . For example, consider the following sequence of 16 bits (or two bytes).

0100010001010101

This bit sequence can represent each of the following, depending upon how it is
interpreted:

(a) the integer value 17,493;

(b) the decimal value 2.166015625;

(c) the two characters “DU”;

(d) the Intel machine language instruction inc x (“increment” x); or

(e) the 4 × 4 black and white image to the right, called a bitmap (0
represents a white square and 1 represents a black square).

For now, let’s just look more closely at how numbers are stored. Integers are
represented in a computer using the binary number system, which is understood best
by analogy to the decimal number system. In decimal, each position in a number has
a value that is a power of ten: from right to left, the positional values are 100 = 1,
101 = 10, 102 = 100, etc. The value of a decimal number comes from adding the digits,
each first multiplied by the value of its position. So 1,831 represents the value

1 × 103 + 8 × 102 + 3 × 101 + 1 × 100 = 1000 + 800 + 30 + 1.

The binary number system is no different, except that each position represents a
power of two, and there are only two digits instead of ten. From right to left, the
binary number system positions have values 20 = 1, 21 = 2, 22 = 4, 23 = 8, etc. So, for
example, the binary number 110011 represents the value

1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 32 + 16 + 2 + 1 = 51

in decimal. The 16 bit number above, 0100010001010101, is equivalent to

214 + 210 + 26 + 24 + 22 + 20 = 16,384 + 1,024 + 64 + 16 + 4 + 1 = 17,493.
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Tangent 3.3: Hexadecimal notation

Hexadecimal is base 16 notation. Just as the positional values in decimal are powers
of 10 and the positional values in binary are powers of 2, the positional values in
hexadecimal are powers of 16. Because of this, hexadecimal needs 16 digits, which are 0

through 9, followed by the letters a through f. The letter a has the value 10, b has the
value 11, . . . , f has the value 15. For example, the hexadecimal number 51ed has the
decimal value

5 ⋅ 163 + 1 ⋅ 162 + 14 ⋅ 161 + 13 ⋅ 160 = 5 ⋅ 4096 + 1 ⋅ 256 + 14 ⋅ 16 + 13 ⋅ 1 = 20,973.

Hexadecimal is used a convenient shorthand for binary. Because any 4 binary dig-
its can represent the values 0 through 15, they can be conveniently replaced by
a single hexadecimal digit. So the hexadecimal number 100522f10 is equivalent to
000100000000010100100010111100010000 in binary, as shown below:

1 0 0 5 2 2 f 1 0

0001 0000 0000 0101 0010 0010 1111 0001 0000
Instead of displaying this 36 bit binary number, it is more convenient to display the 9
digit hexadecimal equivalent.

Reflection 3.2 To check your understanding, show why the binary number 1001000 is
equivalent to the decimal number 72.

This idea can be extended to numbers with a fractional part as well. In decimal, the
positions to the right of the decimal point have values that are negative powers of
10: the tenths place has value 10−1 = 0.1, the hundredths place has value 10−2 = 0.01,
etc. So the decimal number 18.31 represents the value

1 × 101 + 8 × 100 + 3 × 10−1 + 1 × 10−2 = 10 + 8 + 0.3 + 0.01.

Similarly, in binary, the positions to the right of the “binary point” have values that
are negative powers of 2. For example, the binary number 11.0011 represents the
value

1 × 21 + 1 × 20 + 0 × 2−1 + 0 × 2−2 + 1 × 2−3 + 1 × 2−4 = 2 + 1 + 1

8
+ 1

16
= 3

3

16

in decimal. This is not, however, how we derived (b) above. As we will discuss in
Section 3.3, numbers with fractional components are stored in a computer using
floating point notation, which converts a number to scientific notation first before
storing it.

Reflection 3.3 To check your understanding, show why the binary number 1001.101 is
equivalent to the decimal number 9 5/8.

Computing with bits
A third advantage of binary is that computation on binary values is exceedingly
easy. In fact, there are only three fundamental operators, called and, or, and not.
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These are known as the Boolean operators, after 19th century mathematician
George Boole, who is credited with inventing modern mathematical logic, now called
Boolean logic or Boolean algebra.

Let the variables a and b each represent a bit with a value of 0 or 1. Then a and b
is equal to 1 only if both a and b are equal to 1; otherwise a and b is equal to 0.3

This is conveniently represented by the following truth table :

a b a and b

0 0 0

0 1 0

1 0 0

1 1 1

Each row of the truth table represents one of the four permutations of the values of
a and b. These permutations are shown in the first two columns. The last column of
the truth table contains the corresponding values of a and b for each row. We see
that a and b is 1 only when a and b are both 1. If we let 1 represent “true” and
0 represent “false,” this conveniently matches our own intuitive meaning of “and.”
The statement “the barn is red and white” is true only if the barn both has red on
it and has white on it.

The second Boolean operator, or, also takes two operands. The expression a or b is
equal to 1 if at least one of a or b is equal to 1; otherwise a or b is equal to 0. This
is represented by the following truth table:

a b a or b

0 0 0

0 1 1

1 0 1

1 1 1

Notice that a or b is 1 even if both a and b are 1. This is different from our normal
understanding of “or.” If we say that “the barn is red or white,” we usually mean it
is either red or white, not both. But the Boolean operator can mean both are true.
(There is another Boolean operator called “exclusive or” that does mean “either/or,”
but we won’t get into that here.)

Finally, the not operator only takes one operand and simply inverts a bit, changing
0 to 1, or 1 to 0. So, not a is equal to 1 if a is equal to 0, or 0 if a is equal to 1. The
truth table for the not operator is simple:

a not a

0 1

1 0

3In formal Boolean algebra, a and b is usually represented a ∧ b, a or b is represented a ∨ b, and
not a is represented ¬a.
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Notice that this truth table only needs two rows because there are only two possible
inputs.

With these basic operators, we can build more complicated expressions. For example,
suppose we wanted to find the value of the expression not a and b. Note that here
the not operator applies only to the variable a immediately after it, not the entire
expression a and b. For not to apply to the expression, we would need parentheses:
not (a and b). We can evaluate the Boolean expression not a and b by building a
truth table for it. We start by listing all of the combinations of values for a and b,
and then create a column for not a, since we need that value before we can evaluate
the and in the expression.

a b not a

0 0 1

0 1 1

1 0 0

1 1 0

Then, we create a column for not a and b by anding each value in the not a column
with its corresponding value in the b column. These individual operations are shown
off to the right for each row.

a b not a not a and b
0 0 1 0 ( 1 and 0 = 0 )
0 1 1 1 ( 1 and 1 = 1 )
1 0 0 0 ( 0 and 0 = 0 )
1 1 0 0 ( 0 and 1 = 0 )

So, referring to the first two columns of the second row, we find that not a and b is
1 only when a is 0 and b is 1. Or, equivalently, not a and b is true only when a is
false and b is true. (Think about that for a moment; it makes sense, doesn’t it?)

Python can also work with Boolean values. The Boolean value 0 is represented
by False in Python and the Boolean value 1 is represented by True. (Note the
capitalization.) For example, we can validate that the first row of our truth table is
correct like this:

>>> a = False
>>> b = False
>>> not a and b
False

Then, by just changing b, we can validate the second row:

>>> b = True
>>> not a and b
True

Reflection 3.4 Use Python to validate the third and fourth rows of the truth table as
well.
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In Chapter 5, we will start using Boolean expressions in conditional statements and
loops to control what happens in our programs.

Exercises
3.2.1* Show how to convert the binary number 1101 to decimal.

3.2.2. Show how to convert the binary number 1111101000 to decimal.

3.2.3* Show how to convert the binary number 11.0011 to decimal.

3.2.4. Show how to convert the binary number 11.110001 to decimal.

3.2.5* To convert a decimal number to binary, you can repeatedly divide the number
by 2 and keep track of the remainders. The sequence of remainders in reverse
order is the binary equivalent. For example, suppose we want to convert 13 to
binary. First, divide 13 by 2 and get the quotient and remainder (in Python,
13 // 2 and 13 % 2), which are 6 and 1. Then do the same with 6, giving
quotient 3 and remainder 0. Continue until the quotient is 0. The complete
process is summarized in the table below.

number number // 2 number % 2

Step 1: 13 6 1

Step 2: 6 3 0

Step 3: 3 1 1

Step 4: 1 0 1

The equivalent binary number is the remainder column backwards: 1101. (Con-
firm that this is correct by converting this back to decimal.)

Use this process now to convert the decimal number 22 to binary.

3.2.6. Show how to convert the decimal number 222 to binary.

3.2.7* If we want to convert a decimal value less than one to binary, we need a different
approach. To perform this conversion, we try to repeatedly subtract decreasing
powers of 2, starting with 2−1, from the decimal value. When we can subtract
the power of 2, we put a 1 in that place; if we cannot subtract because the power
of 2 is too large, we put a 0 in that place instead. For example, let’s convert
0.3125 to binary. Since 2−1 = 1/2 = 0.5 is larger than 0.3125, we place a 0 in this
place:

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0

Next, we subtract 2−2 = 1/4 = 0.25 from the remaining 0.3125, leaving 0.0625,
and put a 1 in that place:

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0 1
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The next place value, 2−3 = 1/8 = 0.125 is larger than our remaining 0.0625, so
we put a 0 in that place:

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0 1 0

The next place value, 2−4 = 1/16 = 0.0625 fits perfectly so after subtracting, we
get zero. We put a 1 in that place and we are done.

2−1 2−2 2−3 2−4

0.5 0.25 0.125 0.0625 . . .

. 0 1 0 1

Our work shows that 0.3125 is decimal is equivalent to 0.0101 in binary.

Use this process to convert the decimal number 3.625 to binary.

3.2.8. Show how to convert the decimal number 25.53125 to binary.

3.2.9. An image stored in a computer is composed of a two-
dimensional grid of pixels. In a black and white image, each
pixel is either black or white. Consider the 6×6 black and white
image to the right. Describe two plausible ways to represent
this image as a linear sequence of bits.

3.2.10* Design a truth table for the Boolean expression not (a and b).

3.2.11. Design a truth table for the Boolean expression not (a or b).

3.2.12* Design a truth table for the Boolean expression not a or not b. Compare the
result to the truth table for not (a and b). What do you notice? The relationship
between these two Boolean expressions is one of De Morgan’s laws.

3.2.13. Design a truth table for the Boolean expression not a and not b. Compare the
result to the truth table for not (a or b). What do you notice? The relationship
between these two Boolean expressions is the other of De Morgan’s laws.

3.3 COMPUTER ARITHMETIC
As we have already seen, computers store numbers in two different ways: as integers
and as floats. Understanding this is important because some operators’ behaviors
depend upon the type they are given. There are also limitations to what is possible
with computer arithmetic, meaning that it sometimes behaves differently than real
arithmetic depending on which type of numbers you are using.

Limited precision
Binary representation and finite memory often mean that computer arithmetic gives
us unexpected results. To illustrate, compute the following very large number:

>>> 2.0 ** 100
1.2676506002282294e+30
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This result is a float because 2.0 is a float, and whenever a float is involved in a
computation, the result is also a float. Very large floating point numbers like this
are printed in scientific notation. The e stands for “exponent,” and the number
following represents a power of ten. So this number represents

1.2676506002282294 × 1030 = 1267650600228229400000000000000.

(You can also use this notation in your programs, e.g., 18e6 in place of 18000000.)

Now try computing the same large number with an integer 2 in place of 2.0:

>>> 2 ** 100
1267650600228229401496703205376

Reflection 3.5 Did 2 ** 100 and 2.0 ** 100 both give the correct answer?

In normal arithmetic, 2.0100 and 2100 are, of course, the same number. However, in
Python, the results of 2.0 ** 100 and 2 ** 100 are different. The second result
is correct because Python integers have unlimited precision , meaning that they
can be arbitrarily long, limited only by the computer’s memory. The first result is
incorrect because the fixed number of bits used to represent floating point numbers
leads to limited precision . Although the range of numbers that can be represented
in floating point notation is quite large, sometimes a value is too large or too small
to even be approximated well. If we line these two numbers up and add commas, we
can see that the first result is off by almost 1.5 trillion!

1,267,650,600,228,229,401,496,703,205,376
1,267,650,600,228,229,400,000,000,000,000

Some numbers cannot be represented at all. For example, try:

>>> 10.0 ** 500
OverflowError: (34, 'Result too large')

An overflow error means that the computer did not have enough space to represent
the correct value. A similar fatal error will occur if we try to do something illegal,
like divide by zero:

>>> 10.0 / 0
ZeroDivisionError: division by zero

You will also see the effects of limited precision when you perform more common
computations. For example, try this:

>>> averageWords = 15
>>> averageSyllables = 1.78
>>> readingLevel = 0.39 * averageWords + 11.8 * averageSyllables - 15.59
>>> readingLevel
11.264000000000003

The correct answer here is 11.264, but Python didn’t make an arithmetic mistake.
To execute these statements, our decimal numbers are converted to binary floating
point notation, the computations are performed in this format, and then the result
is converted back to decimal. At each of these steps, errors may be introduced due to
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Tangent 3.4: Floating point notation

Python floating point numbers are usually stored in 64 bits of memory, in a format
known as IEEE 754 double-precision floating point. One bit is allocated to the sign
of the number, 11 bits are allocated to the exponent, and 52 bits are allocated to the
mantissa , the fractional part to the right of the point. After a number is converted to
binary, the binary point and exponent are adjusted so that there is a single 1 to the
left of the binary point. Then the exponent is stored in its 11 bit slot and as much of
the mantissa that can fit is stored in the 52 bit slot. If the mantissa is longer than 52
bits, it is simply truncated and information is lost. This is exactly what happens when
we compute 2.0 ** 100 on page 118. Since space is limited in computers’ memory,
tradeoffs between accuracy and space are common, and it is important to understand
these limitations to avoid errors. In Chapter 4, we will see a more common situation in
which this becomes quite important.

the limited precision of the floating point representation. So when we get the result,
it contains a very small error. These kinds of errors are just part of the reality of
computer arithmetic. In most of what we do, they won’t matter. But in many real
scientific computations where very small numbers are the norm, these kinds of errors
can have dramatic effects that must be mitigated as a normal part of the process. If
you are interested, you can learn more about floating point notation in Tangent 3.4.

Error propagation
Slight errors can become magnified in an iterative computation. To illustrate the
problem, suppose we are simulating a process that is occurring continuously over
time.4 Since we cannot actually simulate a continuous process on a computer, we
instead repeatedly simulate very small slices of the simulation in a loop. We will
use a variable dt to represent the length of each slice of time in our simulation. The
following loop shows how time would be advanced in this scenario.

>>> dt = 0.0001
>>> endTime = 1000000
>>> time = 0
>>> for step in range(1, endTime + 1):
>>> time = time + dt
>>> # one slice of the actual simulation would be here

Reflection 3.6 What should the value of time be at the end of this loop?

The loop accumulates the value 0.0001 one million times, so time should be 0.0001 ⋅
1,000,000 = 100. However, it is actually a small fraction over.

>>> time
100.00000000219612

Since dt was very small, there was a slight error every time dt was added to time.

4We will actually develop such simulations in Section 4.4.
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These errors propagated through the loop, making the value of time increasingly
inaccurate. In some applications, even errors this small may be significant. And it
can get even worse with more iterations. Scientific computations can often run for
days or weeks, and the number of iterations involved can blow up errors significantly.

Reflection 3.7 Run the code again but with 10 million iterations. What do you notice
about the error?

To avoid this kind of error propagation, we could have assigned time to be the
product of dt and the current step number:

>>> for step in range(1, endTime + 1):
>>> time = step * dt

In this way, the value of time is computed from only one arithmetic operation
instead of many, reducing the potential error.

Division
When we computed 2 ** 100, the result was an integer because both operands were
integers. This is true everywhere but with division. Even when the result should be
an integer, normal division, also called “true division,” will give you a float.

>>> 100 / 2
50.0

Python provides another kind of division, called “floor division,” that always gives
an integer result. The floor division operator, represented by two slashes (//), rounds
the quotient down to the nearest integer. (Rounding down to the nearest integer
is called “taking the floor” of a number in mathematics, hence the name of the
operator.)

>>> 14 / 3
4.6666666666666667
>>> 14 // 3
4

When both integers are positive, you can think of floor division as the “long division”
you learned in elementary school, as it gives the whole quotient without the remainder.
In this example, dividing 14 by 3 gives a quotient of 4 and a remainder of 2 because 14
is equal to 4 ⋅3+2. The operator to get the remainder is called the “modulo” operator.
In mathematics, this operator is denoted mod, e.g., 14 mod 3 = 2; in Python it is
denoted %.

>>> 14 % 3
2

To see why the // and % operators might be useful, think about how you would
determine whether an integer is odd or even. An integer is even if it is evenly divisible
by 2; i.e., when you divide it by 2, the remainder is 0. So, to decide whether an
integer is even, we can “mod” the number by 2 and check the answer.
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>>> 14 % 2
0
>>> 15 % 2
1

Modular arithmetic is also useful when we need a sequence of numbers to “wrap
around,” like minutes ticking on a clock. To simulate a clock, instead of just incre-
menting the minutes with minutes = minutes + 1, we want to increment and then
“mod” by 60:

>>> minutes = 0
>>> minutes = (minutes + 1) % 60
>>> minutes
1
>>> minutes = (minutes + 1) % 60
>>> minutes
2

⋮
>>> minutes = (minutes + 1) % 60
>>> minutes
59
>>> minutes = (minutes + 1) % 60
>>> minutes
0
>>> minutes = (minutes + 1) % 60
>>> minutes
1

When minutes is between 0 and 58, (minutes + 1) % 60 gives the same result
as minutes + 1 because minutes + 1 is less than 60. But when minutes is 59,
(minutes + 1) % 60 equals 60 % 60, which is 0.

Complex numbers
Although we will not use them in this book, it is worth pointing out that Python
can also handle complex numbers. A complex number has both a real part and an
imaginary part involving the imaginary unit i, which has the property that i2 = −1.
In Python, a complex number like 3.2 + 2i is represented as 3.2 + 2j. (The letter
j is used instead of i because in some fields, such as electrical engineering, i has
another well-established meaning that could lead to ambiguities.) Most of the normal
arithmetic operators work on complex numbers as well. For example,

>>> (5 + 4j) + (-4 + -3.1j)
(1+0.8999999999999999j)
>>> (23 + 6j) / (1 + 2j)
(7-8j)
>>> (1 + 2j) ** 2
(-3+4j)
>>> 1j ** 2
(-1+0j)

The last example illustrates the definition of i: i2 = −1.
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Exercises
3.3.1* The earth is estimated to be 4.54 billion years old. The oldest known fossils of

anatomically modern humans are about 200,000 years old. What fraction of the
earth’s existence have humans been around? Use Python’s scientific notation to
compute this.

3.3.2. In 2012, the birth rate in the United States was 13.42 per 1,000 people and the
total population was estimated to be 313.9 million. How many babies were born
in 2012? Use Python’s scientific notation to compute this.

3.3.3. The earth is about 4.54 billion years old. How many days are in the age of the
earth, taking into account a leap year every four years? Use Python’s scientific
notation to compute this.

3.3.4* If you counted at an average pace of one number per second, how many years
would it take you to count to 4.54 billion? Use Python’s scientific notation to
compute this.

3.3.5. Suppose the internal clock in a modern computer can “count” about 2.8 billion
ticks per second. How long would it take such a computer to tick 4.54 billion
times?

3.3.6. The floor division and modulo operators also work with negative numbers. Try
some examples, and try to infer what is happening. What are the rules governing
the results?

3.3.7. What is the value of each of the following Python expressions? Make sure you
understand why in each case.

(a) 15 * 3 - 2

(b) 15 - 3 * 2

(c) 15 * 3 // 2

(d) 15 * 3 / 2

(e) 15 * 3 % 2

(f) 15 * 3 / 2e0

3.3.8* Every cell in the human body contains about 6 billion base pairs of DNA (3
billion in each set of 23 chromosomes). The distance between each base pair is
about 3.4 angstroms (3.4 × 10−10 meters). Uncoiled and stretched, how long is
the DNA in a single human cell? There are about 50 trillion cells in the human
body. If you stretched out all of the DNA in the human body end to end, how
long would it be? How many round trips to the sun is this? The distance to the
sun is about 149,598,000 kilometers. Write Python statements to compute the
answer to each of these three questions. Assign variables to hold each of the
values so that you can reuse them to answer subsequent questions.

3.3.9* Suppose the variable number refers to an integer. Design a single arithmetic
expression that assigns number to be number - 1 if number is odd, or leaves
number the same if it is even.
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3.3.10. Given a variable number that refers to an integer value, show how to extract
the individual digits in the ones, tens and hundreds places, and assign those
values to three variables named ones, tens, and hundreds. For example, if
number = 123, ones, tens, and hundreds should be assigned to 1, 2, and 3,
respectively. (Use the // and % operators.)

3.3.11. Compute the very small values 2.0 ** -1074 and 2.0 ** -1075. Explain the
results.

3.3.12. Compute the very large values 2.0 ** 1023 and 2.0 ** 1024. Explain the
results.

3.3.13. Contrast and explain the results of computing 2.0 ** 1024 and 2 ** 1024.

3.3.14* See how closely you can represent the decimal number 0.1 in binary using
six places to the right of the binary point. What is the actual value of your
approximation?

3.3.15. Approximate the decimal value 1/3 in binary using six places to the right of the
binary point. What is the actual value of your approximation?

3.3.16. Try executing the following statements:

number = 1.0
for count in range(10):

number = number - 0.1

What is the final value of number? What should it be and why is it incorrect?

*3.4 BINARY ARITHMETIC
This section is available on the book website.

3.5 THE UNIVERSAL MACHINE
The advantages of computing in binary would be useless if we could not actually use
binary to compute everything we want to compute. In other words, we need binary
computation to be universal . But is such a thing really possible? And what do we
mean by any computable problem? Can we really perform any computation—a web
browser, a chess-playing program, Mars rover software—just by converting it to
binary and using the and, or, and not operators to get the answer?

Perhaps surprisingly, the answer is yes, when we combine the Boolean operators with
a sufficiently large memory and a simple controller called a finite state machine
(FSM) to route the correct bits through the correct operators at the correct times. A
finite state machine consists of a finite set of states, along with transitions between
states. A state represents the current value of some object or the degree of progress
made toward some goal. For example, a simple three-level elevator can be represented
by the finite state machine below.
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Figure 3.3 A schematic representation of a Turing machine.
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The states, representing floors, are circles and the transitions, representing movement
between floors, are arrows between circles. In this elevator, there are only up and
down buttons (no ability to choose your destination floor when you enter). The label
on each transition represents the button press event that causes that transition to
occur. For example, when we are on the ground floor and the down button is pressed,
we stay on the ground floor. But when the up button is pressed, we transition to
the first floor. Many other simple systems, such as vending machines, subway doors,
traffic lights and toll booths, can also be represented by finite state machines. A
computer’s finite state machine coordinates the fetch and execute cycle, as well as
various intermediate steps involved in executing machine language instructions.

The question of whether a computational system is universal has its roots in the
very origins of computer science itself. In 1936, Alan Turing proposed an abstract
computational model, now called a Turing machine , that he proved could compute
any problem considered to be mathematically computable. As illustrated in Figure 3.3,
a Turing machine consists of a control unit containing a finite state machine that
can read from and write to an infinitely long tape. The tape contains a sequence of
“cells,” each of which can contain a single character. The tape is initially inscribed
with some sequence of input characters, and a pointer attached to the control unit
is positioned at the beginning of the input. In each step, the Turing machine reads
the character in the current cell. Then, based on what it reads and the current state,
the finite state machine decides whether to write a character in the cell and whether
to move its pointer one cell to the left or right. Not unlike the fetch and execute
cycle in a modern computer, the Turing machine repeats this simple process as long
as needed, until a designated final state is reached. The output is the final sequence
of characters on the tape.

The Turing machine still stands as our modern definition of computability. The
Church-Turing thesis states that a problem is computable if and only if it can be
computed by a Turing machine. Any mechanism that can be shown to be equivalent
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 Does algorithm A 
ever halt with the 

given inputs?
algorithm A and 

inputs for A yes or no

Figure 3.4 The halting problem.

in computational power to a Turing machine is considered to be computationally
universal, or Turing complete . A modern computer, based on Boolean logic and a
finite state machine, falls into this category.

Almost every problem that we would want to compute is, thankfully, computable,
even if it takes an extraordinarily long time to compute. There are, however, problems
that are not computable. The most famous is called the halting problem , illustrated
in Figure 3.4. An algorithm for the halting problem, if it were to exist, would need
to take another algorithm and an input for that algorithm as inputs and then decide
whether that algorithm ever halts with the correct answer. But it can be proven that
there are algorithms for which the halting problem cannot give an answer. Since an
algorithm must be correct for every possible input, this means that there cannot
exist a correct algorithm for the halting problem. This is not just an academic
problem. In practice, this means that it is impossible to ever create program that
can verify whether other programs are correct! So errors in programs are here to
stay, unfortunately.

Exercises
3.5.1* Design a finite state machine that represents a highway toll booth controlling

a single gate. First, think about what the states should be. Then design the
transitions between states.

3.5.2. Design a finite state machine that represents a vending machine. Assume that the
machine only takes quarters and vends only one kind of drink, for 75 cents. First,
think about what the states should be. Then design the transitions between
states.

3.6 SUMMARY AND FURTHER DISCOVERY
In this chapter, we took a peek under the hood to glimpse what a computer is
really doing when it executes our programs. We saw that a computer system is
itself a complex layering of abstractions. We are isolated from a lot of these details,
thankfully, by the interpreter, which transparently translates our programs into
machine language. A machine language program may yet need to request that the
operating system do things on its behalf (e.g., saving a file or allocating more memory).
Below that, each instruction in the resulting computation will be implemented using
Boolean logic, controlled by a finite state machine. Knowing this should make you
quite thankful that all of these layers of abstraction exist, and that we are able to
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Figure 3.5 Top-to-bottom view of how an algorithm becomes a computation.

solve problems at a much higher layer! This top-to-bottom view of the process of
turning an algorithm into a computation is summarized in Figure 3.5.

Notes for further discovery
There are several excellent books available that give overviews of computer science
and how computers work. In particular, we recommend The Pattern on the Stone by
Danny Hillis [23], Algorithmics by David Harel [22], Digitized by Peter Bentley [7],
and CODE: The Hidden Language of Computer Hardware and Software by Charles
Petzold [49].

A list of the world’s fastest supercomputers is maintained at http://top500.org.
You can learn more about IBM’s Deep Blue supercomputer at

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/

and IBM’s Watson at

https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/.

To learn more about high performance computing in general, we recommend looking

http://top500.org
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/
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at the website of the National Center for Supercomputing Applications (NCSA)
at the University of Illinois, one of the first supercomputer centers funded by the
National Science Foundation, at http://www.ncsa.illinois.edu/about/faq.

There are also several good books available on the life of Alan Turing, the father of
computer science. The definitive biography, Alan Turing: The Enigma, was written
by Andrew Hodges [25].

http://www.ncsa.illinois.edu/about/faq
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Growth and Decay

Our population and our use of the finite resources of planet Earth are growing exponentially,
along with our technical ability to change the environment for good or ill.

Stephen Hawking
TED talk (2008)

L ike the late Stephen Hawking, many natural and social scientists are concerned
with the dynamic sizes of populations and other quantities over time. In addition

to our growing use of natural resources, we may be interested in the size of a plant
population being affected by an invasive species, the magnitude of an infection
threatening a human population, the quantity of a radioactive material in a storage
facility, the penetration of a product in the global marketplace, or the evolving
characteristics of a dynamic social network. The possibilities are endless.

To study situations like these, scientists develop a simplified model that abstracts
key characteristics of the actual situation so that it might be more easily understood
and explored. In this sense, a model is another example of abstraction. Once we have
a model that describes the problem, we can write a simulation that shows what
happens when the model is applied over time. A simulation can provide a framework
for past observations or predict future behavior. Scientists often use modeling and
simulation in parallel with traditional experiments to compare their observations to
a proposed theoretical framework.

These parallel scientific processes are illustrated in Figure 4.1. On the left is the
computational process. In this case, we use “model” instead of “algorithm” to
acknowledge the possibility that the model is mathematical rather than algorithmic.
On the right side is the parallel experimental process, guided by the scientific method.
The results of the computational and experimental processes can be compared,
possibly leading to model adjustments or new experiments to improve the results.

129
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Figure 4.1 Parallel experimental and computational processes.

When we model the dynamic behavior of populations, we will assume that time
ticks in discrete steps and, at any particular time step, the current population size is
based on the population size at the previous time step. Depending on the problem,
a time step may be anywhere from a nanosecond to a century. In general, a new
time step may bring population increases, in the form of births and immigration,
and population decreases, in the form of deaths and emigration. In this chapter, we
will discuss a fundamental algorithmic technique, called an accumulator, that we
will use to model dynamic processes like these. Accumulators crop up in all kinds of
problems, and lie at the foundation of a variety of different algorithmic techniques.
We will continue to see examples throughout the book.

4.1 ACCUMULATORS
Managing a fishing pond
Suppose we manage a fishing pond that contained a population of 12,000 largemouth
bass on January 1 of this year. With no fishing, the bass population is expected
to grow at a rate of 8% per year, which incorporates both the birth rate and the



4.1 ACCUMULATORS � 131

death rate of the population. The maximum annual fishing harvest allowed is 1,500
bass. Since this is a popular fishing spot, this harvest is attained every year. Is our
maximum annual harvest sustainable? If not, how long until the fish population dies
out? Should we reduce the maximum harvest? If so, what should it be reduced to?

We can find the projected population size for any given year by starting with the
initial population size, and then repeatedly computing the population size in each
successive year based on the size in the previous year. In pseudocode, if we remember
the current population in a variable named population, then we can update the
population each year with

population ← population + 0.08 × population − 1500
Or, equivalently,

population ← 1.08 × population − 1500
This is very similar to what we did back on page 14 in our final Sphere Volume

algorithm. Remember that an assignment statement evaluates the righthand side
first. So the value of population on the righthand side of the assignment operator is
the value population had before this assignment statement was executed. This value
is used to compute the new population assigned to the variable on the lefthand side.

If we wanted to know the projected size of the fish population three years from now,
we could incorporate this into the following algorithm.

Algorithm Pond Population

Input: the initial population
1 population ← initial population
2 repeat three times:
3 population ← 1.08 × population − 1500

Output: the final population

Suppose initial population is 12000. Then this algorithm performs the following steps:

Trace input: initial population = 12000
Step Line population Notes

1 1 12000 population ← initial population
2 2 ” no change; repeat line 3 three times
3 3 11460.0 population← 1.08 × population

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶12000
− 1500

4 3 10876.8 population← 1.08 × population
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶11460.0

− 1500

5 3 10246.944 population← 1.08 × population
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶10876.8

− 1500

Output: population = 10246.944
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In the first iteration of the loop (step 3 in the trace table), population is assigned the
previous value of population (12,000) times 1.08 minus 1500, which is 11,460. Then,
in the second iteration, population is updated again after computing the previous
value of population (now 11,460) times 1.08 minus 1500, which is 10,876.8. In the
third iteration, population is assigned its final value of 10,246.944. The variable
population is called an accumulator variable (or just an accumulator) because it
accumulates additional value in each iteration of the loop.

So this model projects that the bass population in three years will be 10,246 (ignoring
the “fractional fish” represented by the digits to the right of the decimal point).

In Python, we can implement this iterative algorithm with a for loop. We used the
following for loop in Section 2.2 to draw our geometric flower with eight petals:

for count in range(8):
tortoise.forward(200)
tortoise.left(135)

In this case, we need a for loop that will iterate three times:

population = 12000
for year in range(3):

population = 1.08 * population - 1500

Reflection 4.1 Type in the for loop above and add the following statement after the
assignment to population in the body of the for loop:

print(year + 1, int(population))

Run the program. What is printed? Do you see why?

We see in this example that we can use the index variable year just like any other
variable.

Reflection 4.2 How would you change this loop to compute the fish population in five
years? Ten years?

Changing the number of years to compute is simple. All we have to do is change the
value in the range to whatever we want: range(5), range(10), etc. If we put this
computation in a function, then we can have the desired number of years passed in
as a parameter. The parameter and its use are highlighted in red below.

1 def pond(years):
2 """Simulates a fish population in a fishing pond, and
3 prints annual population size. The population
4 grows 8% per year with an annual harvest of 1500.

5 Parameter:
6 years: number of years to simulate

7 Return value: the final population size
8 """
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9 population = 12000
10 for year in range(years):
11 population = 1.08 * population - 1500
12 print(year + 1, int(population))

13 return population

14 def main():
15 finalPopulation = pond(10)
16 print('The final population is ' + str(finalPopulation) + '.')

17 main()

A trace table to show what happens when we call pond(10) is very similar to the
one from our pseudocode algorithm, except that we now also want to trace the value
of year, which is assigned a new value from 0 to 9 in each iteration.

Trace arguments: years = 10
Step Line population year Notes

1 9 12000 — population ← 12000

2 10 ” 0 year ← 0

3 11 11460.0 ” population ← 1.08 * 12000 - 1500

4 12 ” ” no changes; prints 1 11460

5 10 ” 1 year ← 1

6 11 10876.8 ” population ← 1.08 * 11460.0 - 1500

7 12 ” ” no changes; prints 2 10876

8 10 ” 2 year ← 2

9 11 10246.944 ” population ← 1.08 * 10876.8 - 1500

10 12 ” ” no changes; prints 3 10246

⋮

29 10 5256.718 9 year ← 9

30 11 4177.256 ” population ← 1.08 * 5256.718 - 1500

31 12 ” ” no changes; prints 10 4177

Return value: 4177.256
Reflection 4.3 What would happen if population = 12000 was inside the body of the
loop instead of before it? What would happen if we omitted the population = 12000

statement altogether?

The initialization of the accumulator variable before the loop is crucial. If population
were not initialized before the loop, then an error would occur in the first iteration
of the for loop because the righthand side of the assignment statement would not
make any sense!
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Reflection 4.4 Use the pond function to answer the original questions: Is this maximum
harvest sustainable? If not, how long until the fish population dies out? Should the pond
manager reduce the maximum harvest? If so, what should it be reduced to?

Calling this function with a large enough number of years shows that the fish
population drops below zero (which, of course, can’t really happen) in year 14:

1 11460

2 10876

3 10246

⋮
13 392

14 -1076

⋮

This harvesting plan is clearly not sustainable, so the pond manager should reduce
it to a sustainable level. In this case, determining the sustainable level is easy: since
the population grows at 8% per year and the pond initially contains 12,000 fish, we
cannot allow more than 0.08 ⋅ 12000 = 960 fish to be harvested per year without the
population declining.

Reflection 4.5 Generalize the pond function with two additional parameters: the initial
population size and the annual harvest. Using your modified function, compute the number
of fish that will be in the pond in 15 years if we change the annual harvest to 800.

With these modifications, your function might look like this:

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
for year in range(years):

population = 1.08 * population - harvest
print(year + 1, int(population))

return population

The value of the initialPopulation parameter takes the place of our previous
initial population of 12000 and the parameter named harvest takes the place of
our previous harvest of 1500. To answer the question above, we can replace the call
to the pond function from main with:

finalPopulation = pond(15, 12000, 800)

The result that is printed is:

1 12160

2 12332

⋮
13 15439

14 15874

15 16344

The final population is 16344.338228396558.
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Reflection 4.6 How would you call the new version of the pond function to replicate its
original behavior, with an annual harvest of 1500?

Pretty printing

Before moving on, let’s look at a helpful Python trick, called a format string , that
enables us to format our table of annual populations in a more attractive way. To
illustrate the use of a format string, consider the following modified version of the
previous function.

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
print('Year | Population')
print('-----|-----------')
for year in range(years):

population = 1.08 * population - harvest
print('{0:^4} | {1:>9.2f}'.format(year + 1, population))

return population

The first two highlighted lines print a table header to label the columns. Then, in
the call to the print function inside the for loop, we utilize a format string to line
up the two values in each row. The syntax of a format string is

'<replacement fields>'.format(<values to format>)

(The parts in red above are descriptive and not part of the syntax.) The period
between the string and format indicates that format is a method of the string class;
we will talk more about the string class in Chapter 6. The parameters of the format

method are the values to be formatted. The format for each value is specified in a
replacement field enclosed in curly braces ({}) in the format string.

In the example in the for loop above, the {0:^4} replacement field specifies that the
first (really the “zero-th”; computer scientists like to start counting at 0) argument
to format, in this case year + 1, should be centered (^) in a field of width 4. The
{1:>9.2f} replacement field specifies that population, as the second argument to
format, should be right justified (>) in a field of width 9 as a floating point number
with two places to the right of the decimal point (.2f). When formatting floating
point numbers (specified by the f), the number before the decimal point in the
replacement field is the minimum width, including the decimal point. The number
after the decimal point in the replacement field is the number of digits to the right of
the decimal point in the number. (If we wanted to align to the left, we would use <.)
Characters in the string that are not in replacement fields (in this case, two spaces
with a vertical bar between them) are printed as-is. So, if year were assigned the
value 11 and population were assigned the value 1752.35171, the above statement
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would print
12

²
{0:^4}

| 1752.35
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{1:>9.2f}

To fill spaces with something other than a space, we can use a fill character immedi-
ately after the colon. For example, if we replaced the second replacement field with
{1:*>9.2f}, the previous statement would print the following instead:

12
²
{0:^4}

| * *1752.35
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{1:*>9.2f}

Measuring network value
Now let’s consider a different problem. Suppose we have created a new online social
network (or a new group within an existing social network) that we expect to steadily
grow over time. Intuitively, as new members are added, the value of the network to
its members grows because new relationships and opportunities become available.
The potential value of the network to advertisers also grows as new members are
added. But how can we quantify this value?

We will assume that, in our social network, two members can become connected
or “linked” by mutual agreement, and that connected members gain access to each
other’s network profile. The inherent value of the network lies in these connections,
or links, rather than in the size of its membership. Therefore, we need to figure out
how the potential number of links grows as the number of members grows. The
picture below visualizes this growth. The circles, called nodes, represent members of
the social network and lines between nodes represent links between members.

2 1 2 1

3

2 1

3

4

2 1

3

4

5

At each step, the red node is added to the network. The red links represent the
potential new connections that could result from the addition of the new member.

Reflection 4.7 What is the maximum number of new connections that could arise when
each of nodes 2, 3, 4, and 5 are added? In general, what is the maximum number of new
connections that could arise from adding node number n?

Node 2 adds a maximum of 1 new connection, node 3 adds a maximum of 2 new
connections, node 4 adds a maximum of 3 new connections, etc. In general, a
maximum of n − 1 new connections arise from the addition of node number n. This
pattern is illustrated in the table below.

node number 2 3 4 5 ⋯ n

maximum increase in number of links 1 2 3 4 ⋯ n − 1
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Therefore, as shown in the last row, the maximum number of links in a network
with n nodes is the sum of the numbers in the second row:

1 + 2 + 3 + . . . + n − 1.

We will use this sum to represent the potential value of the network.

Let’s write a function, similar to the previous one, that lists the maximum number
of new links, and the maximum total number of links, as new nodes are added to
a network. In this case, we will need an accumulator to count the total number of
links. Adapting our pond function to this new purpose gives us the following:

def countLinks(totalNodes):
"""Prints a table with the maximum total number of links

in networks with 2 through totalNodes nodes.

Parameter:
totalNodes: the total number of nodes in the network

Return value:
the maximum number of links in a network with totalNodes nodes

"""

totalLinks = 0
for node in range(totalNodes):

newLinks = ???
totalLinks = totalLinks + newLinks
print(node, newLinks, totalLinks)

return totalLinks

In this function, we want our accumulator variable to count the total number
of links, so we named it totalLinks instead of population, and initialized it to
zero. Likewise, we named the parameter, which specifies the number of iterations,
totalNodes instead of years, and we named the index variable of the for loop
node instead of year because it will now be counting the number of the node that
we are adding at each step. In the body of the for loop, we add to the accumulator
the maximum number of new links added to the network with the current node (we
will return to this in a moment) and then print a row containing the node number,
the maximum number of new links, and the maximum total number of links in the
network at that point. (We leave formatting this row with a format string as an
exercise.)

Before we determine what the value of newLinks should be, we have to resolve one
issue. In the table above, the node numbers range from 2 to the number of nodes in
the network, but in our for loop, node will range from 0 to totalNodes - 1. This
turns out to be easily fixed because the range function can generate a wider variety
of number ranges than we have seen thus far. If we give range two arguments instead
of one, like range(start, stop), the first argument is interpreted as a starting
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value and the second argument is interpreted as the stopping value, producing a
range of values starting at start and going up to, but not including, stop. For
example, range(-5, 10) produces the integers −5,−4,−3, . . . ,8,9.

To see this for yourself, type list(range(-5, 10)) into the Python shell (or print
it in a program).

>>> list(range(-5, 10))
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The list function converts a range of numbers into a list that shows all of the
numbers in the range.

Reflection 4.8 What list of numbers does range(1, 10) produce? What about
range(10, 1)? Can you explain why in each case?

Reflection 4.9 Back to our program, what do we want our for loop to look like?

For node to start at 2 and finish at totalNodes, we want our for loop to be

for node in range(2, totalNodes + 1):

Now what should the value of newLinks be in our program? The answer is in the
table we constructed above; the maximum number of new links added to the network
with node number n is n − 1. In our loop, the node number is assigned to the name
node, so we need to add node - 1 links in each step:

newLinks = node - 1

With these substitutions, our function looks like this:

1 def countLinks(totalNodes):
2 """ (docstring omitted) """

3 totalLinks = 0
4 for node in range(2, totalNodes + 1):
5 newLinks = node - 1
6 totalLinks = totalLinks + newLinks
7 print(node, newLinks, totalLinks)

8 return totalLinks

9 def main():
10 links = countLinks(10)
11 print('The total number of links is ' + str(links) + '.')

12 main()

As with our previous for loop, you can see more clearly what this loop does by
carefully studying the following trace table.
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Trace arguments: totalNodes = 10
Step Line totalLinks node newLinks Notes

1 3 0 — — totalLinks ← 0

2 4 ” 2 — node ← 2

3 5 ” ” 1 newLinks ← 2 - 1

4 6 1 ” ” totalLinks ← 0 + 1

5 7 ” ” ” no changes; prints 2 1 1

6 4 ” 3 ” node ← 3

7 5 ” ” 2 newLinks ← 3 - 1

8 6 3 ” ” totalLinks ← 1 + 2

9 7 ” ” ” no changes; prints 3 2 3

10 4 ” 4 ” node ← 4

11 5 ” ” 3 newLinks ← 4 - 1

12 6 6 ” ” totalLinks ← 3 + 3

13 7 ” ” ” no changes; prints 4 3 6

⋮

34 4 36 10 8 node ← 10

35 5 ” ” 9 newLinks ← 10 - 1

36 6 45 ” ” totalLinks ← 36 + 9

37 7 ” ” ” no changes; prints 10 9 45

Return value: 45
When we call countLinks(10) from the main function above, it prints

2 1 1

3 2 3

4 3 6

5 4 10

6 5 15

7 6 21

8 7 28

9 8 36

10 9 45

The total number of links is 45

Reflection 4.10 What does countLinks(100) return? What does this value represent?

Organizing a concert
Let’s look at one more example. Suppose you are putting on a concert and need to
figure out how much to charge per ticket. Your total expenses, for the band and
the venue, are $8,000. The venue can seat at most 2,000 and you have determined
through market research that the number of tickets you are likely to sell is related
to a ticket’s selling price by the following relationship:
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sales = 2500 - 80 * price

According to this relationship, if you give the tickets away for free, you will overfill
your venue. On the other hand, if you charge too much, you won’t sell any tickets at
all. You would like to price the tickets somewhere in between, so as to maximize your
profit. Your total income from ticket sales will be sales * price, so your profit
will be this amount minus $8000.

To determine the most profitable ticket price, we can create a table using a for loop
similar to that in the previous two problems. In this case, we would like to iterate
over a range of ticket prices and print the profit resulting from each choice. In the
following function, the for loop starts with a ticket price of one dollar and adds one
to the price in each iteration until it reaches maxPrice dollars.

1 def profitTable(maxPrice):
2 """Prints a table of profits from a show based on ticket price.

3 Parameters:
4 maxPrice: maximum price to consider

5 Return value: None
6 """

7 print('Price Income Profit')
8 print('------ --------- ---------')
9 for price in range(1, maxPrice + 1):

10 sales = 2500 - 80 * price
11 income = sales * price
12 profit = income - 8000
13 formatString = '${0:>5.2f} ${1:>8.2f} ${2:8.2f}'
14 print(formatString.format(price, income, profit))

15 def main():
16 profitTable(25)

17 main()

The number of expected sales in each iteration is computed from the value of the
index variable price, according to the relationship above. Then we print the price
and the resulting income and profit, formatted nicely with a format string. As we
did previously, we can look at what happens in each iteration of the loop with a
trace table:
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Trace arguments: maxPrice = 25
Step Line price sales income profit Notes

1 7 — — — — prints header
2 8 — — — — prints underlines
3 9 1 — — — price ← 1

4 10 ” 2420 — — sales ← 2500 - 80 * 1

5 11 ” ” 2420 — income ← 2420 * 1

6 12 ” ” ” −5580 profit ← 2420 - 8000

7 13–14 ” ” ” ” prints price, income, profit
8 9 2 ” ” ” price ← 2

9 10 ” 2340 ” ” sales ← 2500 - 80 * 2

10 11 ” ” 4680 ” income ← 2340 * 2

11 12 ” ” ” −3320 profit ← 4680 - 8000

12 13–14 ” ” ” ” prints price, income, profit
13 9 3 ” ” ” price ← 3

⋮

Reflection 4.11 Complete a few more iterations in the trace table to make sure you
understand how the loop works.

Reflection 4.12 Run the program to determine what the most profitable ticket price is.

The program prints the following table:

Price Income Profit

------ --------- ---------

$ 1.00 $ 2420.00 $-5580.00

$ 2.00 $ 4680.00 $-3320.00

$ 3.00 $ 6780.00 $-1220.00

$ 4.00 $ 8720.00 $ 720.00

⋮
$15.00 $19500.00 $11500.00

$16.00 $19520.00 $11520.00

$17.00 $19380.00 $11380.00

⋮
$24.00 $13920.00 $ 5920.00

$25.00 $12500.00 $ 4500.00

The profit in the third column increases until it reaches $11,520.00 at a ticket price
of $16, then it drops off. So the most profitable ticket price seems to be $16.

Reflection 4.13 Our program only considered whole dollar ticket prices. How can we
modify it to increment the ticket price by fifty cents in each iteration instead?

The range function can only create ranges of integers, so we cannot ask the range

function to increment by 0.5 instead of 1. But we can achieve our goal by doubling
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the range of numbers that we iterate over, and then set the price in each iteration
to be the value of the index variable divided by two.

def profitTable(maxPrice):
""" (docstring omitted) """

print('Price Income Profit')
print('------ --------- ---------')
for price in range(1, 2 * maxPrice + 1):

realPrice = price / 2
sales = 2500 - 80 * realPrice
income = sales * realPrice
profit = income - 8000
formatString = '${0:>5.2f} ${1:>8.2f} ${2:8.2f}'
print(formatString.format(realPrice, income, profit))

Now when price is 1, the “real price” that is used to compute profit is 0.5. When
price is 2, the “real price” is 1.0, etc.

Reflection 4.14 Does our new function find a more profitable ticket price than $16?

Our new function prints the following table.

Price Income Profit

------ --------- ---------

$ 0.50 $ 1230.00 $-6770.00

$ 1.00 $ 2420.00 $-5580.00

$ 1.50 $ 3570.00 $-4430.00

$ 2.00 $ 4680.00 $-3320.00

⋮
$15.50 $19530.00 $11530.00

$16.00 $19520.00 $11520.00

$16.50 $19470.00 $11470.00

⋮
$24.50 $13230.00 $ 5230.00

$25.00 $12500.00 $ 4500.00

If we look at the ticket prices around $16, we see that $15.50 will actually make $10
more.

Just from looking at the table, the relationship between the ticket price and the
profit is not as clear as it would be if we plotted the data instead. For example, does
profit rise in a straight line to the maximum and then fall in a straight line? Or is it
a more gradual curve? We can answer these questions by drawing a plot with turtle
graphics, using the goto method to move the turtle from one point to the next.

import turtle

def profitPlot(tortoise, maxPrice):
""" (docstring omitted) """
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for price in range(1, 2 * maxPrice + 1):
realPrice = price / 2
sales = 2500 - 80 * realPrice
income = sales * realPrice
profit = income - 8000
tortoise.goto(realPrice, profit)

def main():
george = turtle.Turtle()
screen = george.getscreen()
screen.setworldcoordinates(0, -15000, 25, 15000)
profitPlot(george, 25)

main()

Our new main function sets up a turtle and then uses the setworldcoordinates

method to change the coordinate system in the drawing window to fit the points
that we are likely to plot. In the for loop in the profitPlot function, since the
first value of realPrice is 0.5, the first goto is

george.goto(0.5, -6770)

which draws a line from the origin (0,0) to (0.5,−6770). In the next iteration, the
value of realPrice is 1.0, so the loop next executes

george.goto(1.0, -5580)

which draws a line from the previous position of (0.5,−6770) to (1.0,−5580). The
next value of realPrice is 1.5, so the loop then executes

george.goto(1.5, -4430)

which draws a line from from (1.0,−5580) to (1.5,−4430). And so on, until realPrice
takes on its final value of 25 and we draw a line from the previous position of
(24.5,5230) to (25,4500).

Reflection 4.15 What shape is the plot? Can you see why?

Reflection 4.16 When you run this plotting program, you will notice an ugly line from
the origin to the first point of the plot. How can you fix this? (We will leave the answer as
an exercise.)

Exercises
Write a function for each of the following problems. Be sure to appropriately document your
functions with docstrings and comments. Test each function with both common and boundary
case arguments, as described on page 38, and document your test cases. Use a trace table on
at least one test case.

4.1.1* Generalize the pond function so that it also takes the annual growth rate as a
parameter.

4.1.2. Generalize the pond function further to allow for the pond to be annually
restocked with an additional quantity of fish.
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4.1.3. Modify the countLinks function so that it prints a table like the following:

| | Links |

| Nodes | New | Total |

| ----- | --- | ----- |

| 2 | 1 | 1 |

| 3 | 2 | 3 |

| 4 | 3 | 6 |

| 5 | 4 | 10 |

| 6 | 5 | 15 |

| 7 | 6 | 21 |

| 8 | 7 | 28 |

| 9 | 8 | 36 |

| 10 | 9 | 45 |

4.1.4. Modify the profitTable function so that it considers all ticket prices that are
multiples of a quarter.

4.1.5. In the profitPlot function in the text, fix the problem raised by Reflection 4.16.

4.1.6. There are actually three forms of the range function:

• 1 parameter: range(stop)

• 2 parameters: range(start, stop)

• 3 parameters: range(start, stop, skip)

With three arguments, range produces a range of integers starting at the start
value and ending at or before stop - 1, adding skip each time. For example,

range(5, 15, 2)

produces the range of numbers 5, 7, 9, 11, 13 and

range(-5, -15, -2)

produces the range of numbers -5, -7, -9, -11, -13. To print these numbers,
one per line, we can use a for loop:

for number in range(-5, -15, -2):
print(number)

(a) Write a for loop that prints the integers from 0 to 100.

(b) Write a for loop that prints the integers from -50 to 50.

(c) Write a for loop that prints the even integers from 2 to 100, using the
third form of the range function.

(d) Write a for loop that prints the odd integers from 1 to 100, using the
third form of the range function.

(e) Write a for loop that prints the integers from 100 to 1 in descending
order.

(f) Write a for loop that prints the values 7, 11, 15, 19.

(g) Write a for loop that prints the values 2, 1, 0, −1, −2.

(h) Write a for loop that prints the values −7, −11, −15, −19.
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4.1.7* Write a function

triangle()

that uses a for loop to print the following:

*

**

***

****

*****

******

*******

********

*********

**********

4.1.8. Write a function

diamond()

that uses for loops to print the following:

***** *****

**** ****

*** ***

** **

* *

* *

** **

*** ***

**** ****

***** *****

4.1.9. Write a function

square(letter, width)

that prints a square with the given width using the string letter. For example,
square('Q', 5) should print:

QQQQQ

QQQQQ

QQQQQ

QQQQQ

QQQQQ

4.1.10* Write a for loop that uses range(50) to print the odd integers from 1 to 100.

4.1.11* Write a function

multiples(n)

that prints all of the multiples of the parameter n between 0 and 100, inclusive.
For example, if n were 4, the function should print the values 0, 4, 8, 12, . . . .

4.1.12. Write a function

countdown(n)

that prints the integers between 0 and n in descending order. For example, if n
were 5, the function should print the values 5, 4, 3, 2, 1, 0.
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4.1.13. On page 122, we talked about how to simulate the minutes ticking on a digital
clock using modular arithmetic. Write a function

clock(ticks)

that prints ticks times starting from midnight, where the clock ticks once each
minute. To simplify matters, the midnight hour can be denoted 0 instead of 12.
For example, clock(100) should print

0:00

0:01

0:02

⋮
0:59

1:00

1:01

⋮
1:38

1:39

To line up the colons in the times and force the leading zero in the minutes, use
a format string like this:

print('{0:>2}:{1:0>2}'.format(hours, minutes))

4.1.14. Write a function

circles(tortoise)

that uses turtle graphics and a for loop to draw concentric circles with radii
10, 20, 30, . . . , 100. (To draw each circle, you may use the turtle graphics circle
method or the drawCircle function you wrote in Exercise 2.3.14.)

4.1.15* Write a function

plotSine(tortoise, n)

that uses turtle graphics to plot sinx from x = 0 to x = n degrees. Use
setworldcoordinates to make the x coordinates of the window range from 0
to n and the y coordinates range from -1 to 1.

4.1.16. Python also allows us to pass function names as parameters. So we can generalize
the function in Exercise 4.1.15 to plot any function we want. Write a function

plot(tortoise, n, f)

where f is the name of an arbitrary function that takes a single numerical
argument and returns a number. Inside the for loop in the plot function, we
can apply the function f to the index variable x with

tortoise.goto(x, f(x))

To call the plot function, we need to define one or more functions to pass in as
arguments. For example, to plot x2, we can define

def square(x):
return x * x

and then call plot with

plot(george, 20, square)

Or, to plot an elongated sinx, we could define
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def sin(x):
return 10 * math.sin(x)

and then call plot with

plot(george, 20, sin)

After you create your new version of plot, also create at least one new function to
pass into plot for the parameter f. Depending on the functions you pass in, you
may need to adjust the window coordinate system with setworldcoordinates.

4.1.17* Write a function

growth1(totalDays)

that simulates a population growing by 3 individuals each day. For each day,
print the day number and the total population size.

4.1.18. Write a function

growth2(totalDays)

that simulates a population that grows by 3 individuals each day but also shrinks
by, on average, 1 individual every 2 days. For each day, print the day number
and the total population size.

4.1.19. Write a function

growth3(totalDays)

that simulates a population that increases by 110% every day. Assume that the
initial population size is 10. For each day, print the day number and the total
population size.

4.1.20. Write a function

growth4(totalDays)

that simulates a population that grows by 2 on the first day, 4 on the second day,
8 on the third day, 16 on the fourth day, etc. Assume that the initial population
size is 10. For each day, print the day number and the total population size.

4.1.21* Suppose a bacteria colony grows at a rate of 10% per hour and that there are
initially 100 bacteria in the colony. Write a function

bacteria(days)

that returns the number of bacteria in the colony after the given number of
days. How many bacteria are in the colony after one week?

4.1.22. Generalize the function that you wrote for the previous exercise so that it also
accepts parameters for the initial population size and the growth rate. How
many bacteria are in the same colony after one week if it grows at 15% per hour
instead?

4.1.23* Write a function

sumNumbers(n)

that returns the sum of the integers between 1 and n, inclusive. For example,
sum(4) returns 1 + 2 + 3 + 4 = 10. (Use a for loop; if you know a shortcut, don’t
use it.)
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4.1.24. Write a function

sumEven(n)

that returns the sum of the even integers between 2 and n, inclusive. For example,
sumEven(6) returns 2 + 4 + 6 = 12. (Use a for loop.)

4.1.25. Write a function

average(low, high)

that returns the average of the integers between low and high, inclusive. For
example, average(3, 6) returns (3 + 4 + 5 + 6)/4 = 4.5.

4.1.26* Write a function

factorial(n)

that returns the value of n! = 1 × 2 × 3 ×⋯× (n − 1) × n. (Be careful; how should
the accumulator be initialized?)

4.1.27. Write a function

power(base, exponent)

that returns the value of base raised to the exponent power, without using the
** operator. Assume that exponent is a positive integer.

4.1.28. The geometric mean of n numbers is defined to be the nth root of the product
of the numbers. (The nth root is the same as the 1/n power.) Write a function

geoMean(high)

that returns the geometric mean of the numbers between 1 and high, inclusive.

4.1.29. Write a function

sumDigits(number, numDigits)

that returns the sum of the individual digits in a parameter number that has
numDigits digits. For example, sumDigits(1234, 4) should return the value
1 + 2 + 3 + 4 = 10. (Hint: use a for loop and integer division (// and %).)

4.1.30. Between the ages of three and thirteen, girls grow an average of about six
centimeters per year. Write a function

growth(finalAge)

that prints a simple height chart based on this information, with one entry for
each age, assuming the average girl is 95 centimeters (37 inches) tall at age
three.

4.1.31. Consider the following fun game. Pick any positive integer less than 100 and
add the squares of its digits. For example, if you choose 25, the sum of the
squares of its digits is 22 + 52 = 29. Now make the answer your new number, and
repeat the process. For example, if we continue this process starting with 25,
we get: 25, 29, 85, 89, 145, 42, etc.

Write a function

fun(number, iterations)

that prints the sequence of numbers generated by this game, starting with the
two digit number, and continuing for the given number of iterations. It will
be helpful to know that no number will ever have more than three digits.

Execute your function with every integer between 15 and 25, with iterations
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at least 30. What do you notice? Can you classify each of these integers into
one of two groups based on the results?

4.1.32. Create trace tables that show the execution of each of the following functions.

(a)* your growth1 function from Exercise 4.1.17 when it is called as
growth1(4)

(b) your growth3 function from Exercise 4.1.19 when it is called as
growth3(4)

(c) your bacteria function from Exercise 4.1.21 when it is called as
bacteria(5)

4.1.33* You have $1,000 to invest and need to decide between two savings accounts.
The first account pays interest at an annual rate of 1% and is compounded daily,
meaning that interest is earned daily at a rate of (1/365)%. The second account
pays interest at an annual rate of 1.25% but is compounded monthly. Write a
function

interest(originalAmount, rate, periods)

that computes the interest earned in one year on originalAmount dollars in an
account that pays the given annual interest rate, compounded over the given
number of periods. Assume the interest rate is given as a percentage, not a
fraction (i.e., 1.25 vs. 0.0125). Use the function to answer the original question.

4.1.34. Suppose you want to start saving a certain amount each month in an investment
account that compounds interest monthly. To determine how much money you
expect to have in the future, write a function

invest(investment, rate, years)

that returns the income earned by investing investment dollars every month in
an investment account that pays the given rate of return, compounded monthly
(rate / 12 % each month).

4.1.35. A mortgage loan is charged some rate of interest every month based on the
current balance on the loan. If the annual interest rate of the mortgage is r%,
then interest equal to r/12 % of the current balance is added to the amount owed
each month. Also each month, the borrower is expected to make a payment,
which reduces the amount owed.

Write a function

mortgage(principal, rate, years, payment)

that prints a table of mortgage payments and the remaining balance every month
of the loan period. The last payment should include any remaining balance.
For example, paying $1,000 per month on a $200,000 loan at 4.5% for 30 years
should result in the following table:

Month Payment Balance

1 1000.00 199750.00

2 1000.00 199499.06

3 1000.00 199247.18

⋮
359 1000.00 11111.79

360 11153.46 0.00
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4.2 DATA VISUALIZATION
Visualizing changes in population size over time will provide more insight into how
population models evolve. We could plot population changes with turtle graphics, as
we did in Section 4.1, but instead, we will use a dedicated plotting module called
matplotlib, so-named because it emulates the plotting capabilities of the technical
programming language MATLAB1.

To use matplotlib, we first import the module using

import matplotlib.pyplot as pyplot

matplotlib.pyplot is the name of module; “as pyplot” allows us to refer to the
module in our program with the abbreviation pyplot instead of its rather long full
name. The basic plotting functions take two arguments: a list of x values and an
associated list of y values. As we saw before, a list in Python is represented as a
comma-separated sequence of items enclosed in square brackets, such as

[4, 7, 2, 3.1, 12, 2.1]

We will use lists much more extensively in Chapter 7. For now, we only need to know
how to build a list of population sizes in our for loop so that we can plot them.
Let’s look at how to do this in the fishing pond function from page 135, reproduced
below.

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
print('Year | Population')
print('-----|-----------')
for year in range(years):

population = 1.08 * population - harvest
print('{0:^4} | {1:>9.2f}'.format(year + 1, population))

return population

To build this list, we start by creating an empty list before the loop:

populationList = [ ]

To add an annual population size to the end of the list, we will use the append

method of the list class. We will first append the initial population size to the end
of the empty list with

populationList.append(initialPopulation)

If we pass in 12000 for the initial population parameter, this will result in
populationList becoming the single-element list [12000]. Inside the loop, we
want to append each value of population to the end of the growing list with

populationList.append(population)

1MATLAB is a registered trademark of The MathWorks, Inc.
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Incorporating this code into our pond function, and deleting the calls to print,
yields:

1 def pond(years, initialPopulation, harvest):
2 """Simulates a fish population and plots annual population size.
3 The population grows 8% per year with an annual harvest.

4 Parameters:
5 years: number of years to simulate
6 initialPopulation: the initial population size
7 harvest: the size of the annual harvest

8 Return value: the final population size
9 """

10 population = initialPopulation
11 populationList = [ ]
12 populationList.append(initialPopulation)
13 for year in range(1, years + 1):
14 population = 1.08 * population - harvest
15 populationList.append(population)
16 return population

We have also changed the for loop range to start at 1 to reflect that the first
population size computed inside the loop reflects the size at year 1 (and the pop-
ulation before the loop represents “year 0”). The trace table below shows how
populationList grows with each iteration, assuming an initial population of 12,000.

Trace arguments: years = 14, initialPopulation = 12000, harvest = 1500

Step Line year population populationList Notes
1 11 — 12000 — init population
2 12 — ” [ ] init populationList
3 13 — ” [12000] append 12000

4 14 1 ” ” year ← 1

5 15 ” 11460.0 ” update population

6 16 ” ” [12000, 11460.0] append 11460.0

7 14 2 ” ” year ← 2

8 15 ” 10876.8 ” update population

9 16 ” ” [12000, ..., 10876.8] append 10876.8

⋮

43 14 14 392.539 [12000, ..., 392.539] year ← 14

44 15 ” -1076.056 ” update population

45 16 ” ” [12000, ..., -1076.056] append -1076.056

Return value: -1076.056
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Figure 4.2 Plot of population size in our fishing pond model with years = 15.

In each iteration, the current value of population is appended to the end of
populationList. So when the loop is finished, there are years + 1 population sizes
in the list.

Reflection 4.17 Add a statement to print populationList at the end of each iteration
of the loop so that you can see better how it grows.

There is a strong similarity between the manner in which we are appending elements
to a list and the accumulators that we have been talking about in this chapter. In
an accumulator, we accumulate values into a sum by repeatedly adding new values
to a running sum. The running sum changes (usually grows) in each iteration of the
loop. With the list in the for loop above, we are accumulating values in a different
way—by repeatedly appending them to the end of a growing list. Therefore, we call
this technique a list accumulator .

We now want to use this list of population sizes as the list of y values in a matplotlib

plot. For the x values, we need a list of the corresponding years, which can be obtained
with range(years + 1).

Reflection 4.18 Why do we need the x values to be range(years + 1) instead of
range(1, years + 1)? Think about how many population values are in populationList.

Once we have both lists, we can create a plot by calling the plot function and then
display the plot by calling the show function:



4.2 DATA VISUALIZATION � 153

pyplot.plot(range(years + 1), populationList)
pyplot.show()

The first argument to the plot function is the list of x values and the second
parameter is the list of y values. The matplotlib.pyplot module includes many
optional ways to customize our plots before we call show. Some of the simplest are
functions that label the x and y axes:

pyplot.xlabel('Year')
pyplot.ylabel('Fish Population Size')

Incorporating the plotting code yields the following function, whose output is shown
in Figure 4.2.

import matplotlib.pyplot as pyplot

def pond(years, initialPopulation, harvest):
""" (docstring omitted) """

population = initialPopulation
populationList = [ ]
populationList.append(initialPopulation)
for year in range(1, years + 1):

population = 1.08 * population - harvest
populationList.append(population)

pyplot.plot(range(years + 1), populationList)
pyplot.xlabel('Year')
pyplot.ylabel('Fish Population Size')
pyplot.show()

return population

For more complex plots, we can alter the scales of the axes, change the color and
style of the curves, and label multiple curves on the same plot. See Appendix A.4
for a sample of what is available. Some of the options must be specified as keyword
arguments of the form name = value. For example, to color a curve in a plot red
and specify a label for the plot legend, you would call something like this:

pyplot.plot(x, y, color = 'red', label = 'Bass population')
pyplot.legend() # creates a legend from labeled lines

Exercises
4.2.1* A zombie can convert two people into zombies everyday. Assuming we start

with just one zombie, write a function

zombieApocalypse(days)

that plots the total number of zombies (y axis) roaming the earth over each
of the given number of days (x axis). Appropriately label your axes. Use your
function to create a plot of zombie growth over 14 days.
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Figure 4.3 Plot for Exercise 4.2.2.
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Figure 4.4 Plot for Exercise 4.2.3.

4.2.2. Modify the countLinks function on page 138 so that it uses matplotlib to
plot the number of nodes on the x axis and the maximum number of links on
the y axis. Create a plot that shows the maximum number of links for 1 to 10
nodes; it should look like the one in Figure 4.3.

4.2.3* Modify the profitPlot function on page 142 so that it uses matplotlib to
plot ticket price on the x axis and profit on the y axis. (Remove the tortoise

parameter.) Create a plot that shows the profit for ticket prices up to $25; it
should look like the one in Figure 4.4. To get the correct prices (in half dollar
increments) on the x axis, you will need to create a second list of x values and
append realPrice to it in each iteration.

4.2.4. Modify your growth1 function from Exercise 4.1.17 so that it uses matplotlib
to plot days on the x axis and the total population on the y axis. Create a plot
that shows the growth of the population over 30 days.

4.2.5. Modify your growth3 function from Exercise 4.1.19 so that it uses matplotlib
to plot days on the x axis and the total population on the y axis. Create a plot
that shows the growth of the population over 30 days.

4.2.6. Modify your invest function from Exercise 4.1.34 so that it uses matplotlib

to plot months on the x axis and your total accumulated investment amount
on the y axis. Create a plot that shows the growth of an investment of $50 per
month for ten years growing at an annual rate of 8%.

4.2.7* Write a function that compares the growth rates of two bacteria colonies (like in
Exercise 4.1.21), one that grows 10% per hour and another that grows 15% per
hour. Your function should have one for loop that accumulates two population
variables and two lists independently. After the loop, use two pyplot.plot calls
before pyplot.show(), each with its own label (as shown above), to plot the
populations. Include a legend that shows which curve is which. Create a plot
with your function that compares growth over a period of 3 days.

4.2.8. Vampires can each convert v people a day into vampires. However, there is a
band of vampire hunters that can kill k vampires per day. Write a function

vampireApocalypse(v, k, vampires, people, days)
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that plots the numbers of vampires and people in a town with initial population
people over the given number of days, assuming the town starts with a coven
with vampires members. Use your function to create a plot of vampires and
people over a period of 7 days. See the previous exercise for how to plot multiple
lists.

4.2.9. Write a function that compares the growth in population sizes in Exercises 4.1.17,
4.1.19, and 4.1.20 over a number of days. Create a plot with your function
that compares growth over 14 days. Use three calls to pyplot.plot before
pyplot.show() and include a legend. Contrast the three growth rates. What
do you notice?

4.3 CONDITIONAL ITERATION
In our fishing pond model, to determine when the population size fell below zero, it
was sufficient to simply print the annual population sizes for at least 14 years, and
look at the results. However, if it had taken a thousand years for the population size
to fall below zero, then looking at the output would be far less convenient. Instead,
we would like to have a program tell us the year directly, by ceasing to iterate when
population drops below zero, and then returning the year it happened. This is
a different kind of problem because we no longer know how many iterations are
required before the loop starts. In other words, we have no way of knowing what
value to pass into range in a for loop.

Instead, we need a more general kind of loop that will iterate only while some
condition is met. Such a loop is generally called a while loop. In Python, a while
loop looks like this:

while <condition>:
<body>

The <condition> is replaced with a Boolean expression that evaluates to True or
False, and the <body> is replaced with statements constituting the body of the loop.
The loop checks the value of the condition before each iteration. If the condition is
true, it executes the body of the loop, and then checks the condition again. If the
condition is false, the body of the loop is skipped, and the loop ends.

When will the fish disappear?
To solve this problem, we want to continue to update population in a loop while
popluation > 0. This Boolean expression is true if the value of population is
positive, and false otherwise. Using this Boolean expression in the while loop in the
following function, we can find the year that the fish population drops to 0.
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1 def yearsUntilZero(initialPopulation, harvest):
2 """Computes the number of years until a fish population reaches zero.
3 Population grows 8% per year with an annual harvest.

4 Parameters:
5 initialPopulation: the initial population size
6 harvest: the size of the annual harvest

7 Return value: year during which the population reaches zero
8 """

9 population = initialPopulation
10 year = 0
11 while population > 0:
12 population = 1.08 * population - harvest
13 year = year + 1
14 return year

The following trace table shows how the loop works when initialPopulation is
12000 and harvest is 1500, as in our original pond function in Section 4.1.

Trace arguments: initialPopulation = 12000, harvest = 1500

Step Line population year Notes
1 9 12000 — population ← 12000

2 10 ” 0 year ← 0

3 11 ” ” population > 0, so execute the body of the loop
4 12 11460.0 ” update population

5 13 ” 1 increment year
6 11 ” ” population > 0, so execute the body of the loop
7 12 10876.8 ” update population

8 13 ” 2 increment year
9 11 ” ” population > 0, so execute the body of the loop
⋮

42 11 392.539 13 population > 0, so execute the body of the loop
43 12 -1076.056 ” update population

44 13 ” 14 increment year
45 11 ” ” population <= 0, so exit the loop
46 14 ” ” return 14

Return value: 14

Before the loop, population is 12000 and year is 0. Since population > 0 is true,
the loop body executes in steps 4–5, causing population to become 11460 and
year to become 1. We then go back to the top of the loop in step 6 to check
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the condition again. Since population > 0 is still true, the loop body executes
again in steps 7–8, causing population to become 10876.8 and year to become
2. Iteration continues until year reaches 14. In this year, population becomes
-1076.06. When the condition is checked at the beginning of the next iteration, we
find that population > 0 is false, so the loop ends and the function returns 14.

Using while loops can be tricky for a few reasons. First, a while loop may not
iterate at all. For example, if the initial value of population were zero, the condition
in the while loop will be false before the first iteration, and the loop will be over
before it starts.

Reflection 4.19 What will be returned by the function if the initial value of population

were zero?

A loop that sometimes does not iterate at all is generally not a bad thing, and can
even be used to our advantage. In this case, if population were initially zero, the
function would return zero because the value of year would never be incremented
in the loop. And this is correct; the population dropped to zero in year zero, before
the clock started ticking beyond the initial population size. But it is something that
one should always keep in mind when designing algorithms involving while loops.

Second, and related to the first point, you need to always make sure that the
condition in the while loop makes sense before the first iteration. For example,
suppose we forgot to give population an initial value before the loop. Then the
loop condition would not make any sense because population was not defined.

Third, a while loop may become an infinite loop. For example, suppose
initialPopulation is 12000 and harvest is 800 instead of 1500. In this case,
as we saw on page 134, the population size increases every year instead. So the
population size will never reach zero and the loop condition will never be false, so
the loop will iterate forever. For this reason, we must always make sure that the
body of a while loop makes progress toward the loop condition becoming false.

These points can be summarized in two rules to always keep in mind when designing
an algorithm with a while loop:

1. Initialize the condition before the loop. Always make sure that the condition
makes sense and will behave in the intended way the first time it is tested.

2. In each iteration of the loop, work toward the condition eventually becoming
false. Not doing so will result in an infinite loop.

When will your nest egg double?
Let’s look at one more example. Suppose we have $1000 to invest and we would like
to know how long it will take for our money to double in size, growing at 5% per
year. To answer this question, let’s start with the following incomplete loop that
compounds 5% interest each year:
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amount = 1000
while ???:

amount = 1.05 * amount
print(amount)

Reflection 4.20 What should be the condition in the while loop?

We want the loop to stop iterating when amount reaches 2000. Therefore, we want
the loop to continue to iterate while amount < 2000.

amount = 1000
while amount < 2000:

amount = 1.05 * amount
print(amount)

Reflection 4.21 What is printed by this block of code? What does this result tell us?

Once the loop is done iterating, the final amount is printed (approximately $2078.93),
but this does not answer our question.

Reflection 4.22 How do we figure out how many years it takes for the $1000 to double?

To answer our question, we need to count the number of times the while loop
iterates, which is very similar to what we did in the yearsUntilZero function. We
can introduce another variable that is incremented in each iteration, and print its
value after the loop, along with the final value of amount:

amount = 1000
while amount < 2000:

amount = 1.05 * amount
year = year + 1

print(year, amount)

Reflection 4.23 Make these changes and run the code again. Now what is printed?

Oops, an error message is printed, telling us that the name year is undefined.

Reflection 4.24 How do we fix the error?

The problem is that we did not initialize the value of year before the loop. Therefore,
the first time year = year + 1 was executed, year was undefined on the right
side of the assignment statement. Adding one statement before the loop fixes the
problem:

amount = 1000
year = 0
while amount < 2000:

amount = 1.05 * amount
year = year + 1

print(year, amount)

Reflection 4.25 Now what is printed by this block of code? In other words, how many
years until the $1000 doubles?

We will see some more examples of while loops later in this chapter, and again in
Section 5.6.
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Exercises
4.3.1* Suppose you put $1000 into the bank and you get a 3% interest rate compounded

annually. How would you use a while loop to determine how long it will take
for your account to have at least $1200 in it?

4.3.2. Repeat the last question, but this time write a function

interest(amount, rate, target)

that takes the initial amount, the interest rate, and the target amount as
parameters. The function should return the number of years it takes to reach
the target amount.

4.3.3. Since while loops are more general than for loops, we can emulate the behavior
of a for loop with a while loop. For example, we can emulate the behavior of
the for loop

for counter in range(10):
print(counter)

with the while loop

counter = 0
while counter < 10:

print(counter)
counter = counter + 1

(a) Create a trace table for each of the loops above to make sure you
understand how they are equivalent.

(b) What happens if we omit counter = 0 before the while loop? Why
does this happen?

(c) What happens if we omit counter = counter + 1 from the body of
the while loop? What does the loop print?

(d) Show how to emulate the following for loop with a while loop:

for counter in range(3, 12):
print(counter)

(e) Show how to emulate the following for loop with a while loop:

for counter in range(12, 3, -1):
print(counter)

4.3.4* In the profitTable function on page 142, we used a for loop to indirectly
consider all ticket prices divisible by a half dollar. Rewrite this function so that
it instead uses a while loop that increments price by $0.50 in each iteration.

4.3.5. A zombie can convert two people into zombies everyday. Starting with just one
zombie, how long would it take for the entire world population (7 billion people)
to become zombies? Write a function

zombieApocalypse()

that returns the answer to this question.
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4.3.6* Tribbles increase at the rate of 50% per hour (rounding down if there are an
odd number of them). How long would it take 10 tribbles to reach a population
size of 1 million? Write a function

tribbleApocalypse()

that returns the answer to this question.

4.3.7. Vampires can each convert v people a day into vampires. However, there is a
band of vampire hunters that can kill k vampires per day. If a coven of vampires
starts with vampires members, how long before a town with a population of
people becomes a town with no humans left in it? Write a function

vampireApocalypse(v, k, vampires, people)

that returns the answer to this question.

4.3.8. An amoeba can split itself into two once every h hours. How many hours does
it take for a single amoeba to become target amoebae? Write a function

amoebaGrowth(h, target)

that returns the answer to this question.

4.3.9. Write a function

virus(rate, target)

that returns the number of days until target people are infected by a virus,
assuming one person is initially infected and the number infected grows by the
given rate each day.

4.3.10. Suppose each person newly infected by a virus is able to infect R additional
people. R is called the reproduction number of the virus. (Think of this as a
one-time event; the person does not infect R additional people every day.) Write
a function

virus2(R, target)

that returns the number of days until target people are infected, assuming only
one person is initially infected.

*4.4 CONTINUOUS MODELS
This section is available on the book website.

*4.5 NUMERICAL ANALYSIS
This section is available on the book website.
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4.6 SUMMING UP
Although we have solved a variety of different problems in this chapter, almost all of
the functions that we have designed have the same basic format:

def accumulator( ):
total = # initialize the accumulator
for index in range( ): # iterate some number of times

total = total + # add something to the accumulator
return total # return final accumulator value

The functions we designed differ primarily in what is added to the accumulator (the
red statement) in each iteration of the loop. Let’s look at three of these functions in
particular: the pond function from page 135, the countLinks function from page 138,
and the solution to Exercise 4.1.30 from page 148, shown below.

def growth(finalAge):
height = 95
for age in range(4, finalAge + 1):

height = height + 6
return height

In the growth function, a constant value is added to the accumulator in each
iteration:

height = height + 6

In the countLinks function, the value of the index variable, minus one, is added to
the accumulator:

newLinks = node - 1
totalLinks = totalLinks + newLinks

And in the pond function, a factor of the accumulator itself is added in each iteration:

population = population + 0.08 * population # ignoring "- 1500"

These three types of accumulators grow in three different ways. Adding a constant
value to the accumulator in each iteration, as in the growth function, results in
a final sum that is equal to the number of iterations times the constant value. In
other words, if the initial value is a, the constant added value is c, and the number
of iterations is n, then the final value of the accumulator is a + cn. (In the growth

function, a = 95 and c = 6, so the final sum is 95 + 6n.) As n increases, cn increases
by a constant amount. This is called linear growth , and is illustrated by the blue
line in Figure 4.5.

Adding the value of the index variable to the accumulator, as in the countLinks

function, leads to faster growth. In countLinks, the final value of the accumulator is

1 + 2 + 3 +⋯ + (n − 1)

which is equal to
1

2
⋅ n ⋅ (n − 1) = n

2 − n
2

.
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Figure 4.5 An illustration of linear, quadratic, and exponential growth. The curves

are generated by accumulators adding 6, the index variable, and 1.08 times the

accumulator, respectively, in each iteration.

Tangent 4.1 explains two clever ways to derive this result. Since this sum is propor-
tional to n2, we say that it exhibits quadratic growth , as shown by the red curve
in Figure 4.5. This sum is actually quite handy to know, and it will surface again in
Chapter 10.

Finally, adding a factor of the accumulator to itself in each iteration, as in the
pond function, results in even faster growth. In the pond function, if we add
0.08 * population to population in each iteration, the accumulator variable
will be equal to the initial value of population times 1.08n at the end of n iterations
of the loop. For this reason, we call this exponential growth , which is illustrated
by the green curve in Figure 4.5. Notice that, as n gets larger, exponential growth
quickly outpaces the other two curves, even when the power of n is small, like 1.08.

So although all accumulator algorithms look more or less alike, the effects of the
accumulators can be strikingly different. Understanding the relative rates of these
different types of growth is quite important in a variety of fields, not just computer
science. For example, mistaking an exponentially growing epidemic for a linearly
growing one can be a life or death mistake!

These classes of growth can also be applied to the time complexity of algorithms, as
we saw briefly in Section 1.2 and will see more in later chapters. When applied in
this way, n represents the size of the algorithm’s input and the y-axis represents the
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Tangent 4.1: Triangular numbers

There are a few nice tricks to figure out the value of the sum

1 + 2 + 3 +⋯ + (n − 2) + (n − 1) + n

for any positive integer n. The first technique is to add the numbers in the sum from
the outside in. Notice that the sum of the first and last numbers is n + 1. Then, coming
in one position from both the left and right, we find that (n − 1) + 2 = n + 1 as well.
Next, (n − 2) + 3 = n + 1. This pattern will obviously continue, as we are subtracting 1
from the number on the left and adding 1 to the number on the right. In total, there
is one instance of n + 1 for every two terms in the sum, for a total of n/2 instances of
n + 1. Therefore, the sum is

1 + 2 + 3 +⋯ + (n − 2) + (n − 1) + n = n
2
(n + 1) = n(n + 1)

2
.

For example, 1+2+3+⋯+8 = (8⋅9)/2 = 36 and 1+2+3+⋯+1000 = (1000⋅1001)/2 = 500,500.

The second technique to derive this result is more visual. Depict each number in the
sum as a column of circles, as shown on the left below with n = 8.

The first column has n = 8 circles, the second has n − 1 = 7, etc. So the total number of
circles in this triangle is equal to the value we are seeking. Now make an exact duplicate
of this triangle, and place its mirror image to the right of the original triangle, as shown
on the right above. The resulting rectangle has n rows and n + 1 columns, so there are
a total of n(n + 1) circles. Since the number of circles in this rectangle is exactly twice
the number in the original triangle, the number of circles in the original triangle is
n(n + 1)/2. Based on this representation, numbers like 36 and 500,500 that are sums of
this form are called triangular numbers.

number of elementary steps required by the algorithm to compute the corresponding
output. Algorithms that exhibit linear or quadratic time complexity are generally
considered to be acceptable algorithms, while those exhibiting exponential time
complexity are essentially worthless on all but the smallest inputs.
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Exercises
4.6.1. Decide whether each of the following accumulators exhibits linear, quadratic, or

exponential growth.

(a)* total = 0
for count in range(n):

total = total + count * 2

(b) total = 10
for count in range(n):

total = total + count / 2

(c)* total = 1
for count in range(n):

total = total + total

(d) total = 0
for count in range(n):

total = total + 1.2 * total

(e) total = 0
for count in range(n):

total = total + 0.01

(f) total = 10
for count in range(n):

total = 1.2 * total

4.6.2. Look at Figure 4.5. For values of n less than about 80, the fast-growing expo-
nential curve is actually below the other two. Explain why.

4.6.3. Write a program to generate Figure 4.5.

4.7 FURTHER DISCOVERY
The epigraph of this chapter is from a TED talk given by Stephen Hawking in 2008.
You can watch it yourself at

www.ted.com/talks/stephen_hawking_asks_big_questions_about_the_universe .

If you are interested in learning more about population dynamics models, and
computational modeling in general, a great source is Introduction to Computational
Science [61] by Angela Shiflet and George Shiflet.

*4.8 PROJECTS
This section is available on the book website.

www.ted.com/talks/stephen_hawking_asks_big_questions_about_the_universe
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Forks in the Road

When you come to a fork in the road, take it.

Yogi Berra

So far, our algorithms have been entirely deterministic; they have done the same
thing every time we executed them with the same inputs. However, the natural

world and its inhabitants (including us) are usually not so predictable. Rather, we
consider many natural processes to be, to various degrees, random. For example, the
behaviors of crowds and markets often change in unpredictable ways. The genetic
“mixing” that occurs in sexual reproduction can also be considered a random process
because we cannot predict the characteristics of any particular offspring. And the
unpredictable movements of tiny particles in the air are often modeled as random
processes, with applications to studying airborne pollutants and viruses. To model
these kinds of systems, our programs need to be able to both emulate randomness
and change their behavior in response to stimuli.

More generally, most run-of-the-mill programs must also be able to conditionally
change course, or select from among a variety of options, in response to input.
Indeed, most common desktop applications do nothing unless prompted by a key
press or a mouse click. Computer games like racing simulators react to a controller
several times a second. The protocols that govern data traffic on the Internet adjust
transmission rates continually in response to the perceived level of congestion on the
network. In this chapter, we will discover how to design algorithms that can behave
differently in response to input, both random and deterministic.

165
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5.1 RANDOM WALKS
In 1827, British Botanist Robert Brown, while observing pollen grains suspended
in water under his microscope, witnessed something curious. When the pollen
grains burst, they emitted much smaller particles that proceeded to wiggle around
randomly. This phenomenon, now called Brownian motion , was caused by the
particles’ collisions with the moving water molecules. Brownian motion is now used
to describe the motion of any sufficiently small particle (or molecule) in a fluid.

We can model the essence of Brownian motion with a single randomly moving
particle in two dimensions. This process is known as a random walk . Random
walks are also used to model a wide variety of other phenomena such as markets
and the foraging behavior of animals, and to sample large social networks. In this
section, we will develop a Monte Carlo simulation of a random walk to discover how
far away a randomly moving particle is likely to get in a fixed amount of time.

You may have already modeled a simple random walk in Exercise 2.3.23 by moving
a turtle around the screen and choosing a random angle to turn at each step. We
will now develop a more restricted version of a random walk in which the particle
is forced to move on a two-dimensional grid. At each step, we want the particle to
move in one of the four cardinal directions, each with equal probability.

To simulate random processes, we need an algorithm or device that produces
random numbers, called a random number generator (RNG). A conventional
computer processor cannot implement a true RNG because everything it does is
entirely predictable. Therefore, a computer either needs to incorporate a specialized
device that can detect and transmit truly random physical events (like subatomic
quantum fluctuations) or simulate randomness with a clever algorithm called a
pseudorandom number generator (PRNG). A PRNG generates a sequence of
numbers that appear to be random although, in reality, they are not.

The Python module named random provides a PRNG in a function named random.
The random function returns a pseudorandom number between zero and one, but
not including one. For example:

>>> import random
>>> random.random()
0.9699738944412686

(Your output will differ.) It is convenient to refer to the range of real numbers
produced by the random function as [0,1). The square bracket on the left means
that 0 is included in the range, and the parenthesis on the right means that 1 is
not included in the range. Tangent 5.1 explains a little more about this so-called
interval notation, if it is unfamiliar to you.
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Tangent 5.1: Interval notation

It is customary to represent the interval (i.e., set or range), of real numbers between
a and b, including a and b, with the notation [a, b]. In contrast, the set of integers
between the integers a and b, including a and b, is denoted [a . . b]. For example, [3,7]
represents every real number greater than or equal to 3 and less than or equal to 7,
while [3 . .7] represents the integers 3,4,5,6,7.

To denote an interval of real numbers between a and b that does not contain an endpoint
a or b, we replace the endpoint’s square bracket with a parenthesis. So [a,b) is the
interval of real numbers between a and b that does contain a but does not contain b.
Similarly, (a,b] contains b but not a, and (a,b) contains neither a nor b.

One small step
Now let’s write an algorithm to take one step of a random walk. We will save the
particle’s (x,y) coordinates in two variables, x and y. Then we will use the random

function to assign a random value in [0,1) to a variable named randi (why not?).

x = 0 # particle starts at (0, 0)
y = 0
randi = random.random() # random number in the interval [0, 1)

To use this pseudorandom number to randomly move the particle, we need to think
about the interval of possible random numbers as being divided into four equal
subintervals, and associate a direction with each one:

1. If randi is in [0,0.25), then move east.

2. If randi is in [0.25,0.5), then move north.

3. If randi is in [0.5,0.75), then move west.

4. If randi is in [0.75,1.0), then move south.

We can implement this in Python with an if statement, which executes a particular
sequence of statements only if some Boolean expression is true. The following
statement increments x if randi is in the subinterval [0,0.25):

if randi < 0.25: # if randi is in [0, 0.25), then
x = x + 1 # move east

Reflection 5.1 Why do we not need to also check whether randi is at least zero?

An if statement is also called a conditional statement because, like the while

loops we saw earlier, they make decisions that are conditioned on a Boolean expression.
(Unlike while loops, however, an if statement is only executed once.) The Boolean
expression in this case, randi < 0.25, is true if randi is less than 0.25 and false
otherwise. If the Boolean expression is true, the statement(s) that are indented
beneath the condition are executed. On the other hand, if the Boolean expression
is false, the indented statement(s) are skipped, and the statement following the
indented statement(s) is executed next.
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Math symbol Python symbol

< <

≤ <=

> >

≥ >=

= ==

≠ !=

Table 5.1 Python’s six comparison operators.

Let’s move now to the second case. To check whether randi is in [0.25,0.5), we need
to check whether randi is greater than or equal to 0.25 and randi is less than 0.5.
The meaning of “and” in the previous sentence is identical to the Boolean operator
from Section 3.2. In Python, this condition is represented just as you might expect:

randi >= 0.25 and randi < 0.5

The >= operator is Python’s representation of “greater than or equal to” (≥). It
is one of six comparison operators (or relational operators), listed in Table 5.1,
some of which have two-character representations in Python. (Note especially that
== is used to test for equality. We will discuss these operators further in Section 5.4.)
Adding this case to the first case, we now have two if statements:

if randi < 0.25: # if randi is in [0, 0.25), then
x = x + 1 # move east

if randi >= 0.25 and randi < 0.5: # if randi is in [0.25, 0.5), then
y = y + 1 # move north

Let’s think about how these statements will behave in two different cases. First,
if randi is assigned a value that is less than 0.25, the condition in the first if

statement will be true and x = x + 1 will be executed. Next, the condition in the
second if statement will be checked. But since this condition is false, y will not be
incremented.

On the other hand, if randi is assigned a value that is between 0.25 and 0.5, then
the condition in the first if statement will be false, so the indented statement x =

x + 1 will be skipped and execution will continue with the second if statement.
Since the condition in the second if statement is true, y = y + 1 will be executed.

To complete our four-way decision, we can add two more if statements:

1 if randi < 0.25: # if randi is in [0, 0.25), then
2 x = x + 1 # move east
3 if randi >= 0.25 and randi < 0.5: # if randi is in [0.25, 0.5), then
4 y = y + 1 # move north
5 if randi >= 0.5 and randi < 0.75: # if randi is in [0.5, 0.75), then
6 x = x - 1 # move west
7 if randi >= 0.75 and randi < 1.0: # if randi is in [0.75, 1.0), then
8 y = y - 1 # move south
9 print(x, y) # executed after all 4 cases
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There are four possible ways these statements could execute, one for each interval in
which randi can reside. To illustrate one of these cases, suppose randi was randomly
assigned the value 0.4.

Trace arguments: randi = 0.4

Step Line x y Notes
— — 0 0 assume x = 0 and y = 0

1 1 ” ” randi < 0.25 is false, so skip to line 3
2 3 ” ” randi >= 0.25 and randi < 0.5 is true, so do line 4
3 4 ” 1 y ← y + 1 (move north)
4 5 ” ” randi >= 0.5 and randi < 0.75 is false, so skip to line 7
5 7 ” ” randi >= 0.75 and randi < 1.0 is false, so skip to line 9
6 9 ” ” prints 0 1

Since the condition of the first if statement is false, the trace table shows that
the indented statement on line 2 is skipped. Next, we test the condition of the if

statement on line 3. Since this condition is true (0.25 < 0.4 < 0.5), the indented
statement on line 4, y = y + 1, is executed. We continue by testing the condition of
the third if statement, on line 5. Since this condition is false, we skip the indented
statement on line 6. Next, we continue to the fourth if statement on line 7, and
test its condition, which is false. So line 8 is skipped and execution continues on line
9, which prints the values of x and y. Notice that, for any possible value of randi,
only one of the four indented statements will be executed.

Reflection 5.2 Is this sequence of steps efficient? If not, what steps could be skipped and
in what circumstances?

The code behaves correctly, but it seems unnecessary to test subsequent conditions
after we have already found the correct case. If there were many more than four
cases, this extra work could be substantial. Here is a much more efficient structure:

1 if randi < 0.25: # if randi is in [0, 0.25), then
2 x = x + 1 # move east and finish
3 elif randi < 0.5: # otherwise, if randi is in [0.25, 0.5), then
4 y = y + 1 # move north and finish
5 elif randi < 0.75: # otherwise, if randi is in [0.5, 0.75), then
6 x = x - 1 # move west and finish
7 elif randi < 1.0: # otherwise, if randi is in [0.75, 1.0), then
8 y = y - 1 # move south and finish
9 print(x, y) # executed after all 4 cases

The keyword elif is short for “else if,” meaning that the condition that follows is
checked only if no preceding condition was true. In other words, as we sequentially
check each of the four conditions, if we find that one is true, then the associated
indented statement(s) are executed, and we skip the remaining conditions in the
group. We also eliminated the unnecessary >= checks from each condition (e.g.,
randi >= 0.25). These are redundant because, if we encounter an elif condition,
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we know that the previous condition must have been false, i.e., we know that randi
must be greater than all of the previously tested intervals.

The next trace table, with randi again randomly assigned 0.4, illustrates the
advantage of this alternative structure.

Trace arguments: randi = 0.4

Step Line x y Notes
— — 0 0 assume x = 0 and y = 0

1 1 ” ” randi < 0.25 is false, so skip to line 3
2 3 ” ” randi < 0.5 is true, so do line 4
3 4 ” 1 y ← y + 1 (move north) and skip to line 9
4 9 ” ” prints 1 0

Everything up through step 3 is identical, but now, after the condition on line 3 is
found to be true and line 4 is executed, the remaining elif statements are skipped,
and execution continues on line 9, after the last elif.

Reflection 5.3 For each of the four possible intervals to which randi could belong, how
many elif conditions are checked?

Reflection 5.4 Suppose you replace every elif with if in the most recent version above.
What would then happen if randi had the value 0.4?

This code can be streamlined a bit more. Since randi must be in [0,1), there is no
point in checking the last condition, randi < 1.0. If execution has proceeded that
far, randi must be in [0.75,1). So we can safely execute the last statement, y = y -

1, without checking anything. This is accomplished by replacing the last elif with
an else statement:

1 if randi < 0.25: # if randi is in [0, 0.25), then
2 x = x + 1 # move east and finish
3 elif randi < 0.5: # otherwise, if randi is in [0.25, 0.5), then
4 y = y + 1 # move north and finish
5 elif randi < 0.75: # otherwise, if randi is in [0.5, 0.75), then
6 x = x - 1 # move west and finish
7 else: # otherwise,
8 y = y - 1 # move south and finish
9 print(x, y) # executed after all 4 cases

The else signals that, if no previous condition is true, the statement(s) indented
under the else should be executed.

Reflection 5.5 Again, suppose you replace every elif with if in this newest version.
What would happen now if randi had the value 0.4?

If we (erroneously) replaced the two instances of elif above with if, then the final
else would be associated only with the last if. So if randi had the value 0.4,
the second and third if conditions would both be true and the second and third
indented statements would both be executed. The last indented statement would
not be executed because the last if condition was true.
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In situations where there are only two choices, an else can just accompany an if.
For example, if wanted to randomly move a particle on a line instead of in two
dimensions, our conditional would look like:

1 if randi < 0.5: # if randi is in [0, 0.5), then
2 x = x + 1 # move east and finish
3 else: # otherwise,
4 x = x - 1 # move west and finish
5 print(x) # executed after the if/else

Monte Carlo simulation
The randomWalk function below uses our if/elif/else conditional structure in
a loop to simulate a random walk, and then returns the distance the particle has
moved from the origin. To make the grid movement easier to see, we multiply the
turtle’s movement by a variable moveLength. Figure 5.1 shows an example of what
you will see when you call randomWalk from a main function.

def randomWalk(steps, tortoise):
"""Displays a random walk on a grid.

Parameters:
steps: the number of steps in the random walk
tortoise: a Turtle object

Return value: the final distance from the origin
"""

x = 0 # initialize (x, y) = (0, 0)
y = 0
moveLength = 10 # length of a turtle step
for step in range(steps):

randi = random.random() # randomly choose a direction
if randi < 0.25: # if randi is in [0, 0.25), then

x = x + 1 # move east and finish
elif randi < 0.5: # otherwise, if randi is in [0.25, 0.5), then

y = y + 1 # move north and finish
elif randi < 0.75: # otherwise, if randi is in [0.5, 0.75), then

x = x - 1 # move west and finish
else: # otherwise,

y = y - 1 # move south and finish
tortoise.goto(x * moveLength, y * moveLength) # draw one step

return math.sqrt(x * x + y * y) # return distance from (0, 0)

How far, on average, does a randomly walking particle move from its origin in a
given number of steps? The answer to this question can, for example, provide insight
into the rate at which a fluid spreads or the extent of an animal’s foraging territory.

The distance traveled in any one particular random walk is meaningless; the particle
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Figure 5.1 A 1000-step random walk produced by the randomWalk function.

may return the origin, walk away from the origin at every step, or do something in
between. None of these outcomes tells us anything about the expected, or average,
behavior of the system. To model the expected behavior, we need to compute the
average distance over many, many random walks. This kind of simulation is called a
Monte Carlo simulation , after the famous casino in Monaco.

As we will be calling randomWalk many times, we would like to speed things up
by skipping the turtle visualization of the random walks. We can prevent drawing
by incorporating a flag variable as a parameter to randomWalk. A flag variable
has a Boolean value, and is used to switch some behavior on or off. In Python, the
two possible Boolean values are named True and False (note the capitalization). In
the randomWalk function, we will call the flag variable draw, and cause its value to
influence the drawing behavior with another if statement:

def randomWalk(steps, tortoise, draw):
"""Displays a random walk on a grid.

Parameters:
steps: the number of steps in the random walk
tortoise: a Turtle object
draw: a Boolean indicating whether to draw the random walk

Return value: the final distance from the origin
"""

⋮
if draw:

tortoise.goto(x * moveLength, y * moveLength)
⋮
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Now, when we call randomWalk, we pass in either True or False for our third
argument. If draw is True, then tortoise.goto(⋯) will be executed but, if draw
is False, it will be skipped.

Reflection 5.6 Incorporate draw into your randomWalk function and try calling it with
both True and False passed in for the third parameter.

To find the average over many trials, we will call our randomWalk function repeatedly
in a loop, and use an accumulator variable to sum up all the distances.

def rwMonteCarlo(steps, trials):
"""A Monte Carlo simulation to find the expected distance

that a random walk finishes from the origin.

Parameters:
steps: the number of steps in the random walk
trials: the number of random walks

Return value: the average distance from the origin
"""

totalDistance = 0
for trial in range(trials):

distance = randomWalk(steps, None, False)
totalDistance = totalDistance + distance

return totalDistance / trials

The parameters steps and trials are the number of steps in each random walk
and the number of times to call the randomWalk function, respectively. Notice that
we have passed in None as the argument for the second parameter (tortoise) of
randomWalk. With False being passed in for the parameter draw, the value assigned
to tortoise is never used, so we pass in None as a placeholder.

Reflection 5.7 Call rwMonteCarlo(500, 5) ten times in a loop, printing the result each
time. What do you notice? Do you think five trials is enough? Now perform the same
experiment with 10, 100, 1000, and 10000 trials. How many trials do you think are sufficient
to get a reliable result?

As we increase the number of trials in a Monte Carlo simulation, our average results
become more consistent, but what do the individual trials look like? To find out, we
can generate a histogram of the individual random walk distances. A histogram for
a data set is a bar graph that shows how the items in the data set are distributed
across some number of intervals, which are usually called “bins” or “buckets.” To
make a histogram of the distances, we need to create a list of these values in the
loop, and then call the pyplot.hist function to display them as a histogram. A
modified version of rwMonteCarlo that also displays a histogram is shown below.
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Figure 5.2 A histogram showing the distribution of distances in 5000 trials of a

1000-step random walk.

def rwMonteCarlo(steps, trials):
""" (docstring omitted) """

totalDistance = 0
distances = [ ]
for trial in range(trials):

distance = randomWalk(steps, None, False)
totalDistance = totalDistance + distance
distances.append(distance)

pyplot.hist(distances, 75)
pyplot.xlabel('Distance')
pyplot.ylabel('Frequency')
pyplot.show()

return totalDistance / trials

The first argument to pyplot.hist is the list of values, and the second is the
number of bins to use. A histogram produced by calling the modified function
with rwMonteCarlo(1000, 5000) is shown in Figure 5.2. The x-axis represents the
distance moved from the origin in the random walks, grouped into 75 bins, and
the y-axis is the number of times each bin of distances appeared among the 5000
trials. The mean distance returned by the function was about 28, and you can see
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that the histogram shows that most of the trials were near that value. The overall
shape of the histogram resembles a “bell curve,” more formally known as a normal
distribution. (To learn more about why this phenomenon occurs, see Section 5.3.)

Ultimately, we want to understand the distance traveled as a function of the number
of steps. In other words, if the particle moves n steps, does it travel an average
distance of n/2 or n/25 or

√
n or log2 n or . . . ? To empirically discover the answer,

we need to run the Monte Carlo simulation for many different numbers of steps, and
try to infer a pattern from a plot of the results. We leave this as an exercise.

Exercises
5.1.1* What is printed by the following sequence of statements in each of the cases

below? Explain your answers.

if votes1 >= votes2:
print('Candidate one wins!')

elif votes1 <= votes2:
print('Candidate two wins!')

else:
print('There was a tie.')

(a) votes1 = 184 and votes2 = 206

(b) votes1 = 255 and votes2 = 135

(c) votes1 = 195 and votes2 = 195

5.1.2* There is a problem with the statements in the previous exercise. Fix them so
that they correctly fulfill their intended purpose.

5.1.3. What is printed by the following sequence of statements in each of the cases
below? Explain your answers.

majority = (votes1 + votes2 + votes3) / 2
if votes1 > majority:

print('Candidate one wins!')
if votes2 > majority:

print('Candidate two wins!')
if votes3 > majority:

print('Candidate three wins!')
else:

print('A runoff is required.')

(a) votes1 = 5 and votes2 = 5 and votes3 = 5

(b) votes1 = 9 and votes2 = 2 and votes3 = 4

(c) votes1 = 0 and votes2 = 15 and votes3 = 0

5.1.4. Make the statements in the previous problem more efficient and fix them so
that they fulfill their intended purpose.
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5.1.5. What is syntactically wrong with the following sequence of statements?

if x < 1:
print('Something.')

else:
print('Something else.')

elif x > 3:
print('Another something.')

5.1.6. What is the final value assigned to result after each of the following code
segments?

(a) n = 13
result = n
if n > 12:

result = result + 12
if n < 5:

result = result + 5
else:

result = result + 2

(b) n = 13
result = n
if n > 12:

result = result + 12
elif n < 5:

result = result + 5
else:

result = result + 2

5.1.7* Suppose the weather forecast calls for a 70% chance of rain. Write a function

weather()

that prints 'RAIN' with probability 0.7, and 'SUN!' otherwise. Then write
another version that snows with probability 0.66, produces a sunny day with
probability 0.33, and rains cats and dogs with probability 0.01.

5.1.8* Write a function

roll()

that simulates the rolling of a single fair die by returning each of the integers 1
through 6 with equal probability. Use random.random().

5.1.9. Write a function

loaded()

that simulates the rolling of a single “loaded die” that rolls more 1’s and
6’s than it should. The probability of rolling each of 1 or 6 should be 0.25.
The function should use the random.random function and an if/elif/else

conditional construct to assign a roll value to a variable named roll, and then
return the value of roll.

5.1.10* Write a function that chooses a random number between 1 and 100, prompts for
a guess, and prints whether the guess is correct, too high, or too low. Use the
function random.randrange(1, 101) to get your random number. For example,
your function might display:
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Guess my number: 50

Your guess was too high. My number was 5.

5.1.11. Write a function to implement a simple calculator. The function should prompt
for an operation (addition, subtraction, multiplication, or division), the two
numbers to operate on, and then print the result. If an unknown operation is
entered, the program should say so. For example, your function might display:

Operation: *

First number: 67

Second number: 34.1

The answer is 2284.7.

or

Operation: &

First number: 5

Second number: 3.2

I don't know how to do that!

5.1.12. Write a function

factors(number)

that prints all of the factors of the given number. For example, factors(66)
should print 2 3 6 11 22 33 66 (one per line).

5.1.13* Write a function

countVotes(votes)

that implements the algorithm from Exercise 1.2.7, but also accounts
for the possibility of a tie. The parameter is a list of strings like
['John', 'Laura', 'Laura', 'John', 'Laura']. If Laura receives the most
votes, return the string 'Laura'; if John receives the most votes, return 'John';
if it is a tie, return 'Tie'.

5.1.14. Write a function

assignGrades(scores)

that returns a list of letter grades corresponding to the numerical scores in the
list scores. For example, assignGrades([78, 91, 85]) should return the list
['C', 'A', 'B'].

5.1.15. Sometimes we want a random walk to reflect circumstances that bias the
probability of a particle moving in some direction (i.e., gravity, water current, or
wind). For example, suppose that we need to incorporate gravity, so a movement
to the north is modeling a real movement up, away from the force of gravity.
Then we might want to decrease the probability of moving north to 0.15, increase
the probability of moving south to 0.35, and leave the other directions as they
were. Show how to modify the randomWalk function to implement this situation.

5.1.16* To discover the distance traveled by a randomly walking particle as a function
of the number of its steps, we can call the rwMonteCarlo function for many
different numbers of steps, and try to infer a pattern from a plot of the results.

(a) Write a function

plotDistances(maxSteps, trials)
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that does this with steps equal to 100, 200, . . . , maxSteps, and then
plots the results with matplotlib.pyplot. Include properly labeled
axes and a legend.

(b) Call plotDistances(1000, 5000) to view the relationship between the
number of steps taken and the distance moved from the origin. What is
your hypothesis for the function approximated by the plot?

(c) The function we are seeking has actually been mathematically deter-
mined, and is approximately

√
n. Confirm this empirically by plotting

this function alongside the simulated results. To do so, initialize a new
list of y values before your loop, and append math.sqrt(steps) to this
list inside your loop (steps is your for loop index variable). This creates
a list of values of the

√
n function. Plot these values alongside your

random walk results.

(d) As you discovered in Reflection 5.7, the quality of any Monte Carlo
approximation depends on the number of trials. Call plotDistances a
few more times with smaller and larger numbers of trials. What do you
notice in your plot?

5.1.17. Determining the number of bins to use in a histogram is part science, part
art. If you use too few bins, you might miss the shape of the distribution. If
you use too many bins, there may be many empty bins and the shape of the
distribution will be too jagged. Experiment with the correct number of bins for
10,000 trials in the rwHistogram function you wrote in the previous exercise.
At the extremes, create a histogram with only 3 bins and another with 1,000
bins. Then try numbers in between. What seems to be a good number of bins?
(You may also want to do some research on this question.)

5.1.18. The Monty Hall problem is a famous puzzle based on the game show “Let’s
Make a Deal,” hosted, in its heyday, by Monty Hall. You are given the choice
of three doors. Behind one is a car, and behind the other two are goats. You
pick a door, and then Monty, who knows what’s behind all three doors, opens a
different one, which always reveals a goat. You can then stick with your original
door or switch. What do you do (assuming you would prefer a car)?

We can write a Monte Carlo simulation to find out. First, write a function

montyHall(choice, switch)

that decides whether we win or lose, based on our original door choice and
whether we decide to switch doors. Assume that the doors are numbered 0, 1,
and 2, and that the car is always behind door number 2. If we originally chose
the car, then we lose if we switch but we win if we don’t. Otherwise, if we did
not originally choose the car, then we win if we switch and lose if we don’t. The
function should return True if we win and False if we lose.

Now write a function

monteMonty(trials)

that performs a Monte Carlo simulation with the given number of trials to find
the probability of winning if we decide to switch doors. For each trial, choose a
random door number (between 0 and 2), and call the montyHall function with
your choice and switch = True. Count the number of times we win, and return
this number divided by the number of trials. Can you explain the result?



5.1 RANDOM WALKS � 179

5.1.19. The value of π can be estimated with Monte Carlo
simulation. Suppose you draw a circle on the wall
with radius 1, inscribed inside a square with side
length 2, as shown to the right. You then close your
eyes and throw darts at the circle. Assuming every
dart lands inside the square, the fraction of the darts
that land in the circle estimates the ratio between the
area of the circle and the area of the square. We know
that the area of the circle is C = πr2 = π12 = π and
the area of the square is S = 22 = 4. So the exact ratio
is π/4. With enough darts, f , the fraction (between
0 and 1) that lands in the circle will approximate
this ratio: f ≈ π/4, which means that π ≈ 4f .

1

2

To make matters a little simpler, we can just throw darts in the upper right
quarter of the circle (shaded above). The ratio here is the same: (π/4)/1 = π/4.
If we place this quarter circle on x and y axes, with the center of the circle at
(0,0), our darts will now all land at points with x and y coordinates between 0
and 1. Use this idea to write a function

montePi(darts)

that approximates the value π by repeatedly throwing random virtual darts
that land at points with x and y coordinates in [0,1). Count the number that
land at points within distance 1 of the origin, and return this fraction.

5.1.20. The Good, The Bad, and The Ugly are in a three-way gun fight (sometimes
called a “truel”). The Good always hits his target with probability 0.8, The Bad
always hits his target with probability 0.7, and The Ugly always hits his target
with probability 0.6. Initially, The Good aims at The Bad, The Bad aims at The
Good, and The Ugly aims at The Bad. The gunmen shoot simultaneously. In the
next round, each gunman, if he is still standing, aims at his same target, if that
target is alive, or at the other gunman, if there is one, otherwise. This continues
until only one gunman is standing or all are dead. What is the probability that
they all die? What is the probability that The Good survives? What about The
Bad? The Ugly? On average, how many rounds are there? Write a function

goodBadUgly()

that simulates one instance of this three-way gun fight. Your function should
return 1, 2, 3, or 0 depending upon whether The Good, The Bad, The Ugly, or
nobody is left standing, respectively. Next, write a function

monteGBU(trials)

that calls your goodBadUgly function repeatedly in a Monte Carlo simulation
to answer the questions above.

*5.2 PSEUDORANDOM NUMBER GENERATORS
This section is available on the book website.

*5.3 SIMULATING PROBABILITY DISTRIBUTIONS
This section is available on the book website.
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5.4 BACK TO BOOLEANS
In this section, we will further develop your facility with conditional expressions and
Boolean logic. (If your Boolean logic is rusty, you may want to review Section 3.2
first.)

In Python, Boolean expressions evaluate to either the value True or the value False,
which correspond to the binary values 1 and 0, respectively, that we worked with in
Section 3.2. The values True and False can be printed, assigned to variable names,
and manipulated just like numeric values. For example, try the following examples
and make sure you understand each result.

>>> print(0 < 1)
True
>>> result = 0 > 1
>>> print(result)
False
>>> name = 'Kermit'
>>> print(name == 'Gonzo')
False

The “double equals” (==) operator tests for equality; it has nothing to do with
assignment. The Python interpreter will remind you if you mistakenly use a single
equals in an if statement. For example, try this:

>>> if value = 0:
if value = 0:

^
SyntaxError: invalid syntax

However, the interpreter will not catch the error if you mistakenly use == in an
assignment statement. For example, try this:

>>> value = 1
>>> value == value + 1 # increment value?
False

In a program, nothing will be printed as a result of the second statement, and value

will not be incremented as expected. So be careful!

As we saw in Section 3.2, Boolean expressions can be combined with the Boolean
operators (or logical operators) and, or, and not. As a reminder, Figure 5.3 contains
the truth tables for the three Boolean operators, expressed in Python notation. In
the tables, the variable names a and b represent arbitrary Boolean variables or
expressions.

For example, suppose we wanted to determine whether a household has an annual
income within some range, say $40,000 to $65,000. We can use an and operator, as
we initially did to check if randi was within an interval earlier.
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a b a and b a or b not a

False False False False True

False True False True True

True False False True False

True True True True False

Figure 5.3 Combined truth table for the three Python Boolean operators.

>>> pay = 53000
>>> (pay >= 40000) and (pay <= 65000)
True
>>> pay = 12000
>>> (pay >= 40000) and (pay <= 65000)
False
>>> pay = 78000
>>> (pay >= 40000) and (pay <= 65000)
False

When 53000 is assigned to pay, the two Boolean expressions pay >= 40000 and pay

<= 65000 are both True, so (pay >= 40000) and (pay <= 65000) is also True, as
summarized in the table below.

pay pay >= 40000 pay <= 65000 (pay >= 40000) and (pay <= 65000)

53000 True True True

12000 False True False

78000 True False False

However, as shown in the second and third rows, when 12000 or 78000 is assigned
to pay, one of the components in the and expression is False, so the entire and

expression is also False.

Using an or operator in this situation would be incorrect, as you can see below.

pay pay >= 40000 pay <= 65000 (pay >= 40000) or (pay <= 65000)

53000 True True True

12000 False True True

78000 True False True

Since an or expression is True if at least one of its operands is True, the expression
(pay >= 40000) or (pay <= 65000) will be True for every possible value of pay!
(Think about it.)
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Predicate functions
We can incorporate this income test into a function like this:

def middleClass(pay):
"""Decide whether an income is classified as "middle class."

Parameter:
pay: annual household income

Return: Boolean value indicating whether pay is a middle class income
"""

if (pay >= 40000) and (pay <= 65000):
result = True

else:
result = False

return result

Functions that return Boolean values are called predicate functions. Calling
middleClass(53000) will return the value True while middleClass(12000) will
return False. But this function is equivalent to one that just returns the value of
the Boolean expression:

def middleClass(pay):
""" (docstring omitted) """

return (pay >= 40000) and (pay <= 65000)

To see that these two functions return identical values, notice that the return
value in the first version is always the same as the value of the expression
(pay >= 40000) and (pay <= 65000). If the expression is True, the function re-
turns True. If the expression is False, the function returns False. So simply returning
the value of the expression, as in the second version, accomplishes the same thing.

As another example, suppose we wanted to write a function to decide, in some for-
profit company, whether the CEO’s compensation divided by the average employees’
is at most some “fair” ratio. A simple function that returns the result of this test
looks like this:

def fair(employee, ceo, ratio):
"""Decide whether the ratio of CEO to employee pay is fair.

Parameters:
employee: average employee pay
ceo: CEO pay
ratio: the fair ratio

Return:
a Boolean indicating whether ceo / employee is fair

"""

return (ceo / employee) <= ratio
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Reflection 5.8 There is a subtle problem though with this function. What is it?

This function will not always work properly because, if the average employees’
compensation equals zero (or zero is mistakenly passed in), the division operation
will result in an error. Therefore, we have to test whether employee == 0 before
attempting the division and, if so, return False (because not paying employees is
obviously not fair). Otherwise, we want to return the result of the fairness test. The
following function implements this algorithm.

def fair(employee, ceo, ratio):
""" (docstring omitted) """

if employee == 0:
result = False

else:
result = (ceo / employee) <= ratio

return result

Short circuit evaluation
The fair function can be simplified by making use of a feature that Python applies
to both the and and or operators called short circuit evaluation . Since only
one operand of an and expression must be False for the expression to be False,
the Python interpreter does not bother to evaluate the second operand in an and

expression if the first is False. Likewise, since only one operand of an or expression
must be True for the expression to be True, the Python interpreter does not bother
to evaluate the second operand in an or expression if the first is True.

This means that our fair function can be simplified to:

def fair(employee, ceo, ratio):
""" (docstring omitted) """

return (employee != 0) and ((ceo / employee) <= ratio)

If employee is 0, then (employee != 0) is False, and the function returns
False without evaluating (ceo / employee <= ratio). On the other hand, if
(employee != 0) is True, then (ceo / employee <= ratio) is evaluated, and
the return value depends on this outcome. Notice that this would not work if the
and operator did not use short circuit evaluation because, if (employee != 0) were
False and then (ceo / employee <= ratio) was evaluated, the division would
result in a “divide by zero” error!

To illustrate the analogous mechanism with the or operator, suppose we wanted to
write the function in the opposite way, instead returning True if the ratio is unfair.
The first version of the function would look like this:
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def unfair(employee, ceo, ratio):
""" (docstring omitted) """

if employee == 0:
result = True

else:
result = (ceo / employee) > ratio

return result

However, taking advantage of short circuit evaluation with the or operator, we can
simplify the whole function to:

def unfair(employee, ceo, ratio):
""" (docstring omitted) """

return (employee == 0) or ((ceo / employee) > ratio)

In this case, if (employee == 0) is True, the whole expression returns True with-
out evaluating the division test, thus avoiding an error. On the other hand, if
(employee == 0) is False, the division test is evaluated, and the final result is
equal to the outcome of this test.

DeMorgan’s laws
Let’s now create a new function that uses a while loop to repeatedly prompt for
employee and CEO salaries, and decide whether the ratio is fair. The function will
ask at the end of each iteration whether it should continue.

def fairnessChecker():
""" (docstring omitted) """

ratio = float(input('Maximum fair ceo:employee pay ratio: '))
answer = 'y'
while answer != 'n':

employee = float(input('Employee pay: '))
ceo = float(input('CEO pay: '))
if fair(employee, ceo, ratio):

print("That's fair.")
else:

print("That's not fair.")
answer = input('Continue (y/n)? ')

Reflection 5.9 Why is answer initialized to 'y' before the loop?

The function repeatedly prompts for salaries while answer, which is obtained at the
end of the loop body, is not 'n'. If answer is not initialized before the loop, then
the while loop condition will not make sense before the first iteration. If it is not
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initialized to something other than 'n', then the loop will not iterate the first time.
It could be intialized to anything other than 'n', but 'y' makes the most sense.
Notice also that, because fair is a predicate function, we simply use its return value
as the Boolean condition in the if statement.

How can we modify the while loop condition to also allow an uppercase 'N' to exit
the loop? Should the while loop condition be changed to

(answer != 'n') and (answer != 'N')

or to

(answer != 'n') or (answer != 'N') ?

To make the correct choice, it sometimes helps to think about the opposite sit-
uation: when we want the loop to stop. This is rather easy in this case: when
answer is either 'n' or 'N'. In other words, we want the loop to stop when
(answer == 'n') or (answer == 'N'). So the while loop condition needs to be
the negation of this, or:

not((answer == 'n') or (answer == 'N')) .

We can use De Morgan’s laws, named after 19th century British mathematician
Augustus De Morgan, to express this condition in a different way. They are:

1. not (a and b) is equivalent to not a or not b.

2. not (a or b) is equivalent to not a and not b.

You may recognize these from Exercises 3.2.12 and 3.2.13, which asked you to
construct the following truth tables to prove the laws’ veracity!

a b a and b not(a and b) not a not b not a or not b

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

a b a or b not(a or b) not a not b not a and not b

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

The first law says that a and b is false if either a is false or b is false. The second law
says that a or b is false if both a is false and b is false. Applying the first law to our
condition, we find that not((answer == 'n') or (answer == 'N')) is equivalent
to

not (answer == 'n') and not (answer == 'N')

or

(answer != 'n') and (answer != 'N') .
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Operators Description

1. ** exponentiation (power)

2. +, - unary positive and negative

3. *, /, //, % multiplication and division

4. +, - addition and subtraction

5. <, <=, >, >=, !=, ==, in, not in comparison operators

6. not Boolean not

7. and Boolean and

8. or Boolean or

Table 5.2 Operator precedence, listed from highest to lowest. This is an expanded

version of Table 1.1.

Incorporating this new condition into the while loop in fairnessChecker is easy.

Let’s take the complexity one step further by changing two things. First, let’s stop
the loop when a fair pay ratio is obtained. Second, instead of iterating while answer

is anything but 'n' or 'N', let’s iterate only while answer is either 'y' or 'Y'. These
changes are incorporated into the following revised function.

1 def fairnessChecker():
2 """ (docstring omitted) """

3 ratio = float(input('Maximum fair ceo:employee pay ratio: '))
4 answer = 'y'
5 isFair = False
6 while (answer == 'y' or answer == 'Y') and not isFair:
7 employee = float(input('Employee pay: '))
8 ceo = float(input('CEO pay: '))
9 isFair = fair(employee, ceo, ratio)

10 if isFair:
11 print("That's fair.")
12 else:
13 print("That's not fair.")
14 answer = input('Continue (y/n)? ')

We have changed the test involving answer on line 6 and introduced a new Boolean
flag variable isFair to keep track of whether the current pay ratio is fair. Notice
that, to keep the while loop going, we need both answer to be 'y' or 'Y' and for
the pay ratio to be unfair, that is, not isFair. We have been using parentheses
around certain expressions in this section mostly for clarity, but the parentheses in
this while loop condition are actually necessary. As shown in Table 5.2, the and

operator has precedence over the or operator. Therefore, without the parentheses,
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the expression answer == 'Y' and not isFair would be evaluated first, and that
would not make sense.

The variable isFair is initialized to False before the loop so that it iterates at least
once, and assigned within the loop on line 9 to be the value returned by the fair

function. To avoid unnecessarily calling fair twice, we also use isFair as the if

condition. We also now only prompt to continue if the pay ratio is not fair.

Thinking inside the box
Let’s next use a random walk simulation to analyze how long it takes for a particle
(or a person) to escape an enclosed space. This sort of scenario can also simulate
how likely it is for a virus to escape quarantine if there is a slight chance of a break
out. We will use turtle graphics to visualize a simple square room with a door, as
shown below:

(0,0)

(−width, width)

(−width, −width)

(width, width)

(width, −width)

4 * radius

The variables width and radius will be set to half the width of the room and
the radius of the particle, respectively. We want to move the particle randomly
in the room while also respecting the walls. For the particle movement, we will
use a slightly different random walk in which the amount added to the particle’s
position is dictated by a normal probability distribution with mean zero. (Also see
Exercise 5.3.1.) Here is the overall idea of the algorithm in pseudocode.
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Algorithm Escape

Input: width of the room
1 draw the room with the given width and create a turtle
2 x ← 0
3 y ← 0
4 number of steps ← 0
5 repeat while the particle has not escaped:
6 number of steps ← number of steps + 1
7 make one normally distributed step, modifying x and y
8 if the particle hits a wall, then:
9 bounce back to the previous position

10 else if the particle finds the door, then:
11 escape and exit the loop
12 move the turtle to position (x, y)

Output: number of steps

The easier parts of this implementation (essentially lines 2–7), including how to
perform the random walk, look like this:

x = 0 # position of the particle
y = 0
escaped = False
numSteps = 0
while not escaped:

numSteps = numSteps + 1
dx = random.gauss(0, step) # normal with mean 0 and std dev step
dy = random.gauss(0, step)
x = x + dx
y = y + dy

# bounce off the walls and set escaped to True if
# the particle finds the door

particle.goto(x, y)

Since the normal (i.e., Gaussian) distribution is centered at zero, dx and dy can be
either positive or negative, meaning that the particle can move in any direction. The
random walk will continue until the Boolean variable escaped is set to True, which
we will implement next.

When the particle hits a wall, we want it to “bounce” back to its previous po-
sition. We can tell that the left edge of the particle is touching the west wall if
(x - radius <= -width) is true. Similarly, if (x + radius >= width) is true,
then the right edge of the particle must be touching the east wall. By combining
these with analogous expressions for the north and south walls, we can make the
particle bounce back like this:
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if (x - radius <= -width) or (x + radius >= width) \
or (y - radius <= -width) or (y + radius >= width):

x = x - dx # return to previous position
y = y - dy

Reflection 5.10 Why is or the correct Boolean operator here? When would the expression
be true if we used and instead?

To incorporate the door, we need to modify the condition so that it excludes the
opening in the west wall. The door opening extends from y coordinate -2 * radius

at the bottom to 2 * radius at the top. So we will know if the particle is in the
doorway if it is touching the west wall and

(y - radius >= -2 * radius) and (y + radius <= 2 * radius),

or equivalently, (y >= -radius) and (y <= radius). But we need the negation
of this expression so we can exclude the opening in the “bounce” condition.

Reflection 5.11 What is the negation of (y >= -radius) and (y <= radius)?

Using DeMorgan’s laws, the negation of this expression is

not(y >= -radius) or not(y <= radius).

Or equivalently,

(y < -radius) or (y > radius).

Therefore, the modified if condition, causing the particle to bounce back when it
touches a wall, is:

if ((x <= -width + radius) and ((y < -radius) or (y > radius))) \
or (x >= width - radius) or (y <= -width + radius) \
or (y >= width - radius):
x = x - dx
y = y - dy

elif (x <= -width + radius) and ((y >= -radius) and (y <= radius)):
escaped = True

Note that the outer parentheses around ((y < -radius) or (y > radius)) are
necessary to ensure that the expression is evaluated correctly. We added an elif

clause to catch when the particle has found the open doorway and set the flag variable
to True to end the while loop. The finished function, with drawing statements
omitted, follows. The complete function can be found on the book website.
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import random
import turtle

def escape(width):
"""Compute the number of steps required for a randomly moving

particle to escape a square room with a door.

Parameter:
width: the width of the room

Return value: the number of steps needed to escape
"""

step = 15 # standard deviation of one particle step
radius = 10 # radius of the particle

# draw the room and create a turtle named particle here (omitted)

x = 0 # position of the particle
y = 0
escaped = False
numSteps = 0
while not escaped:

numSteps = numSteps + 1
dx = random.gauss(0, step) # normal with mean 0 and std dev step
dy = random.gauss(0, step)
x = x + dx
y = y + dy

if ((x <= -width + radius) and ((y < -radius) or (y > radius))) \
or (x >= width - radius) or (y <= -width + radius) \
or (y >= width - radius):
x = x - dx
y = y - dy

elif (x <= -width + radius) and ((y >= -radius) and (y <= radius)):
escaped = True

particle.goto(x, y)

return numSteps

Reflection 5.12 How can we confirm that this expression is really correct?

To confirm that any Boolean expression is correct, we can create a truth table for it,
and then confirm that every case matches what we intended. This is often not really
necessary in practice but, at times, with really complex situations, it can reassuring.
We will illustrate by just considering the expression testing whether the particle is
touching the west wall but is not in the doorway:

(x <= -width + radius) and ((y < -radius) or (y > radius))
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In this expression, there are three separate Boolean “inputs,” one for each expression
containing a comparison operator. In the truth table, we will represent each of these
with a letter to save space:

• (x <= -width + radius) will be represented by a,

• (y < -radius) will be represented by b, and

• (y > radius) will be represented by c.

So the final expression we want to evaluate is a and (b or c).

In the truth table below, the first three columns represent our three inputs. With
three inputs, we need 23 = 8 rows, one for each possible assignment of truth values.
There is a trick to quickly writing down all the truth value combinations; see if you
can spot it in the first three columns. (We are using T and F as abbreviations for
True and False.)

a b c b or c a and (b or c)

F F F F F

F F T T F

F T F T F

F T T T F

T F F F F

T F T T T

T T F T T

T T T T T

We need to first evaluate (y < -radius) or (y > radius). The result, shown in
the fourth column, is the or of the second and third columns. Then, in the fifth
column, we and the first column with the fourth to get our final result. This column
says that the expression is true in the three highlighted cases. For our expression
to be correct, these need to be exactly the situations in which we want the particle
to bounce off the west wall. (We can assume that the particle is also within the
proper y bounds because that is checked elsewhere in the original expression.) Let’s
examine each highlighted row to make sure that this result is correct:

• row 6: a is true, b is false, and c is true

In this case, (x <= -width + radius) is true, (y < -radius) is false, and
(y > radius) is true. So the particle is touching the wall and is not below
the door and is above the door. Check.

• row 7: a is true, b is true, and c is false

In the second case, (x <= -width + radius) is true, (y < -radius) is true,
and (y > radius) is false. So the particle is touching the wall and is below
the door and is not above the door. Check.
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• row 8: a is true, b is true, and c is true

Finally, this case is when all three are true. So the particle is touching the wall
and is below the door and is above the door. This cannot possibly happen, so
it doesn’t matter that the expression is (oddly) true. Check.

Many happy returns
We often come across situations in which we want a function to return different
values depending on the outcome of a condition. The simplest example is finding the
maximum of two numbers a and b. If a is at least as large as b, we want to return a;
otherwise, b must be larger, so we return b.

def max(a, b):
""" (docstring omitted) """

if a >= b:
result = a

else:
result = b

return result

We can simplify this function a bit by returning the appropriate value right in the
if/else statement:

def max(a, b):
""" (docstring omitted) """

if a >= b:
return a

else:
return b

It may look strange at first to see two return statements in one function, but it
all makes perfect sense. Recall from Section 2.5 that return both ends the function
and assigns the function’s return value. So this means that at most one return

statement can ever be executed in a function. In this case, if a >= b is True, the
function ends and returns the value of a. Otherwise, the function executes the else

clause, which returns the value of b.

The fact that the function ends if a >= b is True means that we can simplify it even
further: if execution continues past the if part of the if/else, it must be the case
that a >= b is False. So the else is extraneous; the function can be simplified to:
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def max(a, b):
""" (docstring omitted) """

if a >= b:
return a

return b

This same principle can be applied to situations with more than two cases. Suppose
we wanted to use if statements to convert a percentage grade to a grade point (i.e.,
GPA) on a 0–4 scale. A natural implementation of this might look like the following:

def assignGP(score):
"""Returns the grade point equivalent of score.

Parameter:
score: a score between 0 and 100

Return value: the equivalent grade point value
"""

if score >= 90:
return 4

elif score >= 80:
return 3

elif score >= 70:
return 2

elif score >= 60:
return 1

else:
return 0

Reflection 5.13 Why do we not need to check upper bounds on the scores in each case? In
other words, why does the second condition not need to be score >= 80 and score < 90?

Suppose score was 92. Then the first condition is True, so the function returns the
value 4 and ends. Execution never proceeds past the statement return 4. For this
reason, the “el” in the next elif is extraneous. In other words, because execution
would never have made it there if the previous condition was True, there is no need
to tell the interpreter to skip testing this condition if that was the case.

Now suppose score was 82. In this case, the first condition would be False, so we
continue on to the first elif condition. Because we got to this point, we already
know that score < 90 (hence the omission of that check). The first elif condition
is True, so we immediately return the value 3. So there is no need for the “el” in the
second elif either because there is no need to skip testing this condition if either of
the previous conditions were True. In fact, we can remove the “el”s from all of the
elifs, and the final else, with no loss in efficiency at all.
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def assignGP(score):
""" (docstring omitted) """

if score >= 90:
return 4

if score >= 80:
return 3

if score >= 70:
return 2

if score >= 60:
return 1

return 0

Some programmers find it clearer to leave the elif statements in, and that is fine
too. We will do it both ways in the coming chapters. But, as you begin to see more
algorithms, you will probably see code like this, and so it is important to understand
why it is correct.

Exercises
Write a function for each of the following exercises. Test each one with both common and
boundary case arguments, as described on page 38, and document your test cases.

5.4.1* Write a function

password()

that asks for a username and a password. It should return True if the username
is entered as alan.turing and the password is entered as notTouring, and
return False otherwise.

5.4.2. Suppose that in a game that you are making, the player wins if her score is at
least 100. Write a function

hasWon(score)

that returns True if she has won, and False otherwise.

5.4.3. Suppose you have designed a sensor that people can wear to monitor their
health. One task of this sensor is to monitor body temperature: if it falls outside
the range 97.9○ F to 99.3○ F, the person may be getting sick. Write a function

monitor(temperature)

that takes a temperature (in Fahrenheit) as a parameter, and returns True if
temperature falls in the healthy range and False otherwise.

5.4.4* A year is a leap year if it is divisible by four, unless it is a century year in which
case it must be divisible by 400. For example, 2028 and 1600 are leap years, but
2027 and 1800 are not. Write a function

leapYear(year)

that returns the value of a single Boolean expression to indicate whether the
year is a leap year. Also write a function

leapYears(beginYear, endYear)
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that uses your leapYear function to return a list of all the leap years between
(and including) the two years given as parameters.

5.4.5* Write a function

nextLeapYear(afterYear)

that uses your leapYear function from the previous exercise to return the closest
leap year after the year given as a parameter.

5.4.6. Write a function

even(number)

that returns True if number is even, and False otherwise.

5.4.7* Write a function

between(number, low, high)

that returns True if number is in the interval [low,high] (between low and
high, including both low and high), and False otherwise.

5.4.8. Write a function

justOne(a, b)

that returns True if exactly one (but not both) of the numbers a or b is 10, and
False otherwise.

5.4.9. Write a function

roll()

that simulates rolling two of the loaded dice implemented in Exercise 5.1.9 (by
calling the function loaded), and returns True if the sum of the dice is 7 or 11,
or False otherwise.

5.4.10. The following function returns a Boolean value indicating whether an integer
number is a perfect square. Rewrite the function in one line, taking advantage
of the short-circuit evaluation of and expressions.

def perfectSquare(number):
if number < 0:

return False
else:

return math.sqrt(number) == int(math.sqrt(number))

5.4.11. Write a function

previousSquare(before)

that uses your perfectSquare function from the previous exercise to return the
maximum perfect square smaller than the number given as a parameter. If the
parameter is not positive, return 0.

5.4.12* Write a function

winner(score1, score2)

that returns 1 or 2, indicating whether the winner of a game is Player 1 or
Player 2. The higher score wins and you can assume that there are no ties.

5.4.13. Repeat the previous exercise, but also return 0 to indicate a tie.
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5.4.14* Your firm is looking to buy computers from a distributor for $1500 per machine.
The distributor will give you a 5% discount if you purchase more than 20
computers. Write a function

cost(quantity)

that takes as a parameter the quantity of computers you wish to buy, and
returns the cost of buying them from this distributor.

5.4.15. Repeat the previous exercise, but add three more parameters: the cost per
machine, the number of computers necessary to get a discount, and the discount.

5.4.16. The speeding ticket fine in a nearby town is $50 plus $5 for each mph over the
posted speed limit. In addition, there is an extra penalty of $200 for all speeds
above 90 mph. Write a function

fine(speedLimit, clockedSpeed)

that returns the fine amount (or 0 if clockedSpeed ≤ speedLimit).

5.4.17. Write a function

gradeRemark()

that prompts for a grade, and then returns
the corresponding remark (as a string) from
the table to the right.

Grade Remark

96–100 Outstanding
90–95 Exceeds expectations
80–89 Acceptable
1–79 Trollish

5.4.18. Write a function that takes two integer values as parameters and returns their
sum if they are not equal and their product if they are.

5.4.19. Write a function

amIRich(amount, rate, years)

that accumulates interest on amount dollars at an annual rate of rate percent
for a number of years. If your final investment is at least double your original
amount, return True; otherwise, return False.

5.4.20* Write a function

maxOfThree(a, b, c)

the returns the maximum value of the parameters a, b, and c. Be sure to test it
with many different numbers, including some that are equal.

5.4.21. Write a function

shipping(amount)

that returns the shipping charge for an online retailer based on a purchase of
amount dollars. The company charges a flat rate of $6.95 for purchases up to
$100, plus 5% of the amount over $100.

5.4.22* Write a function

oddFactors(number)

that returns a list of all of the odd factors of the given number. For example,
oddFactors(66) should return the list [3, 11, 33].
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5.4.23. Write a function

commonFactors(number1, number2)

that returns a list containing all of the common factors of two numbers. For
example, commonFactors(18, 36) should return the list [2, 3, 6, 9, 18].

5.4.24. Write a function

isPrime(number)

that checks whether a given number is prime. The function should return True

if the number is prime and False otherwise. (Use a for loop.) Then write a
function

primes(begin, end)

that uses your isPrime function to return a list of all prime numbers between
(and including) the two numbers given as parameters.

5.4.25. Write a function

nextPrime(after)

that uses your isPrime function from the previous exercise to return the smallest
prime number after the number given as a parameter.

5.4.26. Starting with two positive integers a and b, consider the sequence in which
the next number is the digit in the ones place of the sum of the pre-
vious two numbers. For example, if a = 1 and b = 1, the sequence is
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0, . . . Write a function

mystery(a, b)

that returns the length of the sequence when the last two numbers repeat the
values of a and b for the first time. (When a = 1 and b = 1, the function should
return 62.)

5.4.27. The Chinese zodiac relates each year to an
animal in a twelve-year cycle. The animals
for one particular cycle are given in the
table to the right. Write a function

zodiac(year)

that takes as a parameter a year (this
could be any year in the past or future)
and returns the corresponding animal as
a string. Then write another function

zodiacTable(beginYear, endYear)

Year Animal Year Animal
2004 monkey 2010 tiger
2005 rooster 2011 rabbit
2006 dog 2012 dragon
2007 pig 2013 snake
2008 rat 2014 horse
2009 ox 2015 goat

that uses your zodiac function to print a table of the zodiac animals for all
years between (and including) the two parameters.

5.4.28. Consider the rwMonteCarlo function on page 173. What will the function return
if trials equals 0? What if trials is negative? Propose a way to deal with
these issues by adding statements to the function.
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5.4.29. Write a Boolean expression that is true if a point (x,y) resides in either of the
shaded boxes below (including their boundaries), and false otherwise. Assume
that the particle is not able to ever roam outside the outermost square. The
shaded rectangle on the right represents all points with x coordinates at least d.

(-d,-d)
(0,0)

(d,0)

5.4.30. Use a truth table to show that the expression you derived in the previous exercise
is correct.

5.4.31. Use a truth table to show that the Boolean expressions

(x > d and y > d) or (x < -d and y > d)

and

(y > d) and (x > d or x < -d)

are equivalent.

5.4.32. Write a function

drawRow(tortoise, row)

that uses turtle graphics to draw one row of an 8 × 8 red/black checkerboard. If
the value of row is even, the row should start with a red square; otherwise, it
should start with a black square. You may want to use the drawSquare function
you wrote in Exercise 2.3.11. Your function should only need one for loop and
only need to draw one square in each iteration.

5.4.33. Write a function

checkerBoard(tortoise)

that draws an 8 × 8 red/black checkerboard, using the function you wrote in
Exercise 5.4.32.
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5.5 DEFENSIVE PROGRAMMING
At the end of the first chapter, we previewed the coming attractions by pointing
out that once your toolbox contained the four types of statements you now know—
assignments, arithmetic, loops, and conditionals—the possibilities were endless.
But with great power comes great responsibility.1 On the one hand, you can let
your creativity flourish; on the other hand, you know enough to get yourself into
convoluted situations that are harder to debug. So it is time to start taking a more
deliberate approach to writing correct programs. Our strategy will be twofold. First,
we will think more carefully and rigorously about what the inputs to a problem
should look like and anticipate what might go awry if they don’t. Second, we will
start testing each function more formally with carefully chosen inputs to make sure
it really does what we think it does.

Checking parameters
When we are identifying the input to a problem, we need to also think about
constraints on the input. What class(es) should the input belong to? What range of
values make sense for the problem? How should the algorithm or function behave if
it receives input that doesn’t make sense? Thinking about these issues proactively
in advance, defensively, tends to result in more robust and correct programs. This
is especially important if other people are going to use your programs because
you cannot control what (foolish) things they might do. Taken further, defensive
programming is a key component of computer security . A security analyst’s job
is to anticipate how a criminal might exploit errors in a program to gain access to
files and resources that should be off-limits.

To illustrate these strategies, we will revisit the leapYear and nextLeapYear func-
tions from Exercises 5.4.4–5.4.5. Here are possible implementations of these functions.

def leapYear(year):
"""Determine whether a year is a leap year.

Parameter:
year: an integer year

Return value: a Boolean value indicating whether year is a leap year
"""

if year % 100 != 0: # if year is not a century year
return year % 4 == 0 # it is a leap year if divisible by 4

else: # else if year is a century year
return year % 400 == 0 # it is a leap year if divisible by 400

1Also known as the Peter Parker principle.
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def nextLeapYear(afterYear):
"""Determine the next leap year after a given year.

Parameter:
afterYear: an integer year

Return value: the next leap year
"""

year = afterYear + 1 # start looking in the next year
while not leapYear(year): # while we haven't found a leap year

year = year + 1 # keep looking ...
return year

Reflection 5.14 In the leapYear function, are there any values of year that should be
disallowed?

To answer this question, it helps to know something about the Gregorian calendar,
which is divided into two eras: the Common Era (CE) and Before the Common Era
(BCE) (or AD and BC in the Christian tradition). Both CE and BCE start at year
one; there is no year zero. Therefore, since the function does not allow a way to
specify CE or BCE, we should assume that only CE years, starting at year one, are
allowed. If any value of year less than one is given, we will simply return False by
inserting an if statement at the beginning of the function.

def leapYear(year):
"""Determine whether a year is a leap year.

Parameter:
year: an integer year greater than zero in the Common Era

Return value: a Boolean value indicating whether year is a leap year
"""

if year < 1:
return False

if year % 100 != 0: # if year is not a century year
return year % 4 == 0 # it is a leap year if divisible by 4

else: # else if year is a century year
return year % 400 == 0 # it is a leap year if divisible by 400

The highlighted requirement that year must be an integer greater than zero is called
a precondition . A precondition for a function is something that must be true when
the function is called for the function to behave correctly. But our leapYear function
currently only enforces part of the stated precondition.

Reflection 5.15 What happens if the argument passed in for year is not an integer? For
example, try calling leapYear('cookies').
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Calling leapYear('cookies') results in the following error:

TypeError: not all arguments converted during string formatting

This happens when the % operator is applied to the value of year, which is 'cookies',
and 100 in the first if statement. Because year is a string, Python is interpreting
this expression as an old kind of string formatting operation that we don’t cover. To
avoid this rather opaque error message, we need to make sure that year is an integer
at the beginning of the function. We can do this with the isinstance function,
which takes two arguments: a value and the name of a class. The function returns
True if the variable or value refers to an object (i.e., instance) of the class, and
False otherwise. For example,

>>> isinstance(5.0, int)
False
>>> isinstance(5.0, float)
True
>>> word = 'cookies'
>>> isinstance(word, str)
True
>>> isinstance(word, int)
False

To use this in the leapYear function, we replace the first if statement with

if not isinstance(year, int) or (year < 1):
return False

Reflection 5.16 The order of the two conditions in the or expression is important. Why?

Similar to a precondition, the postcondition for a function is a statement of what
must be true when the function finishes. A postcondition usually specifies what the
function returns and what, if any, side effects it has. Recall that a side effect occurs
when a global variable is modified or some other event in a function modifies a global
resource. For example, calls to print and modifications of files are considered to be
side effects because they have impacts outside of the function itself.

Reflection 5.17 What is the postcondition of the leapYear function?

The postcondition for the leapYear function is that the function returns a Boolean
indicating whether year is a leap year, which is already stated in the docstring.
Because they describe the input and output of a function, and therefore how the
function can be used, preconditions and postconditions are often included explicitly
in the docstring. For now, we will retain our docstring format and just make sure
that preconditions and postconditions are implicitly stated in our parameter and
return value sections.

The use of preconditions and postconditions is called design by contract because
the precondition and postcondition establish a contract between the function designer
and the function caller. The function caller understands that the precondition must
be met before the function is called and the function designer guarantees that, if the
precondition is met, the postcondition will also be met.
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Now let’s look at the nextLeapYear function.

Reflection 5.18 In the nextLeapYear function, what happens if afterYear is a float?
Or something else? Or a negative integer?

The precondition for the nextLeapYear function should be the same as the leapYear
function since the parameter is also a year in CE. Indeed, if afterYear is anything
but an int, then the while loop will be infinite because we modified leapYear to
always return False in these cases! So we definitely need to check that afterYear is
an int but making sure it is positive is a judgment call. If afterYear is a negative
integer, one could argue that the function behaves correctly because it will eventually
return 4, the smallest leap year in CE. On the other hand, passing in any year less
than one is technically an error because there are no valid years less than one in CE.
When in doubt, it is best to take the more cautious approach to prevent the most
errors.

Reflection 5.19 What should the nextLeapYear function return if the precondition is
not met?

Knowing what to return in this case is trickier. One option would be to return None.
But this could be inconvenient for a calling function to handle because the possible
return values are of two different types. An alternative would be to return the same
type as the normal return value (an int) but a value that the function would not
otherwise return, like zero in this case. This behavior needs to be clearly stated in
the docstring as part of the function’s postcondition.

def nextLeapYear(afterYear):
"""Determine the next leap year after a given year.

Parameter:
afterYear: an integer year greater than zero in the Common Era

Return value: the next leap year or zero if afterYear is not
a positive integer

"""

if not isinstance(afterYear, int) or (afterYear < 1):
return 0

year = afterYear + 1 # start looking in the next year
while not leapYear(year): # while we haven't found a leap year

year = year + 1 # keep looking ...
return year

Assertions
An alternative way to enforce preconditions is to raise an exception in lieu of
letting the function return normally. This is precisely what happens when the
Python interpreter displays a TypeError or a ValueError and aborts a program. A
built-in function raises an exception when something goes wrong and the function
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cannot continue. When a function raises an exception, it does not return normally.
Instead, execution of the function ends at the moment the exception is raised and
execution instead continues in part of the Python interpreter called an exception
handler. By default, the exception handler prints an error message and aborts the
entire program.

It is possible for our functions to also raise TypeError and ValueError exceptions,
but we will not address this option until Chapter 12. We will instead consider just
one particularly simple type of exception called an AssertionError, which may be
raised by an assert statement. An assert statement tests a Boolean condition,
and raises an AssertionError if the condition is False. If the condition is True,
the assert statement does nothing. For example,

>>> year = 2021
>>> assert year > 0 # does nothing
>>> year = -1
>>> assert year > 0
AssertionError
>>> assert year > 0, 'year must be a positive'
AssertionError: year must be a positive

The first assert statement above does nothing because the condition being as-
serted is True. But the condition in the second assert statement is False, so an
AssertionError exception is raised. The third assert statement demonstrates that
we can also include an informative message to accompany an AssertionError.

We can replace the first if statement in our leapYear function with one or more
assertions to catch both types of errors that we discussed previously:

assert isinstance(year, int), 'year must be an integer'
assert year > 0, 'year must be positive'

Or, we could combine them into one assert statement:

assert isinstance(year, int) and (year > 0),
'year must be a positive integer'

This statement is saying that year must both be an integer and positive. If either of
these conditions is False, then the assert statement will display

AssertionError: year must be a positive integer

and abort the program.

Reflection 5.20 Call this modified version of leapYear from the nextLeapYear function.
What happens now when you call nextLeapYear(2020.4)?

Note that, since the assert statement aborts the entire program, it should only be
used in circumstances in which there is no other reasonable course of action. But
the definition of “reasonable” usually depends on the circumstances.
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Unit testing
The only way to really ensure that a function is correct is to either mathematically
prove it is correct or test it with every possible input. But since both of these
strategies are virtually impossible in all but the most trivial situations, the best we
can do is to test our functions with a variety of carefully chosen inputs that are
representative of the entire range of possibilities. In large software companies, there
are dedicated teams whose sole jobs are to design and carry out tests of individual
functions, the interplay between functions, and the overall software project.

In the context of a program with many functions, it is very important to test
each function before you move on to other functions. The process of writing a
program consists of multiple iterations of Polya’s four-step process, as we outlined
in Chapter 1.

1. Understand the problem.

2. Design an algorithm.

3. Write a program.

4. Look back.

Once you come up with an overall design and identify what functions you need
in your program, you should follow the “Design–Program–Test” process in steps
2–4 for each function individually. If you do not follow this advice and instead test
everything for the first time when you think you are done, it will be very hard to
discern where your errors are and you are guaranteed to waste all sorts of time. As
you test each function, you are likely to discover situations that you had not thought
of previously, sending you back to the drawing board, so to speak. If you discover
these issues too late, they may have adverse effects on everything else and throw
your whole project into disarray.

We will group our tests for each function in what is known as a unit test . The
“unit” in our case will be an individual function, but in general it may be any block
of code with a specific purpose. Each unit test will itself be a function, named test_

followed by the name of the function that we are testing. For example, our unit test
function for the leapYear function will be named test_leapYear. Each unit test
function will contain several individual tests, each of which will assert that calling
the function with a particular set of parameters returns the correct answer.

Let’s design a unit test for the leapYear function. We will assume that the functions
we are testing are checking preconditions with if statements rather than assertions.
We will start with a few easy tests:

def test_leapYear():
assert leapYear(2024) == True
assert leapYear(2025) == False

print('Passed all tests of leapYear!')

(Since leapYear returns a Boolean value, these could also be written as



5.5 DEFENSIVE PROGRAMMING � 205

Tangent 5.2: Unit testing frameworks

Python also provides two modules to specifically facilitate unit testing. The doctest

module provides a way to incorporate tests directly into function docstrings. The
unittest module provides a fully featured unit testing framework that automates the
unit and regression testing process, and is more similar to the approach we are taking
in this section. If you would like to learn more about these tools, visit

http://docs.python.org/3/library/development.html

assert leapYear(2024) and assert not leapYear(2025).) Add this function to
the same file as your leapYear and nextLeapYear functions. Also include another
function that will call all of your unit tests:

def test():
test_leapYear()

Reflection 5.21 What is printed by the assert statements in the test_leapYear func-
tion when you call the test function?

If the leapYear function is working correctly, nothing should be printed by
the assert statements. On the other hand, if the leapYear function were
to fail one of the tests, the program would abort at that point with an
AssertionError exception. To see this, change the first assertion to (incorrectly)
read assert leapYear(2024) == False. Then rerun the program. You should see

Traceback (most recent call last):

⋮ (order of function calls displayed here)

assert leapYear(2024) == False
AssertionError

This error tells you which assertion failed so that you can track down the problem.
(In this case, there is no problem; change the assert statement back to the correct
version.)

On their own, the results of these two tests do not provide enough evidence to show
that the leapYear function is correct. As we first discussed back in Section 1.4,
we need to choose a variety of tests that are representative of the entire range of
possibilities. The input that we use for a particular test is called a test case . As
we first saw back on page 38, we can generally divide test cases into common case,
boundary cases, and corner cases.

Common cases

First, test the function on several straightforward inputs to make sure that its basic
functionality is intact, as we started to do above. Be sure to choose test cases that
cover the range of possible inputs and possible outputs.

http://docs.python.org/3/library/development.html
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assert leapYear(2024) == True
assert leapYear(2025) == False
assert leapYear(1969) == False
assert leapYear(1900) == False
assert leapYear(40) == True
assert leapYear(11111) == False

Boundary and corner cases

A boundary case is an input that rests on a boundary of the range of legal inputs or
on the boundary between different outputs. In the case of the leapYear function, we
want to test the function on the smallest allowable years. (If there were a maximum
year, we would want to test that too.) We also want to test on inputs that are next
to each other but result in different answers.

assert leapYear(1) == False
assert leapYear(0) == False
assert leapYear(-1) == False
assert leapYear(4) == True

assert leapYear(2019) == False
assert leapYear(2020) == True
assert leapYear(2021) == False

Reflection 5.22 Does the leapYear function pass these tests?

A corner case is any other kind of rare input that might cause the function to
break. For the leapYear function, our boundary cases took care of most of these.
Thinking up pathological corner cases is an acquired skill that comes with experience.
Many companies pay top dollar for programmers whose sole job is to discover corner
cases that break their software!

After adding test cases for the nextLeapYear function, our program looks like this:

# test_leapyear.py

def test_leapYear():
# omitted here...

def test_nextLeapYear():
assert nextLeapYear(2020) == 2024 # common cases
assert nextLeapYear(2025) == 2028
assert nextLeapYear(1899) == 1904
assert nextLeapYear(100) == 104
assert nextLeapYear(11111) == 11112

assert nextLeapYear(1) == 4 # boundary cases
assert nextLeapYear(0) == 0
assert nextLeapYear(-100) == 0
assert nextLeapYear(2023) == 2024
assert nextLeapYear(2024) == 2028
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print('Passed all tests of nextLeapYear!')

def test():
test_leapYear()
test_nextLeapYear()

test()

Notice that we always call all of the individual test functions from test(). This is
called regression testing ; we will revisit this in the next chapter.

Testing floats
Special care must be taken when testing functions that return floating point numbers.
To see why, consider the following small function.

def addFloats(steps):
total = 0
for count in range(steps):

total = total + 0.0001
return total

If we call this function with addFloats(1000000), the loop adds one ten-thousandth
one million times, so the answer should be one hundred. However, if we try to test this
with assert addFloats(1000000) == 100.0, the assert will fail because rounding
errors caused the value of total to be slightly greater than 100. To deal with this
inconvenience, we need to always test floating point values within a range instead.
In this case, the following assert statement is much more appropriate:

assert (addFloats(1000000) > 99.9999) and (addFloats(1000000) < 100.0001)

The size of the range that you test will depend on the accuracy that is necessary in
your particular application.

Catching exceptions
As you know, when exceptions like ValueError or TypeError are raised, the default
behavior is for the program to abort. However, it is possible to change this behavior
by “catching” exceptions. A good application of this is testing whether numeric
values are received by input functions. For example, consider the first prompt in
the fairnessChecker function on page 186.

ratio = float(input('Maximum fair ceo:employee pay ratio: '))

If one mistakenly enters a non-numeric value at this prompt, the float function will
generate a ValueError exception like this:

Maximum fair ceo:employee pay ratio: cookies

ValueError: could not convert string to float: 'cookies'

To avoid this behavior and print a more helpful error message, we can use a
try/except statement:
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try:
ratio = float(input('Maximum fair ceo:employee pay ratio: '))

except ValueError:
print('The ratio must be a number.')
return

If an exception is raised while executing the statement(s) in the try clause, execution
immediately jumps to an except clause for that exception. In this case, if a value is
entered that cannot be converted by the float function, triggering a ValueError

exception, the print statement in the except clause will be executed followed by a
return to end the function since it cannot go forward without a value for ratio.
If an exception is generated but no matching except clause is found, the default
behavior (usually aborting the program) is followed. After executing the except

clause, execution continues normally. If no exception occurs in the try clause, then
the except clause is skipped.

An even nicer solution would be to place the input function in a loop to prompt
again if an exception is raised.

good = False
while not good:

try:
ratio = float(input('Maximum fair ceo:employee pay ratio: '))

except ValueError:
print('Please enter a number.')

else: # no exception was raised
good = True # so end the loop

The optional else clause is executed if no exception is raised in the try clause. In
this case, if a ValueError exception is raised, the print in the except clause is
executed and the prompt is issued again. If no exception is raised, good is set to
True, causing the loop to end.

Exercises
For each of the following functions from earlier chapters, (a) write a suitable precondition
and postcondition, and (b) add assert statement(s) to enforce your precondition.

5.5.1* import math

def volumeSphere(radius):
return (4 / 3) * math.pi * (radius ** 3)

5.5.2. def fair(employee, ceo, ratio):
return (ceo / employee <= ratio)

5.5.3. def middleClass(pay):
return (pay >= 40000) and (pay <= 65000)
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5.5.4. def windChill(temperature, windSpeed):
# Note: only valid for temperatures <= 10 degrees Celsius
# and wind speeds above 4.8 km/h.
chill = 13.12 + 0.6215 * temperature \

+ (0.3965 * temperature - 11.37) \
* windSpeed ** 0.16

temperature = round(chill)
return temperature

5.5.5* import turtle

def plot(tortoise, n):
for x in range(-n, n + 1):

tortoise.goto(x, x * x)

5.5.6. def pond(years):
population = 12000
for year in range(1, years + 1):

population = 1.08 * population - 1500
return population

5.5.7. def decayC14(originalAmount, years, dt):
amount = originalAmount
k = -0.00012096809434
numIterations = int(years / dt) + 1
for i in range(1, numIterations):

amount = amount + k * amount * dt
return amount

5.5.8. def argh(n):
return 'A' + ('r' * n) + 'gh!'

Design a thorough unit test for each of the following functions. If you discover errors during
your testing, identify and fix them.

5.5.9* def assignGP(score):
"""Assign a grade point to a score between 0 and 100."""

if score >= 90:
return 4

if score >= 80:
return 3

if score >= 70:
return 2

if score >= 60:
return 1

return 0
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5.5.10. def power(base, exponent):
"""Compute base ** exponent."""

count = 0
result = 1
while count <= exponent:

result = result * base
count = count + 1

return result

5.5.11. def factorial(n):
"""Compute n! = 1 * 2 * 3 * ... * n."""

result = 1
for number in range(n):

result = result * number
return result

5.5.12* Design a thorough unit test for the volumeSphere function in Exercise 5.5.1.

5.5.13. Design a thorough unit test for the windChill function in Exercise 5.5.4.

5.5.14. Design a thorough unit test for the decayC14 function in Exercise 5.5.7.

Add a try/except clause within a loop to each of the two following functions to re-prompt
for input if converting it to a number causes an exception.

5.5.15* def daysAlive():
text = input('How old are you? ')
age = int(text)
print('You have been alive for', round(age * 365.25), 'days!')

5.5.16. def guessMyNumber():
myNumber = random.randrange(1, 11)
guess = int(input('Guess a number from 1 to 10: '))
if guess == myNumber:

print('Nice guess!')
else:

print('Nope.')

5.5.17. An alternative way to deal with a possible division by zero error in the fair func-
tion on page 182 is to let the division happen and catch the ZeroDivisionError
exception if it occurs. Modify the function, shown below, in this way. The func-
tion should return 0 if division by zero is detected.

def fair(employee, ceo, ratio):
return (ceo / employee) <= ratio

5.6 GUESS MY NUMBER
In this section, we will design a function to play the classic “I’m thinking of a number”
game to practice a bit more with complex conditionals and while loops. Here is a
first attempt at a function to play the game.



5.6 GUESS MY NUMBER � 211

import random

def guessingGame(maxGuesses):
"""Plays a guessing game. The human player tries to guess

the computer's number from 1 to 100.

Parameter:
maxGuesses: the maximum number of guesses allowed

Return value: None
"""

secretNumber = random.randrange(1, 101)
for guesses in range(maxGuesses):

myGuess = input('Please guess my number: ')
try:

myGuess = int(myGuess)
except ValueError:

myGuess = 0 # count this as a miss

if myGuess == secretNumber: # win
print('You got it!')

else: # try again
print('Nope. Try again.')

The randrange function returns a random integer that is at least the value of its first
argument, but less than its second argument (similar to the way the range function
interprets its arguments). After the function chooses a random integer between 1
and 100, it enters a for loop that will allow us to guess up to maxGuesses times.
The function prompts us for our guess with the input function, and then assigns
the response to myGuess as a string. Because we want to interpret the response as
an integer, we use the int function to convert the string. If myGuess cannot be
converted to an int, we catch the exception and assign myGuess to 0 so it will count
as a missed guess. Once it has myGuess, the function uses the if/else statement to
tell us whether we have guessed correctly. After this, the loop will give us another
guess, until we have used them all up.

Reflection 5.23 Try playing the game by calling guessingGame(20). Does it work? Is
there anything we need to improve?

You may have noticed three issues:

1. After we guess correctly, unless we have used up all of our guesses, the loop
iterates again and gives us another guess. Instead, we want the game to end.

2. It would be much friendlier for the game to tell us whether an incorrect guess
is too high or too low.

3. If we do not guess correctly in at most maxGuesses guesses, the last thing we see
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is 'Nope. Try again.' before the function ends. But there is no opportunity
to try again; instead, it should tell us that we have lost.

We will address these issues in order.

Ending the game nicely
Our current for loop, like all for loops, iterates a prescribed number of times.
Instead, we want the loop to only iterate for as long as we need another guess.
So this is another instance that calls for a while loop. In this case, we need the
loop to iterate while we have not guessed the secret number, in other words, while
myGuess != secretNumber. But we also need to stop when we have used up all of
our guesses, as counted by the index variable guesses. So we also want our while

loop to iterate while guesses < maxGuesses. Since both of these conditions must
be True for us to keep iterating, our desired while loop condition is:

while (myGuess != secretNumber) and (guesses < maxGuesses):

Because we are replacing our for loop with this while loop, we will now need to
manage the index variable manually. We do this by initializing guesses = 0 before
the loop and incrementing guesses in the body of the loop. Here is the updated
function with these changes highlighted:

def guessingGame(maxGuesses):
""" (docstring omitted) """

secretNumber = random.randrange(1, 101)
myGuess = 0
guesses = 0
while (myGuess != secretNumber) and (guesses < maxGuesses):

myGuess = input('Please guess my number: ')
try:

myGuess = int(myGuess)
except ValueError:

myGuess = 0
guesses = guesses + 1 # increment # of guesses
if myGuess == secretNumber: # win

print('You got it!')
else: # try again

print('Nope. Try again.')

Reflection 5.24 Notice that we have also included myGuess = 0 before the loop. Why
do we bother to assign a value to myGuess before the loop? Is there anything special about
the value 0? (Hint: try commenting it out.)

If we comment out myGuess = 0, we will see the following error on the line containing
the while loop:

UnboundLocalError: local variable 'myGuess' referenced before assignment

This error means that we have referred to an unknown variable named myGuess. The
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name is unknown to the Python interpreter because we had not defined it before
it was first referenced in the while loop condition. Therefore, we need to initialize
myGuess before the while loop, so that the condition makes sense the first time it
is tested. Recall from Section 4.3 that this was one of the two important things to
remember about while loops. We initialize myGuess to 0, a value that cannot be
the secret number, to make sure the loop iterates at least once.

The second important consideration for while loops is to ensure that the condition
will eventually become false. For the and expression in this while loop to become false,
either (myGuess != secretNumber) must be false or (guesses < maxGuesses)

must be false. This reasoning is the same as De Morgan’s first law that we discussed
in the previous section.

Reflection 5.25 How do the statements in the body of the loop ensure that eventually
(myGuess != secretNumber) or (guesses < maxGuesses) will be False?

Prompting for a new guess creates the opportunity for the first part to become
False, while incrementing guesses ensures that the second part will eventually
become False. Therefore, we cannot have an infinite loop.

Friendly hints
Inside the loop, we currently handle two cases: (1) we win, and (2) we do not win
but get another guess. To be friendlier, we should split the second case into two
subcases: (2a) our guess was too low, and (2b) our guess was too high. We can
accomplish this by replacing the not-so-friendly print('Nope. Try again.') with
another if/else that decides between the two new subcases:

if myGuess == secretNumber: # win
print('You got it!')

else: # try again
if myGuess < secretNumber: # too low

print('Too low. Try again.')
else: # too high

print('Too high. Try again.')

Now, if myGuess == secretNumber is false, we execute the first else clause, the
body of which is the new if/else construct. If myGuess < secretNumber is true,
we print that the number is too low; otherwise, we print that the number is too high.

Reflection 5.26 Do you see a way in which the conditional construct above can be
simplified?

The conditional construct above is really just equivalent to a decision between three
disjoint possibilities: (a) the guess is equal to the secret number, (b) the guess is less
than the secret number, or (c) the guess is greater than the secret number. In other
words, it is equivalent to:
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if myGuess == secretNumber: # win
print('You got it!')

elif myGuess < secretNumber: # too low
print('Too low. Try again.')

else: # too high
print('Too high. Try again.')

A proper win/lose message
Now inside the loop, we currently handle three cases: (a) we win, and (b) our guess
is too low and we get another guess, and (c) our guess is too high and we get another
guess. But we are missing the case in which we run out of guesses. In this situation,
we want to print something like 'Too bad. You lose.' instead of one of the “try
again” messages.

Reflection 5.27 How can we augment the if/elif/else statement so that it correctly
handles all four cases?

In the game, if we incorrectly use our last guess, then two things must be true
just before the if condition is tested: myGuess is not equal to secretNumber and
guesses is equal to maxGuesses. So we can incorporate this condition into the
if/elif/else too:

if (myGuess != secretNumber) and (guesses == maxGuesses): # lose
print('Too bad. You lose.')

elif myGuess == secretNumber: # win
print('You got it!')

elif myGuess < secretNumber: # too low
print('Too low. Try again.')

else: # too high
print('Too high. Try again.')

Notice that we have made the previous first if statement into an elif statement
because we only want one of the four messages to be printed. However, here is an
alternative structure that is more elegant:

if myGuess == secretNumber: # win
print('You got it!')

elif guesses == maxGuesses: # lose
print('Too bad. You lose.')

elif myGuess < secretNumber: # too low
print('Too low. Try again.')

else: # too high
print('Too high. Try again.')

By placing the new condition second, we can leverage the fact that, if we get to the
first elif, we already know that myGuess != secretNumber. Therefore, we do not
need to include it explicitly.

There is a third way to handle this situation that is perhaps even more elegant.
Notice that both of the first two conditions are going to happen at most once, and
at the end of the program. So it might make more sense to put them after the loop.
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Doing so also exhibits a nice parallel between these two events and the two parts of
the while loop condition. As we discussed earlier, the negation of the while loop
condition is

(myGuess == secretNumber) or (guesses >= maxGuesses)

So when the loop ends, at least one of these two things is true. Notice that these two
events are exactly the events that define a win or a loss: if the first part is true, then
we won; if the second part is true, we lost. So we can move the win/loss statements
after the loop, and decide which to print based on which part of the while loop
condition became false:

if myGuess == secretNumber: # win
print('You got it!')

else: # lose
print('Too bad. You lose.')

In the body of the loop, with these two cases gone, we will now need to check if we
still get another guess (mirroring the while loop condition) before we print one of
the “try again” messages:

if (myGuess != secretNumber) and (guesses < maxGuesses):
if myGuess < secretNumber: # too low

print('Too low. Try again.')
else: # too high

print('Too high. Try again.')

Reflection 5.28 Why is it not correct to combine the two if statements above into a
single statement like the following?

if (myGuess != secretNumber) and (guesses < maxGuesses) \
and (myGuess < secretNumber):

print('Too low. Try again.')
else:

print('Too high. Try again.')

Hint: what does the function print when guesses < maxGuesses is false and
myGuess < secretNumber is true?

All of these changes are incorporated into the final game shown below. As you play
it, think about what the best strategy is. Exercise 5.6.7 asks you to write a Monte
Carlo simulation to compare three different strategies for playing the game.
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import random

def guessingGame(maxGuesses):
""" (docstring omitted) """

secretNumber = random.randrange(1, 101)
myGuess = 0
guesses = 0
while (myGuess != secretNumber) and (guesses < maxGuesses):

myGuess = input('Please guess my number: ')
try:

myGuess = int(myGuess)
except ValueError:

myGuess = 0
guesses = guesses + 1 # increment # of guesses used

if (myGuess != secretNumber) and (guesses < maxGuesses):
if myGuess < secretNumber: # guess is too low

print('Too low. Try again.') # give a hint
else: # guess is too high

print('Too high. Try again.') # give a hint

if myGuess == secretNumber: # win
print('You got it!')

else: # lose
print('Too bad. You lose.')

def main():
guessingGame(10)

main()

Exercises
5.6.1* Write a function

ABC()

that prompts for a choice of A, B, or C and keeps prompting until it receives
one of those strings. Your function should return the final choice.

5.6.2. Write a function

numberPlease()

that prompts for an integer between 1 and 100 (inclusive) and continues to
prompt until it receives a number within this range. Your function should return
the final number.

5.6.3. Write a function

differentNumbers()

that prompts for two different numbers. The function should use a while loop
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to keep prompting for a pair of numbers until the two numbers are different,
and then print the final numbers.

5.6.4. Write a function

rockPaperScissorsLizardSpock(player1, player2)

that decides who wins in a game of rock-paper-scissors-lizard-Spock.2 Each
of player1 and player2 is a string with value 'rock', 'paper', 'scissors',
'lizard', or 'Spock'. The function should return 1 if player 1 wins, -1 if
player 2 wins, or 0 if they tie. Test your function by playing the game with the
following main program:

def main():
player1 = input('Player1: ')
player2 = input('Player2: ')
outcome = rockPaperScissorsLizardSpock(player1, player2)
if outcome == 1:

print('Player 1 wins!')
elif outcome == -1:

print('Player 2 wins!')
else:

print('Player 1 and player 2 tied.')

5.6.5* Write a function

yearsUntilDoubled(amount, rate)

that returns the number of years until amount is doubled when it earns the
given rate of interest, compounded annually. Use a while loop.

5.6.6. The hailstone numbers are a sequence of numbers generated by the following
simple algorithm. First, choose any positive integer. Then, repeatedly follow this
rule: if the current number is even, divide it by two; otherwise, multiply it by three
and add one. For example, suppose we choose the initial integer to be 3. Then this
algorithm produces the following sequence: 3,10,5,16,8,4,2,1,4,2,1,4,2,1, . . .
For every initial integer ever tried, the sequence always reaches one and then
repeats the sequence 4,2,1 forever after. Interestingly, however, no one has ever
proven that this pattern holds for every integer! Write a function

hailstone(start)

that prints the hailstone number sequence starting from the parameter start,
until the value reaches one. Your function should return the number of integers
in your sequence. For example, if start were 3, the function should return 8.
(Use a while loop.)

5.6.7. In this exercise, you will design a Monte Carlo simulation to compare the
effectiveness of three strategies for playing the guessing game. Each of these
strategies will be incorporated into the guessing game function we designed
in this chapter, but instead of checking whether the player wins or loses, the
function will continue until the number is guessed, and then return the number
of guesses used. We will also make the maximum possible secret number a
parameter, so that we can compare the results for different ranges of secret
numbers.

2See http://en.wikipedia.org/wiki/Rock-paper-scissors-lizard-Spock for the rules.

http://en.wikipedia.org/wiki/Rock-paper-scissors-lizard-Spock
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The first strategy is to make a random guess each time, ignoring any previous
guesses:

def guessingGame1(maxNumber):
"""Play the guessing game by making random guesses."""

secretNumber = random.randrange(1, maxNumber + 1)
myGuess = 0
guesses = 0
while (myGuess != secretNumber):

myGuess = random.randrange(1, maxNumber + 1)
guesses = guesses + 1

return guesses

The second strategy is to avoid duplicate guesses by trying every number from
1 to 100. This function is identical, except it replaces the red statement above
as follows:

def guessingGame2(maxNumber):
"""Play the guessing game by making incremental guesses."""
⋮

myGuess = myGuess + 1
⋮

Finally, the third strategy uses previous outcomes to narrow in on the secret
number:

def guessingGame3(maxNumber):
"""Play the guessing game intelligently by narrowing in

on the secret number."""

secretNumber = random.randrange(1, maxNumber + 1)
myGuess = 0
low = 1
high = maxNumber
guesses = 0
while (myGuess != secretNumber):

myGuess = (low + high) // 2
guesses = guesses + 1
if myGuess < secretNumber:

low = myGuess + 1
elif myGuess > secretNumber:

high = myGuess - 1
return guesses

Write a Monte Carlo simulation to compare the expected (i.e., average) behavior
of these three strategies. Use a sufficiently high number of trials to get consistent
results. Similarly to what we did in Section 5.1, run your simulation for a range
of maximum secret numbers, specifically 5,10,15, . . . , 100, and plot the average
number of guesses required by each strategy for each maximum secret number.
(The x-axis of your plot will be the maximum secret number and the y-axis will
be the average number of guesses.) Explain the results. In general, how many
guesses on average do you think each strategy requires to guess a secret number
between 1 and n?
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5.7 SUMMARY AND FURTHER DISCOVERY
In previous chapters, we designed deterministic algorithms that did the same thing
every time we executed them, if we gave them the same inputs. Giving those
algorithms different arguments, of course, could change their behavior, whether it
be drawing a different size shape, modeling a different population, or experimenting
with a different investment scenario. In this chapter, we started to investigate a
new class of algorithms that can change their behavior “on the fly,” so to speak.
These algorithms all make choices using Boolean logic, the same Boolean logic
on which computers are fundamentally based. By combining comparison operators
and Boolean operators, we can characterize any decision. By incorporating these
Boolean expressions into conditional statements (if/elif/else) and conditional
loops (while), we vastly increase the diversity of algorithms that we can design.
These are fundamental techniques that we will continue to use and develop over the
next several chapters, as we start to work with textual and numerical data that we
read from files and download from the web.

Notes for further discovery
This chapter’s epigraph is a famous “Yogiism,” from Hall of Fame catcher, coach,
and manager Yogi Berra [8].

If you would like to learn more about Robert Brown’s experiments, and the history
and science behind them, visit the following website, titled “What Brown Saw and
You Can Too.”

http://physerver.hamilton.edu/Research/Brownian/index.html

The Drunkard’s Walk by Leonard Mlodinow [41] is a very accessible book about
how randomness and chance affect our lives. For more information about generating
random numbers, and the differences between PRNGs and true random number
generators, visit

https://www.random.org/randomness/ .

The Park-Miller random number generator is due to Keith Miller and the late Steve
Park [46].

The Roper Center for Public Opinion Research, at Cornell University, maintains
some helpful educational resources about random sampling and errors in the context
of public opinion polling at

https://ropercenter.cornell.edu/learn/polling-and-public-opinion .

*5.8 PROJECTS
This section is available on the book website.

http://physerver.hamilton.edu/Research/Brownian/index.html
https://www.random.org/randomness/
https://ropercenter.cornell.edu/learn/polling-and-public-opinion
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Text, Documents, and DNA

So, here’s what I can say: the Library of Congress has more than 3 petabytes of digital
collections. What else I can say with all certainty is that by the time you read this, all the
numbers—counts and amount of storage—will have changed.

Leslie Johnston, former Chief of Repository Development, Library of Congress
Blog post (2012)

The roughly 2000 sequencing instruments in labs and hospitals around the world can
collectively sequence 15 quadrillion nucleotides per year, which equals about 15 petabytes
of compressed genetic data. A petabyte is 250 bytes, or in round numbers, 1000 terabytes.
To put this into perspective, if you were to write this data onto standard DVDs, the resulting
stack would be more than 2 miles tall. And with sequencing capacity increasing at a rate of
around three- to fivefold per year, next year the stack would be around 6 to 10 miles tall. At
this rate, within the next five years the stack of DVDs could reach higher than the orbit of
the International Space Station.

Michael C. Schatz and Ben Langmead
The DNA Data Deluge (2013)

Data has become a disruptive force not only in business but also in a broad swath
of academic inquiry. Some literary scholars have embraced a new research mode

known as “distant reading” in which they seek new insights through computational
analyses of entire corpora from growing digital libraries. Similarly, many historians
and political scientists are now conducting research in vast digital archives maintained
by governments, universities, and nonprofits. In the biological and medical sciences,
major advances are being driven by computational analyses of genomic data. The
list could go on and on. Despite the variety of application areas however, much of
this data shares a common underlying format. In this chapter, we will look at how
this textual data are represented in a computer, how to access them from both files
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and the web, and how to algorithmically process and analyze them to extract useful
information.

6.1 FIRST STEPS
In this section, we will finish the reading level problem that we started in Chapter 1
and, in the process, introduce some first steps in text analyses. You may recall that,
in Figure 1.4, we decomposed the reading level problem into three main subproblems,
and then decomposed those subproblems further until we arrived at four unique
leaves: computing the Flesch-Kincaid formula, computing the number of syllables in
a word, and counting the number of words and sentences in a text. We were able
to write a function pretty easily for the first of these subproblems and we wrote an
algorithm in pseudocode for the second. We will focus in this section on the last two
subproblems.

Counting words and sentences are special cases of a problem called tokenization .
A token is defined to be the basic unit of interest in a text, and tokenization is the
problem of producing a list of all of the tokens in the text. Usually tokens are words
or sentences, but they could also be numbers in a data file or individual characters
in a DNA sequence; it depends on the context. Tokenization is also the first step
in interpreting or compiling a program. In Python, tokens are names, keywords,
literals, operators, delimiters, the newline character, and indentation characters.

Defining what words and sentences are is thornier than it seems. Normally, we can
identify words in an English language text because they are separated by spaces
or punctuation. But there are always exceptions. For example, what are the rules
delimiting words and sentences in the following?

“It’s-a me—Mario!”

It’s 8:43 a.m. and I am typing from 140.141.132.1.

To keep things manageable, we will get words by simply splitting the text at runs of
one or more whitespace characters (spaces, tabs, and newlines). When we tokenize
sentences, we will split at runs of end punctuation marks (., ?, !).

Before text is analyzed, it is often simplified by removing superficial differences
between words that should be considered equivalent (e.g., The and the, 10a.m. and
10AM ), a process called normalization . Before we perform word tokenization,
we will normalize the text by making it all lowercase and removing punctuation.
(When we tokenize sentences, we will not want to remove end punctuation marks.)
Normalization can also involve spelling correction, removing plurals and other suffixes
(called stemming), standardizing verb tense (called lemmatization), and removing
common words (called stop words).

The texts that we analyze will be stored as strings. You’ll recall that a string is a
sequence of characters, and a string constant (also called a string literal) is enclosed
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WORD COUNT

TOKENIZE

REMOVE PUNCTUATION

SPLIT INTO WORDS

LOWER CASE

NORMALIZE

Figure 6.1 Functional decomposition tree for the Word Count problem.

in either single quotes (') or double quotes ("). For example, consider the following
string, with spaces ( ) shown explicitly:

>>> shortText = "This isn't long. But it'll do. \nJust a few sentences..."

Reflection 6.1 Why must this string be enclosed in double quotes rather than single
quotes?

According to our rules, the lists of word and sentence tokens in this text, after
normalization, should be:

['this', 'isnt', 'long', 'but', 'itll', 'do', 'just', 'a', 'few', 'sentences']

and

["This isn't long.", "But it'll do.", 'Just a few sentences.']

Recall that lists are delimited by square brackets ([ ]) and items are separated by
commas. So these lists contain ten and three string items, respectively. Once we
have lists of tokens like these, the lengths of the lists will give us the outputs for the
word count and sentence count algorithms.

This discussion suggests the functional decomposition of the Word Count problem
shown in Figure 6.1. As usual, we will start at the bottom of the decomposition tree
and work our way up.

Normalization
Strings, like turtles, are objects. So the string class, called str, is another example
of an abstract data type. Recall that an abstract data type hides the details of
how its data is stored, allowing a programmer to interact with it at a higher level
through methods. (As we will discuss in Section 6.3, strings are actually stored as
sequences of bytes.) One of many methods available for the str class1 will solve the

1For a list, see Appendix A.6.
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Tangent 6.1: Natural language processing

Researchers in the field of natural language processing seek to not only search and
organize text, but to develop algorithms that can “understand” and respond to it, in
both written and spoken forms. For example, Google Translate (http://translate.
google.com) performs automatic translation from one language to another in real time.
The “virtual assistants” that are becoming more prevalent on commercial websites seek
to understand your questions and provide useful answers. Cutting edge systems seek
to derive an understanding of immense amounts of unstructured data available on the
web and elsewhere to answer open-ended questions. If these problems interest you, you
might want to look at http://www.nltk.org to learn about the Natural Language
Toolkit (NLTK), a Python module that provides tools for natural language processing.
An associated book is available at http://nltk.org/book .

subproblem in the leftmost leaf in our decomposition tree. As we did with Turtle

methods, we preface the name of the method with the name of the object to which
we want the method to apply:

>>> shortText.lower()
"this isn't long. but it'll do. \njust a few sentences..."

The lower method returns a new string in which all characters in a string are made
lowercase.

To remove punctuation characters, we could use the replace method. The following
example removes all periods from shortText.

>>> shortText.replace('.', '')
"This isn't long But it'll do \nJust a few sentences"

The replace method returns a new string in which all instances of its first argument
are replaced with its second argument. In this case, we passed in the empty string
'', consisting of zero characters, for the second argument, which in effect deletes all
instances of the first argument.

Notice that neither of these methods changed the value of shortText. Indeed, none
of the string methods do because strings are immutable , meaning that they cannot
be changed. Instead, string methods always create a new string with the desired
changes, leaving the original untouched.

To remove multiple punctuation characters from a text, we could call the replace

method repeatedly, each time overwriting the previous string:

>>> newText = shortText
>>> newText = newText.replace('.', '')
>>> newText = newText.replace("'", '')
>>> newText
'This isnt long But itll do \nJust a few sentences'

http://translate.google.com
http://translate.google.com
http://www.nltk.org
http://nltk.org/book
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In a function to remove all punctuation, we would need to repeatedly call the replace
method for every punctuation character, which is both tedious and inefficient.

Reflection 6.2 Why is this inefficient? Think about how the replace method must work
and how many times each character in the text must be examined.

The replace method must examine each character in the string, compare it to the
first argument, and then replace it with the second argument. So each time we
call replace we are performing another pass across the characters in the string.
Instead, we would like to make only one pass through the string and remove every
punctuation character during that one pass.

To do this, we iterate over the characters in a string with a for loop, just like we
iterated over integers in a range. For example, the following for loop iterates over
the characters in the string shortText and prints each one.

>>> for character in shortText:
print(character)

In each iteration of this loop, the next character in the string is assigned to the
index variable character. If we wanted to omit characters from being printed, we
would put the call to print inside an if statement:

>>> for character in shortText:
if character != '.' and character != "'":

print(character)

To adapt this technique to remove punctuation, we need to create a new, modified
string in the body of the loop. In general, to create a modified string (remember that
we cannot modify the original string), we need to iterate over each character of the
original string and, in each iteration, create a new string that is the concatenation of
the growing string from the previous iteration and the current character or something
else based on the current character. The following function implements the simplest
example of this idea, in which every character is concatenated to the end of the new
string, creating an exact duplicate of the original.

def copy(text):
"""Return a copy of text.

Parameter:
text: a string object

Return value: a copy of text
"""

1 newText = ''
2 for character in text:
3 newText = newText + character
4 return newText

This technique is really just another version of an accumulator, called a string
accumulator , conceptually similar to the list accumulators that we have been using
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for plotting. The trace table below illustrates how this works when text is 'abcd'.
Changes in values are highlighted in red.

Trace arguments: text = ’abcd’

Step Line newText character Notes
1 1 '' — newText is initialized to the empty string
2 2 '' 'a' character ← 'a'
3 3 'a' 'a' newText ← '' + 'a'

4 2 'a' 'b' character ← 'b'
5 3 'ab' 'b' newText ← 'a' + 'b'

6 2 'ab' 'c' character ← 'c'
7 3 'abc' 'c' newText ← 'ab' + 'c'

8 2 'abc' 'd' character ← 'd'
9 3 'abcd' 'd' newText ← 'abc' + 'd'

Return value: 'abcd'

In the first iteration, the first character in text, which is 'a', is assigned to
character. Then newText is assigned the concatenation of the current value
of newText and character, which is '' + 'a', or 'a'. In the second iteration,
character is assigned 'b', and newText is assigned the concatenation of newText
and character, which is 'a' + 'b', or 'ab'. This continues for two more iterations,
resulting in a value of newText that is identical to the original text.

To apply this technique to remove punctuation from a string, we simply prevent the
concatenation from taking place if character is a punctuation mark:

for character in text:
if character != '.' and character != "'": # and ... etc.

newText = newText + character

Reflection 6.3 What happens if we replace the and operator with or?

Adding in another test for every remaining punctuation character would be tedious
at best, but we can simplify if conditions like this using the in operator, which
evaluates to True if one string is contained inside another string. There is also a
not in operator that has the opposite effect. For example:

>>> 'b' in 'abcd'
True
>>> 'bg' in 'abcd'
False
>>> 'b' not in 'abcd'
False

To make this even more convenient, there are string literals in the string module
that contain all of the punctuation and whitespace characters:



6.1 FIRST STEPS � 227

>>> import string

>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
>>> string.whitespace

' \t\n\r\x0b\x0c'

Notice that two of the characters in string.punctuation—\' and \\—are preceded
by a backslash. The backslash (\) character, called the escape character , causes
the following character to be interpreted literally by the interpreter rather than as a
meaningful character in the Python language. Escaping the single quote character
allows it to be contained inside a string delimited by single quotes. The backslash
character is also escaped because of its special meaning as the escape character!
In string.whitespace, the first three characters are space, tab, and newline; the
others are less common forms of whitespace that will likely not concern us.

Combining these two simplifications, we have the following function:

import string

def removePunctuation(text):
"""Remove punctuation from a text.

Parameter:
text: a string object

Return value: a copy of text with punctuation removed
"""

newText = ''
for character in text:

if character not in string.punctuation:
newText = newText + character

return newText

Now we can use this function and the lower method to write normalize:

def normalize(text):
"""Normalize a text by making it lowercase and removing punctuation.

Parameter:
text: a string object

Return value: a normalized copy of text
"""

newText = text.lower()
newText = removePunctuation(newText)
return newText
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>>> normalize(shortText)
'this isnt long but itll do \njust a few sentences'

Tokenization
The next step, as we work our way up the decomposition tree in Figure 6.1, is to
write an algorithm to split a string into words at runs of whitespace characters.
There is actually a string method named split that can do this for us. When split

is given a string argument, it returns a list of strings that are separated by that
argument. But with no arguments, split returns a list of strings that are separated
by runs of whitespace:

>>> drSeuss = 'one fish two fish red fish blue fish'
>>> drSeuss.split('fish')
['one ', ' two ', ' red ', ' blue ', '']
>>> drSeuss.split()
['one', 'fish', 'two', 'fish', 'red', 'fish', 'blue', 'fish']

Although we could use this existing method, we are going to implement the function
from scratch instead. There are two reasons for this. First, the general technique will
be useful in similar situations that the split method cannot handle (e.g., splitting
sentences at runs of end punctuation). Second, it will be another good example
of how to use string accumulators, and of how to use string and list accumulators
together.

The idea in the algorithm is to use a string accumulator to build up a string containing
a word, as long as the character we are looking at is not whitespace. When we
encounter whitespace, marking the end of the word, we want to append the word to
a list of words and then reset the word to be an empty string to capture the next
word. In pseudocode, a first draft of this algorithm can be expressed as follows.

Algorithm Split into words – Draft

Input: text
1 word list ← an empty list
2 word ← an empty string
3 repeat for each character in text:
4 if character is not whitespace:
5 word ← word + character
6 else:
7 append word to the end of word list
8 word ← an empty string

Output: word list

Notice how, in each iteration of the loop, we are either adding a character to the
word or adding a word to the list. The equivalent Python function is very similar:
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0 def splitIntoWords_Draft(text):
1 wordList = []
2 word = ''
3 for character in text:
4 if character not in string.whitespace:
5 word = word + character
6 else:
7 wordList.append(word)
8 word = ''
9 return wordList

Let’s test our function by tracing its execution on the simple string 'i am'.

Trace arguments: text = ’i am’

Step Line wordList word character Notes
1 1 [ ] — — wordList ← an empty list
2 2 [ ] '' — word ← an empty string
3 3 [ ] '' 'i' character ← 'i'
4 4 [ ] '' 'i' condition is true; execute line 5
5 5 [ ] 'i' 'i' word ← '' + 'i'

6 3 [ ] 'i' ' ' character ← ' '
7 4 [ ] 'i' ' ' condition is false; execute line 7
8 7 ['i'] 'i' ' ' append 'i' to wordList
9 8 ['i'] '' ' ' word ← an empty string
10 3 ['i'] '' 'a' character ← 'a'
11 4 ['i'] '' 'a' condition is true; execute line 5
12 5 ['i'] 'a' 'a' word ← '' + 'a'

13 3 ['i'] 'a' 'm' character ← 'm'
14 4 ['i'] 'a' 'm' condition is true; execute line 5
15 5 ['i'] 'am' 'm' word ← 'a' + 'm'

Return value: ['i']

Reflection 6.4 Why wasn’t the last word appended to the list? How do we fix the
algorithm so that it is?

If there had happened to be another space at the end of text, this would have
prompted the algorithm to append 'am'. But there wasn’t, so it didn’t. To fix this,
we need to check after the loop if there is a final word remaining to be appended
and, if so, append it:

if word != '':
wordList.append(word)

There is also a more subtle issue with our algorithm. If there happen to be consecu-
tive whitespace characters in text, then lines 7–8 will be executed in consecutive
iterations, causing empty strings to be appended to wordList. For example, calling
the function with

splitIntoWords_Draft('i am it ')



230 � 6 Text, Documents, and DNA

will return the list ['i', '', 'am', '', '', 'it']. To prevent this, we only want
to execute the else clause for the first whitespace character in a run of whitespace.

Reflection 6.5 If the value of character is whitespace, how can we tell if it is the first
in a sequence of whitespace characters? (Hint: if it is the first whitespace, what must the
previous character not be?)

If the value of character is a whitespace character, we know it is the first in a
sequence if the previous character was not whitespace. So we need to replace the
else with an elif statement that allows lines 7–8 to execute only if the previous
character was not whitespace.

These two fixes are reflected in our updated algorithm below.

Algorithm Split into words

Input: text
1 word list ← an empty list
2 word ← an empty string
3 repeat for each character in text:
4 if character is not whitespace:
5 word ← word + character
6 else if the previous character was not also whitespace:
7 append word to the end of word list
8 word ← an empty string
9 if word is not an empty string:

10 append word to the end of word list
Output: word list

In our Python function, there isn’t a way to refer to the “previous character” without
explicitly keeping track of it. So we need to save the current value of character in
a new variable prevCharacter at the end of each iteration so it is available when
character is updated in the next iteration. The final function, with new parts
highlighted, looks like this:

def splitIntoWords(text):
"""Split a text into words.

Parameter:
text: a string object

Return value: the list of words in the text
"""
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wordList = []
prevCharacter = ' '
word = ''
for character in text:

if character not in string.whitespace:
word = word + character

elif prevCharacter not in string.whitespace:
wordList.append(word)
word = ''

prevCharacter = character

if word != '':
wordList.append(word)

return wordList

Reflection 6.6 What happens if we do not initialize prevCharacter before the loop?
Why did we initialize prevCharacter to a space? Does its initial value matter?

To answer this question, let’s consider two possibilities for the value assigned to
character in the first iteration of the loop. First, suppose character is not a
whitespace character. Then the if condition will be true and the elif condition will
not be tested, so the initial value of prevCharacter does not matter. On the other
hand, if the first value assigned to character is a whitespace character, then the if

condition will be false and the elif condition will be checked. But we want to make
sure that the elif condition is false so that an empty string is not inappropriately
appended to the list of words. Setting prevCharacter to a space initially will prevent
this from happening.

Now that we have both the normalize and splitIntoWords functions, we can easily
write a tokenization function:

def wordTokens(text):
"""Break a text into words with punctuation removed.

Parameter:
text: a string object

Return value: a list of word tokens
"""

newText = normalize(text)
tokens = splitIntoWords(newText)

return tokens

And now the wordCount function is even easier. The only new thing we need is
the len function, which returns the length of its argument. When applied to lists,
it returns the number of items in the list. When applied to strings, it returns the
number of characters in the string:
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>>> len('i am it')
7
>>> len(['i', 'am', 'it'])
3

So the wordCount function simply gets a list of words from wordTokens and then
returns the length of that list.

def wordCount(text):
"""Count the number of words in a string.

Parameter:
text: a string object

Return value: the number of words in text
"""

words = wordTokens(text)
return len(words)

Creating your own module
The five functions that we wrote in this section will be very useful in the future, so
let’s package them into our own module that we can import. A module is just a
Python program that is ready to be imported. First, if you haven’t already, create a
new file that contains the five functions that we wrote in this section and name it
textlib.py.2 It should look like this (with the function bodies present, of course):

import string

def removePunctuation(text):
# body omitted

def normalize(text):
# body omitted

def splitIntoWords(text):
# body omitted

def wordTokens(text):
# body omitted

def wordCount(text):
# body omitted

def main():
# body omitted

if __name__ == '__main__':
main()

2lib is short for “library.” This is a common naming convention for modules (e.g., matplotlib).
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When a module is imported, all of the code in the module is executed, so we generally
only want a module to contain function definitions, and perhaps some assignments
of values to constants, but no function calls. To make a module dual-purpose—
to be able to be executed on its own and be imported—we need to be able to
differentiate between the two situations and only call main if the module is not
being imported. This is accomplished by checking the value of __name__ in the if

statement before calling main. As we saw back in Section 2.6, __name__ is assigned
the value '__main__' if the module is executed directly by the Python interpreter.
(If our module textlib.py is imported instead, then __name__ will be assigned
the value 'textlib'.) So now if we run our module directly in IDLE, main will be
executed, but if we import it instead, it won’t.

Testing your module
Finally, let’s test the module more completely using the techniques from the previous
chapter. We will implement our tests in a new file named test_textlib.py with
the following structure:

from textlib import *

def test_removePunctuation():
# tests of removePunctuation here

print('Passed all tests of removePunctuation!')

def test_normalize():
# tests of normalize here

print('Passed all tests of normalize!')

def test_splitIntoWords():
# tests of splitIntoWords here

print('Passed all tests of splitIntoWords!')

def test_wordTokens():
# tests of wordTokens here

print('Passed all tests of wordTokens!')

def test_wordCount():
# tests of wordCount here

print('Passed all tests of wordCount!')

def test():
test_removePunctuation()
test_normalize()
test_splitIntoWords()
test_wordTokens()
test_wordCount()

test()
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Save this program in the same folder as textlib.py so that the import statement
can find the module.

The first line of the test program imports all of the functions from textlib.py into
the global namespace of the test program. Recall from Section 2.6 that a normal
import statement creates a new namespace containing all of the functions from an
imported module. Instead, this form of the import statement imports functions
into the current namespace. The advantage is that we do not have to preface every
function call with the name of the module. If we wanted to only import some
functions, we could replace the * with a list of those to import.

Notice that the test program calls test() instead of individual unit test functions.
Besides being convenient, this technique has the advantage that, when we test new
functions, we also re-test previously tested functions. If we make changes to any one
function in a program, we want to both make sure that this change worked and make
sure that we have not inadvertently broken something that was working earlier. This
idea is called regression testing because we are making sure that our program
has not regressed to an earlier error state.

Exercise 6.1.19 below asks you to complete these unit tests. Then exercises 6.1.20–
6.1.26 challenge you to write functions for the remaining subproblems in Figure 1.4
and add them to your textlib.py module. With this complete module, you will be
able to compute the Flesch-Kincaid reading level of any text!

In the next section, we will see how to read an entire text file or web page into
a string so that you can use your module to compute the reading levels of actual
books. In the next chapter, we will use your module to, among other things, analyze
the relative frequencies of all the words and word bigrams in a text.

Exercises
Write a function for each of the following problems. Test each function with both common
and boundary case arguments, and document your test cases.

6.1.1* The string method count returns the number of occurrences of a string in
another string. For example, shortText.count('is') would return 2. Write a
function

vowels(word)

that uses the count method to return the number of vowels in the string word.
(Note that word may contain upper and lowercase letters.)

6.1.2. Write a function

whitespace(text)

that uses the count method to return the number of whitespace characters
(spaces, tabs, and newlines) in the string text.



6.1 FIRST STEPS � 235

6.1.3* Write a function

underscore(sentence)

that uses the replace string method to return a version of the string sentence

in which all the spaces have been replaced by the underscore (_) character.

6.1.4. Write a function

nospaces(sentence)

that uses the replace string method to return a version of the string sentence

in which all the spaces have been removed.

6.1.5. Write a function

txtHelp(txt)

that returns an expanded version of the string txt, which may contain texting
abbreviations like “brb” and “lol.” Your function should expand at least four dif-
ferent texting abbreviations. For example, txtHelp('imo u r lol brb') might
return the string 'in my opinion you are laugh out loud be right back'.

6.1.6* Write a function

letters(text)

that prints the characters of the string text, one per line. For example
letters('abc') should print

a
b
c

6.1.7* Write a function

countCharacter(text, letter)

that returns the number of occurrences of the one-character string named letter

in the string text, without using the count method. (Use a for loop and an
accumulator instead.)

6.1.8. Write a function

vowels(word)

that returns the same result as Exercise 6.1.1 without using the count method.
(Use a for loop instead.)

6.1.9. Write a function

replacePunctuation(text)

that uses a for loop to return a modified version of the string text in which all
punctuation characters are replaced by spaces.

6.1.10* Write a function

underscore(sentence)

that returns the same result as Exercise 6.1.3 without using the replace method.

6.1.11. Write a function

nospaces(sentence)

that returns the same result as Exercise 6.1.4 without using the replace method.
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6.1.12. Write a function

noVowels(text)

that returns a version of the string text with all the vowels removed.
For example, noVowels('this is an example.') should return the string
'ths s n xmpl.'.

6.1.13. Write a function

daffy(word)

that returns a string that has Daffy Duck’s lisp added to it (Daffy
would pronounce the ’s’ sound as though there was a ’th’ after it).
For example, daffy("That's despicable!") should return the string
"That'sth desthpicable!".

6.1.14. Write a function

reverse(text)

that returns a copy of the string text in reverse order.

6.1.15. Create a modified version of the splitIntoWords function that just counts the
words instead of appending them to a list. Your function should return the word
count and should not use a list variable.

6.1.16. Write a function

split(text, splitCharacters)

that generalizes the splitIntoWords function so that it splits text at any of
the characters, or runs of any of the characters, in the string splitCharacters.
For example, split('the best of times', 'sei') should return the list
['th', ' b', 't of t', 'm'].

6.1.17* Show how the wordCount function can be shortened to a single line by composing
functions.

6.1.18. Show how the wordTokens function can be shortened to a single line by com-
posing functions.

6.1.19. Test the five functions we developed in this section by completing the
test_textlib.py program.

The following seven exercises ask you to write the remaining functions in the reading
level problem. To guide you, Figure 6.2 shows how data flows between algorithms for the
subproblems in Figure 1.4. Consistent with prior diagrams, problem inputs are shown entering
on the left and outputs are shown exiting on the right. Values exiting nodes from the bottom
are being sent to subproblems a level below as inputs, and the outputs of subproblems are
shown returning to the caller. Add each function that you write to your textlib module,
and design a unit test for the function in test_textlib.py.

6.1.20. Write a function that implements the final Syllable Count algorithm from page 16.
Lines 1–3 of the algorithm can together be implemented in a manner very similar
to the splitIntoWords function. The idea is to only increment the count if a
vowel is the first in a run of vowels. Here is a modified algorithm showing this
idea.
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AVERAGE WORDS PER SENTENCE AVERAGE SYLLABLES PER WORD
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Figure 6.2 Flows of inputs and outputs in the reading level problem from Figure 1.4.

Algorithm Syllable Count (Version 3)

Input: a word
1 count ← 0
2 repeat for each letter in word:
3 if letter is a vowel and the previous letter is not a vowel, then:
4 count ← count + 1
5 if word ends in e, then:
6 count ← count − 1

Output: count

The last character in the word can be examined with the string method
endswith:

if word.endswith('e'):
count = count - 1

Once you have written the syllableCount function, you can get the total
number of syllables in a text with the following function.

def totalSyllableCount(text):
wordList = wordTokens(text)
count = 0
for word in wordList: # iterate over each word in wordList

count = count + syllableCount(word)
return count

Add these two functions to textlib.py and test them thoroughly in
test_textlib.py.

6.1.21. Add the function

splitIntoSentences(text)

to your textlib module. The function should return the number of sentences
in the string text. This is very similar to the splitIntoWords function except
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that it splits at runs of end punctuation marks instead of whitespace. The
function should also omit all whitespace between sentences. (If it were not for this
requirement, you could use the generalized split function from Exercise 6.1.16.)

6.1.22. Add the function

sentenceTokens(text)

to your textlib module. The function should make the text lowercase and
then use your splitIntoSentences function from Exercise 6.1.21 to return the
list of sentence tokens in the text.

6.1.23. Add the function

sentenceCount(text)

to your textlib module. The function should use your sentenceTokens function
from Exercise 6.1.22 to return the number of sentences in the string text.

6.1.24. Add the function

averageWords(text)

to your textlib module. The function should use the wordCount function and
your sentenceCount function from Exercise 6.1.23 to return the average number
of words per sentence in the string text.

6.1.25. Add the function

averageSyllables(text)

to your textlib module. The function should use your totalSyllableCount

function from Exercise 6.1.20 and the wordCount function to return the average
number of syllables per word in the string text.

6.1.26. Finally, add the function

readingLevel(text)

to your textlib module. The function should use your averageWords and
averageSyllables functions from Exercises 6.1.24 and 6.1.25, and the
fleschKincaid function from page 90 to return the Flesch-Kincaid reading
level of the string text.

6.2 TEXT DOCUMENTS
To apply our text analysis functions to full-size texts, we need to be able to read
them from files stored on a hard drive or flash drive. Like everything else in a
computer system, files are stored as sequences of bits. But we interact with files as
electronic documents containing information such as text, spreadsheets, or images.
These abstractions are mediated by a part of the operating system called the file
system. The file system organizes files in folders in a hierarchical tree, such as in the
simplified view of a macOS file system in Figure 6.3.

The root of the tree is denoted by a forward slash / symbol. Below the root in
this figure is a folder named Users where every user of the computer has a home
folder labeled with his or her name, say george. This home folder contains several
subfolders, one of which is Documents. The two subfolders in Documents are named
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CS 111

rw.py

Documents

HIST 216

george Shared

UsersSystemLibraryApplications

Python 3.8

/

dna.py reading.py

Desktop Downloads

Figure 6.3 A Finder window in macOS and its partial tree representation.

CS 111 and HIST 216. We can represent the location of a file with the path one must
follow to get there from the root. For example, the path to reading.py, colored blue,
is /Users/george/Documents/CS\ 111/reading.py. Notice the backslash before
the space in CS\ 111; this is because spaces usually need to be escaped in pathnames.
Any path without the first forward slash is considered to be a relative path, relative
to the current working directory set by the operating system. For example, if the
current working directory were /Users/george/Documents, then reading.py could
be specified with the relative path CS\ 111/reading.py.

Reading from text files
In Python, we access files through an abstraction called a file object , which we
associate with a file with the open function. For example, the following statement
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associates the file object named textFile with the file named mobydick.txt in the
current working directory.3

textFile = open('mobydick.txt', 'r')

The second argument to open is the mode to use when working with the file; 'r'
means that we want to read from the file. If a file with that filename does not exist,
a FileNotFoundError exception will be raised. If necessary, you can proactively
determine in advance whether a file exists and can be read by using a couple of
functions from the os and os.path modules:

import os
import os.path

assert os.path.isfile(fileName), fileName + ' does not exist'
assert os.access(fileName, os.R_OK), fileName + ' cannot be read'

The value os.R_OK is telling the function to check whether Reading the file is OK.

The read method of a file object reads the entire contents of a file into a string. For
example, the following statement reads the entirety of mobydick.txt into a string
assigned to the variable text.

text = textFile.read()

When you are finished with a file, it is important to close it. This signals to the
operating system that you are done using it, and ensures that any memory allocated
to the file is released. To close a file, simply use the file object’s close method:

textFile.close()

Let’s look at an example that puts all of this together. The following function reads
a file with the given file name and returns the number of words in the file using our
wordCount function from the previous section. (Remember that you will have to
save the program containing this function in the same folder as textlib.py.)

import textlib

def wordCountFile(fileName):
"""Return the number of words in the file with the given name.

Parameter:
fileName: the name of a text file

Return value: the number of words in the file
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
text = textFile.read()
textFile.close()

return textlib.wordCount(text)

3Download from the book website or http://www.gutenberg.org/files/2701/2701-0.txt.

http://www.gutenberg.org/files/2701/2701-0.txt
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The optional encoding parameter to the open function indicates how the bits in the
file should be interpreted (we will discuss what UTF-8 is in Section 6.3).

Reflection 6.7 How many words are there in the file mobydick.txt?

Now suppose we want to print a text file, formatted with line numbers to the left of
each line. A “line” is defined to be a sequence of characters that end with a newline
character. To make this easier, rather than read the whole file in at once, we can read
it one line at a time. In the same way that we can iterate over a range of integers
or the characters of a string, we can iterate over the lines in a file. When we use
a file object as the sequence in a for loop, the index variable is assigned a string
containing each line in the file, one line per iteration. For example, the following
loop prints each line in the file object named textFile:

for line in textFile:
print(line)

In each iteration of this loop, line is assigned the next line in the file, which is then
printed in the body of the loop. We can easily extend this idea to a line-numbering
function:

def lineNumbers(fileName):
"""Print the contents of a file with line numbers added.

Parameter:
fileName: the name of a text file

Return value: None
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
count = 1
for line in textFile:

print('{0:<5} {1}'.format(count, line.rstrip()))
count = count + 1

textFile.close()

The lineNumbers function combines an accumulator with a for loop that reads
the text file line by line. After the file is opened, the accumulator variable count

is initialized to one. Inside the loop, each line is printed using a format string that
precedes the line with the current value of count. The rstrip() method removes
whitespace from the right end of the string. (There are also lstrip() and strip()

methods. See Appendix A.6.) At the end of the loop, the accumulator is incremented
and the loop repeats.

Reflection 6.8 What effect does the rstrip method have? What happens if you replace
line.rstrip() with just line?

Reflection 6.9 How would the output change if count was incremented before calling
print instead?
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Reflection 6.10 How many lines are there in the file mobydick.txt?

Writing to text files
We can also create new files or write to existing ones. To write text to a new file, we
first have to open it using 'w' (“write”) mode:

newTextFile = open('newfile.txt', 'w')

Opening a file in this way will create a new file named newfile.txt, if a file by
that name does not exist, or overwrite the file by that name if it does exist. (So
be careful!) To append to the end of an existing file, use the 'a' (“append”) mode
instead. Once the file is open, we can write text to it using the write method:

newTextFile.write('Hello.\n')

The write method does not write a newline character at the end of the string by
default, so we have to include one explicitly, as desired.

Remember to always close the new file when you are done.

newTextFile.close()

Closing a file to which we have written ensures that the changes have actually been
written to the drive. To improve efficiency, an operating system does not necessarily
write text out to the drive immediately. Instead, it usually waits until a sufficient
amount builds up, and then writes it all at once. Therefore, if you forget to close a
file and your computer crashes, your program’s last writes may not have actually
been written. (This is one reason why we sometimes have trouble with corrupted
files after a computer crash.)

The following function highlights how to modify the lineNumbers function so that
it writes the file with line numbers directly to another file instead of printing it.

def lineNumbersFile(fileName, newFileName):
"""Write the contents of a file to a new file with line numbers added.

Parameters:
fileName: the name of a text file
newFileName: the name of the output text file

Return value: None
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
newTextFile = open(newFileName, 'w')
count = 1
for line in textFile:

newTextFile.write('{0:<5} {1}\n'.format(count, line.rstrip()))
count = count + 1

textFile.close()
newTextFile.close()
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Reading from the web
We can also read text directly from the web using the urllib.request module. The
function urlopen returns a file object abstraction for a web page that is similar to
the one returned by open. The urlopen function takes a web page address, formally
known as a URL, or uniform resource locator , as a parameter. URLs normally begin
with the prefix http:// (http is short for hypertext transfer protocol).

Let’s download a book from Project Gutenberg (www.gutenberg.org), a vast repos-
itory of free classic literature. Mary Shelley’s Frankenstein, for example, can be
downloaded like this:

>>> import urllib.request as web

>>> webPage = web.urlopen('http://www.gutenberg.org/files/84/84-0.txt')
>>> rawBytes = webPage.read()

>>> webPage.close()

Behind the scenes, the Python interpreter communicates with a web server over
the Internet to read this web page. But thanks to the magic of abstraction, we did
not have to worry about any of those details. To find the URL for a different book,
search for it on Project Gutenberg’s web page and then find the link for the “Plain
Text UTF-8” version. After you click on the link, copy the URL and use it as the
argument to the urlopen function.

Because the urlopen function does not accept an encoding parameter, the read

function cannot tell how the text of the web page is encoded. Therefore, read returns
a bytes object instead of a string. A bytes object contains a sequence of raw bytes
that are not interpreted in any particular way. To convert the bytes object to a
string before we print it, we can use the decode method, as follows:

>>> text = rawBytes.decode('utf-8')

(Again, we will see what UTF-8 is in Section 6.3.) Now text refers to the entire
440 KB text of Frankenstein and can be used like any other string.

Reflection 6.11 Write a short program with these statements that uses your wordCount

function to find the number of words in Frankenstein. (You should get about 78,000.)

It’s worth noting that the vast majority of content on the web is not plain text like
this. Rather it is written in HTML (short for hypertext markup language), which is
the language that web browsers “understand.” To see what HTML looks like, try
this:

>>> webPage = web.urlopen('http://stibitz.denison.edu')
>>> rawBytes = webPage.read()

>>> rawBytes.decode('utf-8')

What you see printed is the HTML code for the main web page at this address.

www.gutenberg.org
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Exercises
6.2.1. If you implemented the readingLevel function in Exercise 6.1.26, write a

function

readingLevelFile(fileName)

that returns the Flesch-Kincaid reading level of the file with the given fileName.

6.2.2. Modify the lineNumbers function so that it only prints a line number on every
tenth line (for lines 1,11,21, . . .).

6.2.3* Write a function

lowerCaseFile(fileName)

that prints the contents of a file with every character converted to lowercase.
Read the file one line at a time in a loop.

6.2.4. Write a function

wordCountLines(fileName)

that uses the wordCount function from your textlib module to print the
number of words in each line of the file with the given fileName.

6.2.5. Write a function

paragraphCount(fileName)

that returns the number of paragraphs in the file with the given fileName.
Assume that paragraphs are separated by one or more blank lines.

6.2.6* Write a function

plotWordsPerParagraph(fileName)

that uses matplotlib.pyplot and the wordCount function from your textlib
module to plot the number of words in the paragraphs of the file with the given
fileName. Assume that paragraphs are separated by one or more blank lines.

6.2.7. Write a function

plotIsPerParagraph(fileName)

that plots the fraction of words that are the word “I” in the paragraphs
of fileName. You may find the string method count helpful. Assume that
paragraphs are separated by one or more blank lines. Use matplotlib.pyplot

and the wordCount function from your textlib module.

6.2.8. Write a function

plotWordsPerChapter(fileName, chapterOneStart)

that uses matplotlib.pyplot and the wordCount function from your textlib
module to plot the number of words in the chapters of the book with the given
fileName. Assume that new chapters begin when the word “chapter” is the first
non-whitespace word on a line and the previous line is blank. (See the string
method startswith in Appendix A.6.) The parameter chapterOneStart is the
line number of the first chapter in the book. Your function should begin by
skipping this many lines to get past the table of contents and any other front
matter in the text. Remember to include the last chapter (marked by the end
of the file) in your plot. You can test your function with the files mobydick.txt
and frankenstein.txt on the book website. The first chapters in these books
start on lines 489 and 684, respectively.
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6.2.9. Write a function

strip(fileName, newFileName)

that creates a new version of the file with the given fileName in which all
whitespace has been removed. The second parameter is the name of the new file.

6.2.10* Write a function

writeLineLengths(fileName, outputFile)

that writes the lengths of all the lines in fileName (not counting newline
characters) to a new file named outputFile. Each line in the output file should
simply be the length of one line.

6.2.11. Write a function

writeWordsPerParagraph(fileName, outputFile)

that writes the number of words in each paragraph in fileName to a new file
named outputFile. Each line in the output file should contain a paragraph
number and the number of words in that paragraph, like this:

1: 9

2: 44

3: 6

⋮

6.2.12. Write a function that makes a new copy of a file in which every sentence begins on
a new line. You may assume that every period, question mark, and exclamation
point in the file end a sentence. Before you process each line, use the string
method strip to remove whitespace (including the newline) from both ends
of the line. Then add a space at the end of the line (after the last word). For
an extra challenge, also prevent whitespace from appearing at the beginning
of each line before a sentence. Your function should take two parameters: the
name of the original file and the name of the new file.

6.2.13* Write a function

wordCountWeb(url)

that reads the text file from the given URL and returns the number of words
in the file using the wordCount function from your textlib module. Test
your function on books from Project Gutenberg. Alternatively, you can access
mirrored copies of books from the book website.

6.2.14. According to the HTML standard specification, every HTML web page should
begin with the declaration

<!DOCTYPE html>

This declaration is not case sensitive and may contain additional elements such
as

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

Write a function

isHTML(url)

that uses this information to detect whether a web page is an HTML document
or not. The function should return True if it is HTML and False otherwise.
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6.3 ENCODING STRINGS
As web pages travel across the Internet to your browser, the transmissions can be
corrupted by faulty equipment or electromagnetic interference. Errors can be as
small as a single bit being “flipped” or as large as an entire chunk of data being lost.
In this section, we will discuss how knowing something about how text is stored at a
lower level enables us to detect these kinds of errors. This knowledge will also prove
essential for some of the more interesting text analysis we will do in the following
sections.

Computing checksums
Network protocols detect errors by sending additional information, called a check-
sum , along with the data.

data checksum

In a nutshell, a checksum is used to tell whether what is received is the same as
what was sent. When the transmission is received at the destination, a checksum is
computed for the data and compared to the transmitted checksum. If they match,
all is well. If they don’t match, then the receiver asks the sender to retransmit.

The following algorithm represents the simplest way to compute a checksum for a raw
sequence of bytes. It just adds the bytes together, each time taking the remainder
mod 256 so that the checksum value will fit in one byte. (Recall that one byte is 8
bits, so a byte can store values between 0 and 28 − 1 = 255.)

Algorithm Simple checksum

Input: a byte sequence
1 checksum ← 0
2 repeat for each byte in the byte sequence:
3 checksum ← (checksum + byte) mod 256

Output: checksum

For example, suppose we wanted to send the following byte sequence:

42 207 111 199

The algorithm will compute a checksum like this:
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Figure 6.4 A not-to-scale overview of the organization of the ASCII character set (and

the Basic Latin segment of Unicode) with decimal code ranges.

Trace input: byte sequence = [42, 207, 111, 199]
Step Line byte checksum Notes

1 1 — 0 checksum ← 0
2 2 42 ” byte ← 42
3 3 ” 42 checksum ← (0 + 42) mod 256 = 42
4 2 207 ” byte ← 207
5 3 ” 249 checksum ← (42 + 207) mod 256 = 249
6 2 111 ” byte ← 111
7 3 ” 104 checksum ← (249 + 111) mod 256 = 104
8 2 199 ” byte ← 199
9 3 ” 47 checksum ← (104 + 199) mod 256 = 47

Return value: 47
The computed checksum is 47, so we append this to the transmitted message:

42 207 111 199 47

data checksum

Unicode
To apply this algorithm to text, we need to look more closely at how strings are
encoded in binary in a computer’s memory. English language text has historically
been encoded in a format known as ASCII (pronounced “ASS-key”).4 ASCII assigns
each character a 7-bit binary code. In memory, each ASCII character is stored in one
byte, with the leftmost bit of the byte being a 0. So a string is stored as a sequence
of bytes. For example, the first six letters of the quote

If you don’t like something, change it. If you can’t change it, change your attitude.

—Maya Angelou

are encoded in ASCII as

I f y o u

01001001 01100110 00100000 01111001 01101111 01110101

73 102 32 121 111 117

4ASCII is an acronym for American Standard Code for Information Interchange.
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The values underneath are the decimal equivalents of the binary codes. Figure 6.4
uses these decimal values to illustrate the organization of the ASCII character set.
Notice that different types of characters are grouped together. Digits are in the range
48–57, uppercase letters are in 65–90, lowercase letters are in 97–122, etc. Python
uses this encoding to define “alphabetical order” when comparing strings.

Reflection 6.12 Consult Figure 6.4 to explain each of the following results.

>>> '3.14159' < 'pi'
True
>>> 'pi' == 'Pi'
False
>>> 'Zebra' < 'antelope'
True
>>> '314159' < '32'
True

The ASCII character set has been largely supplanted, including in Python, by an
international standard known as Unicode . Whereas ASCII only provides codes
for Latin characters, Unicode encodes over 100,000 different characters from more
than 100 languages, using up to 4 bytes per character. A Unicode string can be
encoded in one of three ways, but is most commonly encoded using a variable-length
system called UTF-8 (that we used in the previous section). Conveniently, UTF-8 is
backwards-compatible with ASCII, so each character in the ASCII character set is
encoded in the same 1-byte format in UTF-8.

In Python, we can view the Unicode (in decimal) for any character using the ord

function (short for “ordinal”). For example,

>>> ord('I')
73

The chr function is the inverse of ord; given a Unicode value, chr returns the
corresponding character.

>>> chr(73)
'I'

Reflection 6.13 Use ord on the first characters of the strings in Reflection 6.12 to explain
the results of the comparisons.

The following Python function uses ord to apply our Simple checksum algorithm to
strings. Once the one-byte checksum is computed, we convert it to a character using
chr so that we can concatenate it to the string before sending it.

def simpleChecksum(text):
"""Compute a simple one-character checksum for a string.

Parameter:
text: a string

Return value: a character representing the one-byte checksum
"""
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checksum = 0
for character in text:

checksum = (checksum + ord(character)) % 256

return chr(checksum)

Let’s use this function to create a checksum for our Maya Angelou quote.

>>> quote = "If you don't like something, change it. If you can't
change it, change your attitude."

>>> checksum = simpleChecksum(quote)
>>> checksum
'ç'

The computed checksum value was 231, which corresponds to a lowercase c with
a cedilla in Unicode. (The character representation of the checksum doesn’t really
matter since it is not really part of the text.) To create a message to send across a
network, we would next concatenate the string and the checksum.

>>> message = quote + checksum
>>> message
"If you don't like something, change it. If you can't change it,
change your attitude.ç"

This simple checksum algorithm is actually too weak to be used in practice. Most
notably, it cannot detect when two bytes are sent out of order.

Reflection 6.14 Why does the simple checksum algorithm have this problem?

Fletcher’s checksum algorithm fixes this by adding a second checksum that incre-
mentally sums the values of the first checksum.

def fletcherChecksum(text):
"""Compute a two character checksum for a string using the

Fletcher-16 algorithm.

Parameter:
text: a string

Return value: a two-character string representing the checksum
"""

checksum1 = 0
checksum2 = 0
for character in text:

checksum1 = (checksum1 + ord(character)) % 255
checksum2 = (checksum2 + checksum1) % 255

return chr(checksum2) + chr(checksum1)

Note that this algorithm also differs in that it mods by 255 instead of 256. The return
value is a two-character string created by concatenating the characters corresponding
to the two checksum values.
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Tangent 6.2: Compressing text files

If a text file is stored in UTF-8 format, then each character is represented by an eight-bit
code, requiring one byte of storage per character. For example, the file mobydick.txt

contains about 1.2 million characters, so it requires about 1.2 MB of disk space. But
text files can usually be modified to use far less space, without losing any information.
Suppose that a text file contains upper and lowercase letters, plus whitespace and
punctuation, for a total of sixty unique characters. Since 26 = 64, we can adopt an
alternative encoding scheme in which each of these sixty unique characters is represented
by a six-bit code instead. By doing so, the text file will use only 6/8 = 75% of the space.

The Huffman coding algorithm can do even better by using variable-length codes that
are shorter for more frequent characters. As a simple example, suppose a 23,000-character
text file contains only five unique characters: A, C, G, N, and T with frequencies of 5,
6, 4, 3, and 5 thousand, respectively. Using the previous fixed-length scheme, we could
devise a three-bit code for these characters and use only 3 ⋅ 23,000 = 69,000 bits instead
of the original 8 ⋅ 23,000 = 184,000 bits. But, by using a prefix code that assigns the
more frequent characters A, C, and T to shorter two-bit codes (A = 10, C = 00, and T
= 11) and the less frequent characters G and N to three-bit codes (G = 010 and N =
011), we can store the file in

2 ⋅ 5,000 + 2 ⋅ 6,000 + 3 ⋅ 4,000 + 3 ⋅ 3,000 + 2 ⋅ 5,000 = 53,000

bits instead. This is called a prefix code because no code is a prefix of another code,
which is essential for decoding the file.

An alternative compression technique, used by the Lempel-Ziv-Welch algorithm ,
replaces repeated strings of characters with fixed-length codes. For example, in the
string CANTNAGATANCANCANNAGANT, the repeated sequences CAN and NAG might each be
represented with its own code.

Reflection 6.15 Show how to compute the Fletcher checksums by hand for the string
'abc'. (You should get 39 and 76 for checksum1 and checksum2, respectively, correspond-
ing to the string "L'".)

We can now apply the Fletcher checksum algorithm to our quote like this:

>>> checksum = fletcherChecksum(quote)
>>> checksum
'\r\x05'
>>> message2 = quote + checksum
>>> message2
"If you don't like something, change it. If you can't
change it, change your attitude.\r\x05"

(The character '\r' is the “carriage return” character and '\x05' represents the
symbol with ASCII code 5, which is an antiquated non-printable control character
that was once used to request a response from computer terminals and teletype
machines. But their meanings are irrelevant here.)
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Indexing and slicing
To confirm that a message is error-free, the receiver needs to remove the two-
character checksum and compare it to a checksum that it computes itself on the
remaining text. To implement this, we need to be able to directly access those
last few characters. Conceptually, we already know that a string is stored as a
sequence of bytes, where each byte represents one character. These bytes are stored
in contiguous memory cells. So the first sentence of the Maya Angelou quote,
"If you don't like something, change it.", can be represented like this:

0
o u d o n ' t l i k e s o m e t h i n g , c h a n g e i .tI f y

1 2 43 5 6 7 98 10 3837... ...

-1-2-3-4-5-6-7-8...

Each character in the string is identified by an index that indicates its position.
Indices always start from the left at 0, as shown below the characters above. We
can also use negative indexing , which starts from the right end of the string, as
shown above the characters. We can use these indices to access a character directly
by referring to the index in square brackets following the name of the string. For
example,

>>> shortQuote = "If you don't like something, change it."
>>> shortQuote[0]
'I'
>>> shortQuote[9]
'n'
>>> shortQuote[-30]
'n'
>>> shortQuote[-1]
'.'

Notice that each character is itself represented as a single-character string in quotes,
and that quote[9] and quote[-30] refer to the same character. The last character
in a string can always be accessed with index -1, regardless of the string’s length.
We can use this to access the checksum character in the first message.

>>> message[-1]
'ç'

To get a string’s length, we use the len function:

>>> len(shortQuote)
39
>>> shortQuote[38]
'.'
>>> shortQuote[39]
IndexError: string index out of range

Reflection 6.16 Why does the last statement above result in an error?

Notice that len returns the number of characters in the string, not the index of
the last character. The positive index of the last character in a string is always the
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length of the string minus one. As shown above, referring to an index that does not
exist will give an index error exception.

To access a substring consisting of multiple characters, like the two-character Fletcher
checksum, we use slicing . Slice notation uses two indices separated by a colon. The
first index is the position of the first character in the slice and the second is the
index of the character just past the last character in the slice (analogous to how
range stops just shy of its argument). So we can get the Fletcher checksum from
message2 like this:

>>> message2[len(message2)-2:len(message2)]
'\r\x05'

or, much more simply,

>>> message2[-2:]
'\r\x05'

Here we used a negative index for the beginning of the slice and omitted the
second index, which means that we want the slice to go to the end of the string.
Similarly, if we want a slice from the beginning of a string, we can omit the first
index. So message[:-1] will give us the “data” portion of the first message and
message2[:-2] will give us the “data” portion of the second message.

>>> message[:-1]
"If you don't like something, change it. If you can't change it, ..."
>>> message2[:-2]
"If you don't like something, change it. If you can't change it, ..."

The following function uses slicing to verify whether a message with a Fletcher
checksum was “received” correctly. If the checksum is correct, it returns the data
portion of the message. Otherwise, it returns an empty string.

def verifyMessage(message):
"""Verify a message with a Fletcher-16 checksum.

Parameter:
message: a string containing data + checksum

Return value: the data if verified or '' if not
"""

data = message[:-2]
checksum = message[-2:]
if fletcher(data) == checksum:

return data
else:

return ''

We will continue to use indexing and slicing in the next sections, as we explore more
sophisticated techniques to analyze large texts.
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Exercises
When an exercise asks you to write a function, test it with both common and boundary case
arguments, and document your test cases.

6.3.1. Suppose you have a string stored in a variable named word. Show how you
would print

(a)* the string’s length

(b)* the first character in the string

(c)* the third character in the string

(d)* the last character in the string

(e) the last three characters in the string

(f) the string consisting of the second, third, and fourth characters

(g) the string consisting of the fifth, fourth, and third to last characters

(h) the string consisting of all but the last character

6.3.2. The following string is a quote by Benjamin Franklin.

quote = 'Well done is better than well said.'

Use slicing notation to answer each of the following questions.

(a)* What slice of quote is equal to 'done'?

(b)* What slice of quote is equal to 'well said.'?

(c) What slice of quote is equal to 'one is bet'?

(d) What slice of quote is equal to 'Well do'?

6.3.3. What are the values of each of the following expressions? Explain why in each
case.

(a)* 'cat' < 'dog'

(b)* 'cat' < 'catastrophe'

(c)* 'cat' == 'Cat'

(d) '1' > 'one'

(e) '8188' < '82'

(f) 'many' > 'One'

6.3.4* When we print a numeric value using the print function, each digit in the
number must be converted to its corresponding character to be displayed. In
other words, the value 0 must be converted to the character '0', the value 1

must be converted to the character '1', etc. The Unicode codes for the digit
characters are conveniently sequential, so the code for any digit character is
equal to ord('0') plus the value of the digit. For example, ord('2') is the
same as ord('0') + 2 and chr(ord('0') + 2) is '2'. Write a function

digit2String(digit)
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that generalizes this example to return the string equivalent of the number
digit. For example, digit2String(4) should return '4'. If digit is not the
value of a decimal digit, return None.

6.3.5. Suppose we want to convert a letter to an integer representing its position in
the alphabet. In other words, we want to convert 'A' or 'a' to 1, 'B' or 'b'
to 2, etc. Like the characters for the digits, the codes for the uppercase and
lowercase letters are in consecutive order. Therefore, for an uppercase letter, we
can subtract the code for 'A' from the code for the letter to get the letter’s
offset relative to 'A'. Similarly, we can subtract the code for 'a' from the code
for a lowercase letter. For example, ord('D') - ord('A') is 3. Write a function

letter2Position(letter)

that uses this idea to return the position in the alphabet (1–26) of the upper or
lowercase letter. If letter is not a letter, return None.

6.3.6. Write a function

position2Letter(n)

that returns the nth uppercase letter in the alphabet, using the chr and ord

functions.

6.3.7. Write a function

string2Digit(digitString)

that returns the integer value corresponding to the string digitString. The
parameter will contain a single character '0', '1', . . . , '9'. Use the ord function.
For example, string2Digit('5') should return the integer value 5.

6.3.8. Any exam score between 60 and 99 can be converted to a letter grade with a
single expression using chr and ord. Demonstrate this by replacing SOMETHING

in the function below.

def letterGrade(score):

if grade >= 100:

return 'A'
if grade > 59:

return SOMETHING

return 'F'

6.3.9. Write a function

capitalize(word)

that uses ord and chr to return a version of the string word with the first letter
capitalized. (Note that the word may already be capitalized!)

6.3.10. Write a function

int2String(number)

that converts any positive integer value number to its string equivalent, without
using the str function. For example, int2String(1234) should return the
string '1234'. (Use the digit2String function from Exercise 6.3.4.)

6.3.11. Suppose you work for a state in which all vehicle license plates consist of a
string of letters followed by a string of numbers, such as 'ABC 123'. Write a
function
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randomPlate(length)

that returns a string representing a randomly generated license plate consisting
of length uppercase letters followed by a space followed by length digits. Use
the random.randrange function.

6.3.12. Write a function

username(first, last)

that constructs and returns a username, specified as the last name followed by an
underscore and the first initial. For example, username('martin', 'freeman')
should return the string 'freeman_m'.

6.3.13. Write a function

piglatin(word)

that returns the Pig Latin equivalent of the string word. If the first character
is a consonant, Pig Latin moves it to the end, and follows it with 'ay'. If the
first character is a vowel, nothing is moved and 'way' is added to the end. For
example, Pig Latin translations of 'python' and 'asp' are 'ythonpay' and
'aspway'.

6.3.14. Write a function

pigLatinDict(fileName)

that prints the Pig Latin equivalent of every word in the dictionary file with
the given file name. (See Exercise 6.3.13.) Assume there is exactly one word
on each line of the file. Start by testing your function on small files that you
create. An actual dictionary file can be found on most Mac OS X and Linux
computers at /usr/share/dict/words. There is also a dictionary file available
on the book website.

6.3.15. Repeat the previous exercise, but have your function write the results to a new
file instead, one Pig Latin word per line. Add a second parameter for the name
of the new file.

6.3.16* When some people get married, they choose to take the last name of their
spouse or hyphenate their last name with the last name of their spouse. Write a
function

marriedName(fullName, spouseLastName, hyphenate)

that returns the person’s new full name with hyphenated last name if hyphenate
is True or the person’s new full name with the spouse’s last name if hyphenate
is False. The parameter fullName is the person’s current full name in the form
'Firstname Lastname' and the parameter spouseLastName is the spouse’s last
name. For example, marriedName('Jane Doe', 'Deer', True) should return
the string 'Jane Doe-Deer' and marriedName('Jane Doe', 'Deer', False)

should return the string 'Jane Deer'.

6.3.17. Parity checking is an even simpler error detection algorithm that is used directly
on sequences of bits (often called bit strings). A bit string has even parity if it
has an even number of ones, and odd parity otherwise. In an even parity scheme,
the sender adds a single bit to the end of the bit string so that the final bit
string has an even number of ones. For example, if we wished to send the data
1101011, we would actually send 11010111 instead so that the bit string has an
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even number of ones. If we wished to send 1101001 instead, we would actually
send 11010010. The receiver checks whether the received bit string has even
parity; if it does not, the receiver requests a retransmission.

(a) Parity can only detect very simple errors. Give an example of an error
that cannot be detected by an even parity scheme.

(b) Propose a solution that would detect the example error you gave above.

(c) In the next two problems, we will pretend that bits are sent as strings
(they are not; this would be terribly inefficient). Write a function

evenParity(bits)

that uses the count method to return True if the string bits has
even parity and False otherwise. For example, evenParity('110101')
should return True and evenParity('110001') should return False.

(d) Now write the evenParity function without using the count method.

(e) Write a function

makeEvenParity(bits)

that returns a string consisting of bits with one additional
bit concatenated so that the returned string has even parity.
Your function should call your evenParity function. For ex-
ample, makeEvenParity('110101') should return '1101010' and
makeEvenParity('110001') should return '1100011'.

6.3.18. Julius Caesar is said to have sent secret correspondence using a simple encryption
scheme that is now known as the Caesar cipher. In the Caesar cipher, each letter
in a text is replaced by the letter some fixed distance, called the shift, away. For
example, with a shift of 3, A is replaced by D, B is replaced by E, etc. At the
end of the alphabet, the encoding wraps around so that X is replaced by A, Y
is replaced by B, and Z is replaced by C. Write a function

encipher(text, shift)

that returns the result of encrypting text with a Caesar cypher with the given
shift. Assume that text contains only uppercase letters.

6.3.19. Modify the encipher function from the previous problem so that it either en-
crypts or decrypts text, based on the value of an additional Boolean parameter.

6.4 A CONCORDANCE
A concordance is an alphabetical listing of all the words in a text, with their contexts.
The context is usually one or more lines in which the target word appears. Suppose
we want to know where “lash” appears in the text of Moby Dick. If we searched, we
would find matches on 60 lines, the first 6 of which are:

things not properly belonging to the room, there was a hammock lashed

ship was gliding by, like a flash he darted out; gained her side; with

which to manage the barrow--Queequeg puts his chest upon it; lashes it

blow her homeward; seeks all the lashed sea's landlessness again;

sailed with. How he flashed at me!--his eyes like powder-pans! is he

I was so taken all aback with his brow, somehow. It flashed like a
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Note that we are not necessarily looking for complete words. When we search for
the root of a word like “lash,” we might also be interested in derivatives like “lashes”
and “lashed.” But we might also get other words that contain “lash,” like “flash”
and ”flashed.” (We will leave finding only complete words as an exercise.)

To make viewing this information easier, we will line up the words and note the line
on which each appears in the text:

1188 ... properly belonging to the room, there was a hammock lashed

2458 ship was gliding by, like a flash he ...

2551 ... manage the barrow--Queequeg puts his chest upon it; lashes it

4396 blow her homeward; seeks all the lashed ...

5103 sailed with. How he flashed at ...

5127 I was so taken all aback with his brow, somehow. It flashed like a

We will focus here on creating a concordance entry for just one word. Once we
have written a function to do this, it will actually be quite easy to create an entire
concordance, but the result could be quite large (e.g., Moby Dick contains over
20,000 unique words) and we have not yet discussed how we could quickly search
through such a large file for a desired entry.

To create a concordance entry, we will iterate over the lines of the text file, and
search for the target word in each line. For each line in which the target word is
found, we will print the line, prefaced by a line number, lining up the words in a
column for easy reading. Here is the algorithm in pseudocode:

Algorithm Concordance entry

Input: a text file, a target word
1 line number ← 1
2 repeat for each line in the text file:
3 index ← Find (line, target word)
4 if the target word was found in line, then:
5 print the line number and the line, using index to line up the target words
6 line number ← line number + 1

Output: none

Finding a word
The Find algorithm, which we will write next, will search through a line and return
the index of the first occurrence of the target word in that line, if it exists. There is
an existing string method to do just this.5

>>> benFranklin = 'Diligence is the mother of good luck.'
>>> benFranklin.find('good')
27

5This quote is from The Way to Wealth (1758) by Benjamin Franklin.
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But we will implement a find function from scratch because, as with
splitIntoWords, the technique involved is important and useful for other problems
down the road. The idea is to make a pass across the text, comparing the target
string to slices of the text with the same length as the target. When a matching
slice is found, we want to return the index in the text where that slice begins. In
pseudocode, the algorithm looks like this:

Algorithm Find

Input: text, target
1 target index ← −1

2 repeat for each slice of text with the same length as target:
3 if slice = target, then:
4 target index ← starting position of the slice in text
5 break out of the loop

Output: target index

The variable target index will store the index of the matching slice when it is found.
It is initialized to −1 at the beginning of the algorithm to signify that a match has
not been found yet. We chose the value −1 because this is not a value that could
possibly be returned by the algorithm if the target is found. Notice that the value of
target index remains −1 if a matching slice is never found in the loop. If a matching
slice is found, then target index is assigned to the index of that slice and we exit the
loop immediately so that a possible later match does not overwrite this value.

To see how to implement this in Python, let’s first consider the simpler problem
of searching for a single character in a string. If we iterate over the characters in
the string to search for the target character, as we have done in all of our string
algorithms to this point, it would look like this:

for character in text:
if character == targetCharacter: # target character is found

targetIndex = ??? # get the index where it was found?

But when we find the target character, we are left without a satisfactory return
value because we do not know the index of character!

Instead, we need to iterate over the indices of text so that, when we find the target
character, we know where it is located in the string. In other words, for all values
of index equal to 0, 1, 2, . . . , we need to test whether text[index] is equal to
targetCharacter. If this condition is true, then we know that targetCharacter

exists at position index!

Reflection 6.17 How can we get a list of every index in a string to use in a for loop?

The list of indices in a string named text is 0, 1, 2, . . . , len(text) - 1. This
is precisely the list of integers given by range(len(text)). So our desired for loop
looks like the following:



6.4 A CONCORDANCE � 259

for index in range(len(text)):
if text[index] == targetCharacter: # target character is found

targetIndex = index # get the index where it was found

Now when we find that text[index] == targetCharacter, we know that the
desired character is at position index.

Reflection 6.18 Although it isn’t always necessary, we can use this kind of loop any time
we need to iterate over a string. Use the examples above to show how to accomplish exactly
the same thing as the following for loop by iterating over the indices of text instead:

for character in text:
print(character)

The following function uses the new loop above to find a target character in a string.

1 def findCharacter(text, targetCharacter):
2 """Find the index of first occurrence of a target character in text.

3 Parameters:
4 text: a string object to search in
5 targetCharacter: a character to search for

6 Return value: index of the first occurrence of targetCharacter in text
7 """

8 targetIndex = -1 # assume it won't be found
9 for index in range(len(text)):

10 if text[index] == targetCharacter: # if found, then
11 targetIndex = index # remember where
12 break # and exit the loop early
13 return targetIndex

The break statement on line 12 exits the loop immediately, even if it is not yet done.

Reflection 6.19 What do you get when you call this function with
findCharacter('Diligence is the mother of good luck.', 'g')? If you remove
the break statement from the loop, what do you get? Why?

We need to exit the loop when the first occurrence of targetCharacter is found
because, if we don’t and targetCharacter occurs again later in text, then
targetIndex will be overwritten, and the index of the last occurrence will be re-
turned instead. The following trace table shows this more explicitly, along with how
the changing value of index affects the value of text[index] in the if condition.
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Trace arguments: text = 'Diligence is the mother of good luck.',
targetCharacter = 'g'

Step Line targetIndex index text[index] Notes
1 8 -1 — — targetCharacter ← −1

2 9 ” 0 'D' index ← 0
3 10 ” ” ” 'D' != 'g'; skip lines 11-12
4 9 ” 1 'i' index ← 1
5 10 ” ” ” 'i' != 'g'; skip lines 11-12
6 9 ” 2 'l' index ← 2
7 10 ” ” ” 'l' != 'g'; skip lines 11-12
8 9 ” 3 'i' index ← 3
9 10 ” ” ” 'i' != 'g'; skip lines 11-12
10 9 ” 4 'g' index ← 4
11 10 ” ” ” 'g' == 'g'; do lines 11-12
12 11 4 ” ” targetIndex ← index
13 12 ” ” ” break from loop; go to line 13
14 13 ” ” ” return 4

Return value: 4

To generalize this function to find a target string of any length, we need to compare
the target string to all slices with the same length as the target in text. For example,
suppose we want to search for the target string 'good' in text. We would need to
check whether text[0:4] is equal to 'good', then whether text[1:5] is equal to
'good', then whether text[2:6] is equal to 'good', etc. More concisely, for all values
of index equal to 0, 1, 2, . . . , we need to test whether text[index:index + 4]

is equal to 'good'. In general, to find a target string named target, we need to test
whether text[index:index + len(target)] is equal to target, as in the following
function.

1 def find(text, target):
2 """Find the index of the first occurrence of a target string in text.

3 Parameters:
4 text: a string object to search in
5 target: a string object to search for

6 Return value: the index of the first occurrence of target in text
7 """

8 targetIndex = -1
9 for index in range(len(text) - len(target) + 1):

10 if text[index:index + len(target)] == target:
11 targetIndex = index
12 break
13 return targetIndex
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Notice how similar this is to findCharacter and that, if len(target) equals 1, the
find function does exactly the same thing as findCharacter.

Reflection 6.20 Why is the last index in the for loop equal to
len(text) - len(target) instead of len(text) - 1?

Suppose text is 'Diligence is the mother of good luck.' and target is
'good'. Then len(text) is 37 and len(target) is 4. If we had the loop iter-
ate until index was len(text) - 1 = 36, then the last three slices to be ex-
amined would be the strings corresponding to text[34:38], text[35:39], and
text[36:40], which are 'ck.', 'k.', and '.', respectively. But these strings
are too short to possibly be equal to this target. In general, we never need
to look at a slice that starts after len(text) - len(target), hence we use
range(len(text) - len(target) + 1).

Reflection 6.21 Is what we just said really true? What is returned by a slice that extends
beyond the last character (e.g., 'good'[2:10])? What is returned by a slice that starts
beyond the last character in the string (e.g., 'good'[4:8])?

Let’s look more closely at how find works when we call it with these arguments.
We will omit targetIndex from the trace table this time to save space and instead
show text[index:index+len(target)].

Trace arguments: text = 'Diligence is the mother of good luck.',
target = 'good'

Step Line index text[index:index+4] Notes
1 8 — — initialize targetIndex ← −1

2 9 0 'Dili' index ← 0
3 10 ” ” 'Dili' != 'good'; skip lines 11-12
4 9 1 'ilig' index ← 1
5 10 ” ” 'ilig' != 'good'; skip lines 11-12
6 9 2 'lige' index ← 2
7 10 ” ” 'lige' != 'good'; skip lines 11-12
⋮

54 9 26 ' goo' index ← 26
55 10 ” ” ' goo' != 'good'; skip lines 11-12
56 9 27 'good' index ← 27
57 10 ” ” 'good' == 'good'; do lines 11-12
58 11 ” ” targetIndex ← index

59 12 ” ” break out of the loop; go to line 13
60 13 ” ” return 27

Return value: 27
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A concordance entry
We are finally ready to use our find function to print a concordance entry. Here is
an outline of a function that follows our pseudocode algorithm.

def concordanceEntry_Draft(textFile, targetWord):
"""Print all lines in a text file containing the target word.

Parameters:
textFile: a file object
targetWord: the word to search for

Return value: None
"""

lineNumber = 1
for line in textFile:

index = find(line.lower(), targetWord)
# if targetWord is found in line (using the find function):

print(lineNumber, line) # not formatted nicely yet
lineNumber = lineNumber + 1

Reflection 6.22 When we call the find function to search for targetWord, how do we
know if it was found?

Because find returns -1 if the target string is not found, any nonnegative value of
index means that it was found. So the comment above will be replaced with

index = find(line.lower(), targetWord)
if index >= 0:

To line up the printed lines nicely, we will use a format string to ensure that the
line number always takes up the same amount of space and the rightmost ends of
the target words line up. We can do this by splitting the line at the end of the
targetWord, right justifying the first half, and left justifying the second half.

align = index + len(targetWord) # index of the end of targetWord in line
print('{0:<6}{1:>80}{2}'.format(lineNumber, line[:align], line[align:-1]))

Incorporating these changes, here is the complete function to print a single concor-
dance entry:

def concordanceEntry(textFile, targetWord):
""" (docstring omitted) """

lineNumber = 1
for line in textFile:

index = find(line.lower(), targetWord)
if index >= 0: # targetWord is found in line

align = index + len(targetWord)
print('{0:<6}{1:>80}{2}'.format(lineNumber, line[:align],

line[align:-1]))
lineNumber = lineNumber + 1
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There are many more enhancements we can make to this function, some of which
we leave as exercises.

A complete concordance
Now we could, if we wanted to, print an entire concordance for a book! The
concordance function below does just that. Because a full concordance can be
very long indeed, we have added a parameter numEntries to limit the number of
entries to print. There are also a couple of new things in this function that we
encourage you to explore more on your own.

import textlib
import string

def concordance(fileName, numEntries):
"""Print entries in the concordance for a text file.

Parameters:
fileName: name of the text file
targetWord: number of entries to print

Return value: None
"""

textFile = open(fileName, 'r', encoding = 'utf-8')
text = textFile.read()
words = textlib.wordTokens(text) # get all the words in textFile
vocabulary = list(set(words)) # get the set of unique words
vocabulary.sort() # sort the words

count = 0
for word in vocabulary: # iterate over the sorted words

if word[0] not in string.digits: # omit if starts with a digit
textFile.seek(0) # reset file pointer
print('\n' + word.upper() + '\n')
concordanceEntry(textFile, word)
count = count + 1

if count >= numEntries: # break when enough entries
break

textFile.close()

def main():
concordance('mobydick.txt', 10)

main()
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Exercises
6.4.1. For each of the following for loops, write an equivalent loop that iterates over

the indices of the string text instead of the characters.

(a)* for character in text:
print(character)

(b)* newText = ''
for character in text:

if character != ' ':
newText = newText + character

(c) for character in text[2:10]:
if character >= 'a' and character <= 'z':

print(character)

(d) for character in text[1:-1]:
print(text.count(character))

6.4.2* Show how to rewrite each of the for loops in the previous exercise as while

loops that increment an index variable in each iteration.

6.4.3. Describe what is wrong with each the following blocks of code, and show how
to fix it.

(a)* veggie = 'carrots'
for character in veggie:

bigVeggie = bigVeggie + character.upper()

(b)* while answer != 'q':
answer = input('Word? ')
print(len(answer))

(c)* veggie = 'peas'
for index in range(veggie):

if veggie[index] != ' ':
print(index)

(d) veggie = 'sweet potatoes'
for index in len(veggie):

if veggie[index] != ' ':
print(veggie[index])

(e) for index in range(len(okra)):
print(okra[len(okra) - index - 1])

(f) text = 'I love veggies!'
for character in range(len(text)):

if character != ' ':
print(character) # print a character in text?

(g) text = 'Veggies rule!'
for index in text:

print(text[index])
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(h) veggies = 'pepperoni' # not
for index in range(len(veggies)):

if index == len(veggies) - 1:
realVeggies = realVeggies + 'cin'

realVeggies = realVeggies + index
print(realVeggies)

6.4.4. Write a function

prefixes(word)

that prints all of the prefixes of the given word. For example, prefixes('cart')
should print

c
ca
car
cart

6.4.5. Write a function

replace(text, target, replacement)

that returns a new version of text in which all occurrences of the
substring target are replaced with the string replacement. For exam-
ple, replace('I am cool, very cool.', 'cool', 'very vain')) should
return 'I am very vain, very very vain.'. Use a while loop; do not use
the string method replace.

6.4.6. An annoying trick used by some simple chatbots is to reply to a statement by
reframing it as a question. For some statements, like those starting with “This is”
and “There are,” this is very easy: just reverse the first two words. For example,
“This is a cool sentence.” becomes “Is this a cool sentence?” Write a function

makeQuestion(sentence)

that carries out this transformation on a sentence by finding and swapping the
first two words, correcting the capitalization, and ending the sentence with a
question mark.

6.4.7* Suppose you develop a secret code that replaces a string with a new string that
consists of all the even indexed characters of the original followed by all the odd
indexed characters. For example, the string 'computers' would be encoded as
'cmuesoptr'. Write a function

encode(word)

that returns the encoded version of the string named word.

6.4.8. Write a function

decode(codeword)

that reverses the process from the encode function in the previous exercise.

6.4.9* Write a function

palindrome(text)

that returns True if text is a palindrome and False otherwise. Your function
should ignore spaces and capitalization. For example,

palindrome('Lisa Bonet ate no basil')
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should return True.

6.4.10. Write an interactive program that uses the find function from this section to
find the first occurrence of any desired word in Moby Dick .

6.4.11. The find function from this section can also be written like this:

def find(text, target):
for index in range(len(text) - len(target) + 1):

if text[index:index + len(target)] == target:
return index

return -1

(a) Explain why this version is also correct.

(b) Why is the following version of the for loop incorrect?

for index in range(len(text) - len(target) + 1):
if text[index:index + len(target)] == target:

return index
else:

return -1

6.4.12. Write a modified version of the find function named findWord that only finds
an instance of target that is a whole word.

6.4.13. Write a modified version of the find function named findAll that returns a
list containing the indices of all matches for the target.

6.4.14. Enhance the concordanceEntry function in each of the following ways:

(a) In the line that is printed for each match, display targetWord in all
caps. For example:

... any whale could so SMITE his stout sloop-of-war

... vessel, so as to SMITE down some of the spars and

(b) Use the modified findWord function from Exercise 6.4.12 so that each
target word is matched only if it is a complete word.

(c) The current version of concordanceEntry will only identify the first
instance of a word on each line. Modify it so that it will display a new
context line for every instance of the target word in every line of the
text. For example, “ship” appears twice on line 14673 of Moby Dick :

upon the ship, than to rejoice that the ship had so victoriously gained

In this case, the function should print:

14673 upon the SHIP, than...

upon the ship, than to rejoice that the SHIP had so...

The findAll function from Exercise 6.4.13 will be useful here.

6.5 WORD FREQUENCY TRENDS
One common way to gain a little insight into the arc of a particular theme in a text
is to visualize the relative frequencies of related terms over the course of the text.
Figure 6.5 shows an example that visualizes the usage of masculine and feminine
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Figure 6.5 A sample plot of word frequencies across ten slices of Frankenstein.

pronouns over the course of Frankenstein. In this plot, the frequencies of the two
words are shown as fractions of the total number of words in each of ten equal-sized
slices of the text.

Since writing a program for this problem is a bit more involved, let’s explicitly
decompose it into subproblems first.

get the frequencies of a 
word across the text

word frequency 
trends

get the frequency of a word 
in one slice of the text

plot the word 
frequencies

In the first subproblem, we need to compute the frequencies of a word over all of
the slices of the text. As a part of this subproblem we will need a function that
computes the frequency of a word in just one slice. In the second subproblem, we
actually plot the frequencies computed in the first subproblem.

The first subproblem will take three inputs—the text, the desired number of slices,
and one of the words—and return a list of the frequencies of the word in the slices of
the text. (The main program will need to call this function twice, once for each word.)
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To solve this subproblem, we will start at the bottom leaf in the decomposition tree:
finding the frequency of a word in a single slice.

Finding the frequency of a word
Computing the frequency of a word in a slice of the text requires three steps. First,
we get a list of all of the words in the slice using the wordTokens function from our
textlib module. Second, we iterate over these words and count how many times
the target word shows up. Third, we return that count divided by the number of
words in the slice. Here is the algorithm in pseudocode.

Algorithm Word frequency

Input: a text and a target word
1 word list ←Word tokens (text)
2 count ← 0
3 repeat for each word in word list:
4 if word = target word, then:
5 count ← count + 1
6 frequency ← count / length of word list

Output: frequency

We already know how to perform all of these steps in Python. Iterating over a list of
items looks and works just like iterating over a string, except the index variable is
assigned consecutive list items instead of characters.

1 import textlib

2 def wordFrequency(text, targetWord):
3 """Get the frequency of the target word as a fraction of all
4 words in the text.

5 Parameters:
6 text: a string object
7 targetWord: a word to count

8 Return value: frequency of the target word
9 """

10 wordList = textlib.wordTokens(text)
11 count = 0
12 for word in wordList:
13 if word == targetWord:
14 count = count + 1
15 return count / len(wordList)
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In each iteration of this loop, word is a assigned a word in wordList, and then word

is compared to the target word. If they are the same, count is incremented. We
return the final value of count divided by the length of wordList, which is the
total number of words in text. The following trace table illustrates this loop more
concretely with a fun input.

Trace arguments: text = 'one fish two fish', targetWord = 'fish'

Step Line wordList count word Notes
1 10 ['one', 'fish',

'two', 'fish']
— — get words from wordTokens

2 11 ” 0 — initialize count ← 0

3 12 ” ” 'one' word ← first item in wordList

4 13 ” ” ” 'one' != 'fish'; skip line 14
5 12 ” ” 'fish' word ← second item in wordList

6 13 ” ” ” 'fish' == 'fish'; do line 14
7 14 ” 1 ” increment count
8 12 ” ” 'two' word ← third item in wordList

9 13 ” ” ” 'two' != 'fish'; skip line 14
10 12 ” ” 'fish' word ← fourth item in wordList

11 13 ” ” ” 'fish' == 'fish'; do line 14
12 14 ” 2 ” increment count
13 15 ” ” ” return 2/4 = 0.5

Return value: 0.5

Getting the frequencies in slices
Now, to get the frequencies of a word across the entire text, we need to divide the
text into slices and call wordFrequency with each slice. The algorithm will return a
list of these slice frequencies.

Algorithm Slice frequencies

Input: a text, a word, and a number of slices
1 slice length ← length of text / number of slices
2 word frequencies ← empty list
3 repeat for each slice of slice length characters in the text:
4 frequency ←Word frequency (slice, word)
5 append frequency to word frequencies

Output: word frequencies

Implementing this in Python is not quite as straightforward as the pseudocode.
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def sliceFrequencies(text, word, numSlices):
"""Find the frequency of the word in each slice of the text.

Parameters:
text: a string containing a text
word: a word to analyze
numSlices: the integer number of text slices

Return values: list of slice frequencies
"""

sliceLength = (len(text) // numSlices) + 1 # round up
wordFreqs = [ ]
for index in range(0, len(text), sliceLength): # for each slice...

textSlice = text[index:index + sliceLength]
frequency = wordFrequency(textSlice, word)
wordFreqs.append(frequency)

return wordFreqs

To get the slices of the text, we iterate over the indices of text, skipping the length
of a slice each time. So, in each iteration, the value of index is the beginning of a
slice. Each slice is located between indices index and index + sliceLength. This
slice of text is passed into our wordFrequency function along with the word, and
the returned frequency is appended to the list of frequencies.

Plotting the frequencies
Finally, we combine this function with a simple function to plot the frequencies (our
second subproblem) to tie it all together.

def plotWordFreqs(word1, word2, wordFreqs1, wordFreqs2):
"""Plot 2 lists of word frequencies.

Parameters:
word1, word2: 2 words being analyzed
wordFreqs1, wordFreqs2: lists of 2 words' frequencies

Return value: None
"""

numSlices = len(wordFreqs1)
pyplot.plot(range(1, numSlices + 1), wordFreqs1, label = word1)
pyplot.plot(range(1, numSlices + 1), wordFreqs2, label = word2)
pyplot.legend()
pyplot.xlabel('Slice number')
pyplot.ylabel('Frequency')
pyplot.show()
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def wordTrends(fileName, word1, word2, numSlices):
"""Plot frequencies of 2 words across a text.

Parameters:
fileName: name of a text file
word1, word2: 2 words being analyzed
numSlices: the integer number of text slices

Return value: None
"""

# open and read the file
textFile = open(fileName, 'r', encoding = 'utf-8')
text = textFile.read()
textFile.close()

wordFreqs1 = sliceFrequencies(text, word1, numSlices)
wordFreqs2 = sliceFrequencies(text, word2, numSlices)

plotWordFreqs(word1, word2, wordFreqs1, wordFreqs2)

Exercise 6.5.5 asks you to combine the four functions from this section into a program
that you can use to experiment with plotting frequencies of different words in books
from Project Gutenberg or the book website.

Exercises
6.5.1* Repeat Exercise 6.1.7 but use a for loop that iterates over the indices of the

string instead of the characters.

6.5.2* Write a function

count(text, target)

that returns the number of occurrences of the string target in the string text.
Use a for loop; do not use the string method count.

6.5.3. Write a function

countAll(text, targets)

that returns the number of occurrences in the string text of any of the strings
in the list of strings named targets. You can use the in operator to determine
whether an item is in a list.

6.5.4. Draw a diagram like the one in Figure 6.2 on page 237 that shows how the
inputs and outputs flow among the four functions from this section. Use the
functional decomposition tree on page 267 as a starting point.

6.5.5. Combine the four functions from this section into a program that prompts
for a filename, two words to analyze, and a number of slices, and then calls
wordTrends. Experiment with plotting frequencies of different words in books
from http://www.gutenberg.org or the book website.

6.5.6. Modify the sliceFrequencies function so that the slices overlap by a
given amount. Substitute the numSlices parameter with two parameters:

http://www.gutenberg.org
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sliceLength and sliceStep, the length of each slice and the amount that
each slice should shift right in each step, respectively. In the words, the first slice
will be from index 0 to sliceLength, the second slice will be from sliceStep

to sliceStep + sliceLength, the third slice will be from 2 * sliceStep to
2 * sliceStep + sliceLength, etc.

6.5.7. Modify the word frequency trends program you wrote for Exercise 6.5.5 so that
it prompts for two lists of words instead. Each list might represent a particular
theme; an example from Frankenstein is shown below. The wordFrequency

function will need some minor modifications. You can use the in operator to
determine whether an item is in a list.
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6.6 COMPARING TEXTS
There have been many methods developed to measure similarity between texts, most
of which are beyond the scope of this book. But one particular method, called a dot
plot is both accessible and quite powerful. In a dot plot, we associate one text with
the x-axis of a plot and another text with the y-axis. We place a dot at position
(x,y) if the character or slice of text at index x in the first text is the same as the
character or slice at index y in the second text. In this way, a dot plot visually
illustrates the similarity between the two texts.

Let’s begin by writing an algorithm that only compares individual characters at the
same indices in the two texts. Consider the following two sentences:

Text 1: Peter Piper picked a peck of pickled peppers.

Text 2: Peter Pepper picked a peck of pickled capers.

We will compare the first character in text 1 to the first character in text 2, then
the second character in text 1 to the second character in text 2, etc. Although
this algorithm, shown below, must iterate over both strings at the same time, and
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compare the two strings at each position, it requires only one loop because we always
compare the strings at the same index.

import matplotlib.pyplot as pyplot

def dotplot1(text1, text2):
"""Display a simplified dot plot comparing two equal-length strings.

Parameters:
text1: a string object
text2: a string object

Return value: None
"""

text1 = text1.lower()
text2 = text2.lower()
x = []
y = []
for index in range(len(text1)):

if text1[index] == text2[index]:
x.append(index)
y.append(index)

pyplot.scatter(x, y) # scatter plot
pyplot.xlim(0, len(text1)) # x axis covers entire text1
pyplot.ylim(0, len(text2)) # y axis covers entire text2
pyplot.xlabel(text1)
pyplot.ylabel(text2)
pyplot.show()

Reflection 6.23 What is the purpose of the calls to the lower method?

Reflection 6.24 Why must we iterate over the indices of the strings rather than the
characters in the strings?

Every time two characters are found to be equal in the loop, the index of the matching
characters is added to both a list of x-coordinates and a list of y-coordinates. These
lists are then plotted with the scatter function from matplotlib.pyplot, which
plots points without lines attaching them. Figure 6.6 shows the result for the two
strings above.

Reflection 6.25 Look at Figure 6.6. Which dots correspond to which characters? Why
are there only dots on the diagonal?

We can see that, because this function only recognizes matches at the same index
and most of the identical characters in the two sentences do not line up perfectly,
this function does not reveal their true degree of similarity. If we were to insert
two gaps into the strings, the character-by-character comparison would be quite
different:



274 � 6 Text, Documents, and DNA

0 5 10 15 20 25 30 35 40 45
Peter Piper picked a peck of pickled peppers.

0

5

10

15

20

25

30

35

40

45

P
e
te

r 
P
e
p
p
e
r 

p
ic

ke
d
 a

 p
e
ck

 o
f 

p
ic

kl
e
d
 c

a
p
e
rs

.

Figure 6.6 Output from the dotplot1 function.

Text 1: Peter Pip er picked a peck of pickled peppers.

Text 2: Peter Pepper picked a peck of pickled ca pers.

Dot plots
A real dot plot compares every character in one sequence to every character in the
other sequence. This means that we want to compare text1[0] to text2[0], then
text1[0] to text2[1], then text1[0] to text2[2], etc., as illustrated below:

Peter Pepper picked a peck of pickled capers.

Peter Piper picked a peck of pickled peppers.
0 1 2 3 4 5 6 7 8 9

...

...
text1:

text2:
0 1 2 3 4 5 6 7 8 9 ...

After we have compared text1[0] to all of the characters in text2, we need to repeat
this process with text1[1], comparing text1[1] to text2[0], then text1[1] to
text2[1], then text1[1] to text2[2], etc., as illustrated below:

Peter Pepper picked a peck of pickled capers.

Peter Piper picked a peck of pickled peppers.
0 1 2 3 4 5 6 7 8 9

...

...
text1:

text2:
0 1 2 3 4 5 6 7 8 9 ...

In other words, for each value of index, we want to compare text1[index] to
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every character in text2, not just to text2[index]. To accomplish this, we need to
replace the if statement in dotplot1 with another for loop:

1 import matplotlib.pyplot as pyplot

2 def dotplot(text1, text2):
3 """Display a dot plot comparing two strings.

4 Parameters:
5 text1: a string object
6 text2: a string object

7 Return value: None
8 """

9 text1 = text1.lower()
10 text2 = text2.lower()
11 x = []
12 y = []
13 for index1 in range(len(text1)):
14 for index2 in range(len(text2)):
15 if text1[index1] == text2[index2]:
16 x.append(index1)
17 y.append(index2)
18 pyplot.scatter(x, y)
19 pyplot.xlim(0, len(text1))
20 pyplot.ylim(0, len(text2))
21 pyplot.xlabel(text1)
22 pyplot.ylabel(text2)
23 pyplot.show()

With this change inside the first for loop (we also renamed index to index1), each
character text1[index1] is compared to every character in text2, indexed by the
index variable index2, just like the illustrations above. If a match is found, we
append index1 to the x list and index2 to the y list because we want to draw a dot
at coordinates (index1, index2).

The following trace table shows how this works in more detail, with much smaller
inputs. The iterations of the outer for loop are separated by thicker black lines and
set apart with the curly braces on the left side, annotated with values of index1.
The iterations of the inner for loop are separated by thinner red lines.
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Trace arguments: text1 = 'spam', text2 = 'pea'

Step Line x y index1 index2 Notes
1–4 9–12 [ ] [ ] — — initialize variables

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 13 ” ” 0 — index1 ← 0

6 14 ” ” ” 0 index2 ← 0

7 15 ” ” ” ” 's' != 'p'; skip lines 16–17
8 14 ” ” ” 1 index2 ← 1

9 15 ” ” ” ” 's' != 'e'; skip lines 16–17
10 14 ” ” ” 2 index2 ← 2

11 15 ” ” ” ” 's' != 'a'; skip lines 16–17

1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 13 ” ” 1 ” index1 ← 1

13 14 ” ” ” 0 index2 ← 0

14 15 ” ” ” ” 'p' == 'p'; do lines 16–17
15–16 16–17 [1] [0] ” ” we want a dot at (1,0)

17 14 ” ” ” 1 index2 ← 1

18 15 ” ” ” ” 'p' != 'e'; skip lines 16–17
19 14 ” ” ” 2 index2 ← 2

20 15 ” ” ” ” 'p' != 'a'; skip lines 16–17

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21 13 ” ” 2 ” index1 ← 2

22 14 ” ” ” 0 index2 ← 0

23 15 ” ” ” ” 'a' != 'p'; skip lines 16–17
24 14 ” ” ” 1 index2 ← 1

25 15 ” ” ” ” 'a' != 'e'; skip lines 16–17
26 14 ” ” ” 2 index2 ← 2

27 15 ” ” ” ” 'a' == 'a'; do lines 16–17
28–29 16–17 [1, 2] [0, 2] ” ” we want a dot at (2,2)

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

30 13 ” ” 3 ” index1 ← 3

31 14 ” ” ” 0 index2 ← 0

⋮ ⋮

37–42 18–23 [1, 2] [0, 2] 3 2 draw the plot
Notice that when index1 is 0, the inner for loop runs through all the values of
index2. The inner loop finishes in step 11, also finishing the body of the outer
for loop. Therefore, in step 12, the outer loop begins its second iteration, with
index1 = 1. The inner loop then runs through all of its values again, and so on.
There are len(text1) ⋅ len(text2) = 4 ⋅ 3 = 12 total comparisons because each of
the four characters in 'spam' is compared to each of the three characters in 'pea'.
These kinds of loops are called nested loops. They will become very important in
the next few chapters.
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Figure 6.7 Output from the revised dotplot function.

Figure 6.7 shows the dot plot from the revised version of the function with the
longer strings. Because the two strings share many characters, there are quite a few
matches, contributing to a “noisy” plot. But the plot now does pick up the similarity
in the strings, illustrated by the dots along the main diagonal.

We can reduce the “noise” in a dot plot by comparing substrings instead of individual
characters. In textual analysis applications and computational linguistics, substrings
with length n are known as n-grams.6 When n = 2 and n = 3, they are also called
bigrams and trigrams, respectively. When n > 1, there are many more possible
substrings, so fewer matches tend to exist. Exercise 6.6.14 asks you to generalize this
dot plot function so that it compares n-grams instead of single characters. Figure 6.8
shows the result of this function with n = 3.

Dot plots can be helpful in detecting potential plagiarism. Consider the controversy
that erupted at the 2016 Republican National Convention, when portions of Melania
Trump’s speech seemed to closely resemble portions of Michelle Obama’s convention
speech from eight years prior. The offending portions of these two speeches are
compared with a dot plot in Figure 6.9.

Reflection 6.26 Just by looking at Figure 6.9, would you conclude that portions had
been plagiarized? (Think about what a dot plot comparing two random passages would
look like.)

6n-grams can also refer to sequences of n words, as we will see in the next chapter.
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Figure 6.8 Output from the dotplot function from Exercise 6.6.14 (trigrams).
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Figure 6.9 A dot plot comparing 6-grams from segments of Michelle Obama’s and

Melania Trump’s convention speeches in 2008 and 2016.
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Exercises
6.6.1. What is printed by the following loop? Explain why.

text1 = 'tbontb'
text2 = 'oerooe'
for index in range(len(text1)):

print(text1[index] + text2[index])

6.6.2* Consider the following nested loop.

text1 = 'abcd'
text2 = 'xyz'
for index1 in range(len(text1)):

for index2 in range(len(text2)):
if text1[index1] == text2[index2]:

print(index1, index2)

List the pairs of characters that are compared by the if statement, in the order
they are compared. How many comparisons are there in total?

6.6.3. Repeat the previous exercise, but with the for statements swapped, as shown
below.

text1 = 'abcd'
text2 = 'xyz'
for index2 in range(len(text2)):

for index1 in range(len(text1)):
if text1[index1] == text2[index2]:

print(index1, index2)

6.6.4. What is printed by the following nested loop? Explain why.

text = 'imho'
for index1 in range(len(text)):

for index2 in range(index1, len(text)):
print(text[index1:index2 + 1])

6.6.5. Write a function

difference(word1, word2)

that returns the first index at which the strings word1 and word2 differ. If the
words have different lengths, and the shorter word is a prefix of the longer word,
the function should return the length of the shorter word. If the two words
are the same, the function should return −1. Do this without directly testing
whether word1 and word2 are equal.

6.6.6* Hamming distance, defined to be the number of bit positions that are different
between two bit strings, is used to measure the error that is introduced when
data is sent over a network. For example, suppose we sent the bit sequence
011100110001 over a network, but the destination received 011000110101 in-
stead. To measure the transmission error, we can find the Hamming distance
between the two sequences by lining them up as follows:

Sent: 011100110001

Received: 011000110101

Since the bit sequences are different in two positions, the Hamming distance is
2. Write a function
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hamming(bits1, bits2)

that returns the Hamming distance between the two given bit strings. Assume
that the two strings have the same length.

6.6.7. Repeat Exercise 6.6.6, but make it work correctly even if the two strings
have different lengths. In this case, each “missing” bit at the end of the
shorter string counts as one toward the Hamming distance. For example,
hamming('000', '10011') should return 3.

6.6.8* The following nested for loop is intended to print information about characters
that are repeated in the string text.

text = 'two words'
for index1 in range(len(text)):

for index2 in range(len(text)):
if text[index1] == text[index2]:

print(text[index1], index1, index2)

There are only two repeated characters in this short string—'w' at indices 1
and 4 and 'o' at indices 2 and 5—but this loop prints more than that. Fix the
nested loop so that it correctly prints only two lines. Explain why your solution
is correct.

6.6.9. Write a function

longestRun(text)

that returns the length of the longest run of the same character in the string
text. For example, longestRun('aabbbbcccd') should return 4.

6.6.10. Write a function

uniqueCharacters(text)

that returns the number of characters that only appear once in the string text.

6.6.11* Write a function

findRepeats(text, length)

that locates all words with the given length that are repeated consecutively
in the string text. For each found repeat, your function should print the word
and the index of the first occurrence of the word. Assume that words do not
start with a space and that there will be a space between repeats. For example,
findRepeats('the the repeats are are repeating', 3) should print

0 the

16 are

6.6.12. Write a function

findRepeats(text)

that locates words with any length from 2–10 that are repeated consecutively in
the string text. See the previous problem for assumptions and what to print.

6.6.13. Write a function

findDuplicates(text, length)

that locates all pairs of identical substrings with the given length any-
where in the string text. The function should print the substring and a
pair of indices representing the first index in each match. For example,
findDuplicates('the the repeats are are repeating', 4) should print
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the 0 4

e re 6 22

rep 7 23

repe 8 24

epea 9 25

peat 10 26

are 15 19

are 16 20

6.6.14. Generalize the dotplot function so that it compares n-grams instead of indi-
vidual characters. The third parameter of the function should be n.

*6.7 TIME COMPLEXITY
This section is available on the book website.

*6.8 COMPUTATIONAL GENOMICS
This section is available on the book website.

6.9 SUMMARY AND FURTHER DISCOVERY
Text is stored as a sequence of bytes, which we can read into one or more strings.
The most fundamental string algorithms have one of the following structures:

for character in text:
# process character

for index in range(len(text)):
# process text[index]

In the first case, consecutive characters in the string are assigned to the for loop
index variable character. In the body of the loop, each character can then be
examined individually. In the second case, consecutive integers from the list [0, 1,

2, ..., len(text) - 1], which are precisely the indices of the characters in text,
are assigned to the for loop index variable index. In this case, the algorithm has
more information because, not only can it access the character at text[index], it
also knows where that character resides in the string. The first choice tends to be
more elegant, but the second choice is necessary when the algorithm needs to know
the index of each character, or if it needs to process slices of the string, which can
only be accessed with indices.

We called one special case of these loops a string accumulator :

newText = ''
for character in text:

newText = newText +

Like an integer accumulator and a list accumulator, a string accumulator builds its
result cumulatively in each iteration of the loop. Because strings are immutable, a
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string accumulator must create a new string in each iteration that is composed of
the old string with a new character concatenated.

Algorithms like these that perform one pass over their string parameters and execute
a constant number of elementary steps per character are called linear-time algorithms
because their number of elementary steps is proportional to the length of the input
string.

In some cases, we need to compare every character in one string to every character
in a second string, so we need a nested loop like the following:

for index1 in range(len(text1)):
for index2 in range(len(text2)):

# process text1[index1] and text2[index2]

If both strings have length n, then a nested loop like this constitutes a quadratic-
time algorithm with time complexity O(n2) (as long as the body of the loop is
constant-time) because every one of n characters in the first string is compared to
every one of n characters in the second string. We will see more loops like this in
later chapters.

Notes for further discovery
The first of the two epigraphs at the beginning of this chapter is from the following
blog post by Leslie Johnston, the former Chief of the Repository Development Center
at the Library of Congress. She is currently Director of Digital Preservation at The
National Archives.

http://blogs.loc.gov/digitalpreservation/2012/04/

a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/

The second epigraph is from an article titled “The DNA Data Deluge” by Michael
C. Schatz and Ben Langmead [55], which can be found at

http://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge .

To learn more about how tokenization is performed in the Python interpreter, look
here: https://docs.python.org/3/reference/lexical_analysis.html.

For the complete Unicode character set, refer to http://unicode.org.

The Fletcher checksum algorithm was invented by John Fletcher at the Lawrence
Livermore National Laboratory and published in 1982 [18].

A concordance for the works of William Shakespeare can be found at

http://www.opensourceshakespeare.org/concordance/.

The Keyword in Context (KWIC) indexing system, also known as a permuted index,
is similar to a concordance. In a KWIC index, every word in the title of an article
appears in the index in the context in which it appears.

To learn more about text analysis in the digital humanities, we recommend Macro-

http://blogs.loc.gov/digitalpreservation/2012/04/a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/
http://blogs.loc.gov/digitalpreservation/2012/04/a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/
http://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge
https://docs.python.org/3/reference/lexical_analysis.html
http://unicode.org
http://www.opensourceshakespeare.org/concordance/
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analysis [26] by Matthew Jockers and Exploring Big Historical Data [20] by Shawn
Graham, Ian Milligan, and Scott Weingart.

If you are interested in learning more about computational biology, two good places
to start are The Mathematics of Life [62] by Ian Stewart and Natural Computing
[60] by Dennis Shasha and Cathy Lazere. The latter book has a wider focus than
just computational biology.

*6.10 PROJECTS
This section is available on the book website.
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Data Analysis

“Data! Data! Data!” he cried impatiently. “I can’t make bricks without clay.”

Sherlock Holmes
The Adventure of the Copper Beeches (1892)

In this chapter, we will focus on analyzing and manipulating numerical data: earth-
quake measurements, SAT scores, isotope ratios, unemployment rates, meteorite

locations, consumer demand, river flow, and more. Data sets such as these have
become a (if not, the) vital component of many scientific, nonprofit, and commer-
cial ventures. Many of these sectors now employ experts in data science who
use advanced techniques to transform data into valuable information to guide the
organization.

To solve these problems, we need an abstract data type (ADT) in which to store
a collection of data. The simplest and most intuitive such abstraction is a list,
which is simply a sequence of items. In previous chapters, we discovered how to
generate Python list objects with the range function and how to accumulate lists
of coordinates to visualize in plots. To solve the problems in this chapter, we will
also grow and shrink lists, and modify and rearrange their contents, without having
to worry about where or how they are stored in memory. Later in the chapter, we
will develop algorithms to compute the frequencies of all the words and bigrams in
a book, perform linear regression analyses, and cluster data into groups of similar
items.

285
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7.1 SUMMARY STATISTICS
Suppose we are running a small business, and we need to get some basic descriptive
statistics about last week’s daily sales. We can store these sales numbers in a list
like this:

>>> sales = [32, 42, 11, 15, 58, 44, 16]

You’ll recall that a list is represented as a sequence of items, separated by commas,
and enclosed in square brackets ([ ]). Lists can contain any kind of data we want,
even items with different types. For example, these are all valid lists:

>>> unemployment = [0.082, 0.092, 0.091, 0.063, 0.068, 0.052]

>>> votes = ['yea', 'yea', 'nay', 'yea', 'nay']
>>> points = [[2, 1], [12, 3], [6, 5], [3, 14]]

>>> crazyTown = [15, 'gtaaca', [1, 2, 3], max(4.1, 1.4), 'cookies']

Mean and variance
Let’s start by computing the mean (or average) daily sales for the week. To find
the mean of a list of numbers, we need to first find their sum by iterating over the
list. As we saw a few times before, iterating over the values in a list is essentially
identical to iterating over the characters in a string.

total = 0
for item in sales:

total = total + item
return total / len(sales)

In each iteration of the for loop, item is assigned the next value in the list named
sales, and then added to the running sum. After the loop, we divide the sum by the
length of the list, which is retrieved with the same len function we used on strings.

Reflection 7.1 Does this work when the list is empty?

If sales is the empty list ([ ]), then the value of len(sales) is zero, resulting in
a “division by zero” error in the return statement. We have several options to deal
with this. First, we could just let the error happen. Second, we could use an assert

statement to print an error message and abort. Third, we could catch the error with
a try/except statement. Fourth, we could detect this error before it happens with
an if statement and return something that indicates that an error occurred. We
adopt the last option in the following function by returning None and indicating this
possibility in the docstring.
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1 def mean(data):
2 """Compute the mean of a non-empty list of numbers.

3 Parameter:
4 data: a list of numbers

5 Return value: the mean of numbers in data or None if data is empty
6 """

7 if len(data) == 0:
8 return None

9 total = 0
10 for item in data:
11 total = total + item
12 return total / len(data)

This for loop is yet another example of an accumulator. To illustrate what is
happening, let’s trace through the function with one week of sales data.

Trace arguments: data = [32, 42, 11, 15, 58, 44, 16]

Step Line total item Notes
1 7 — — len(data) is 7 > 0; skip line 8
2 9 0 — total ← 0

3 10 ” 32 item ← data[0]

4 11 32 ” total ← total + item = 0 + 32

5 10 ” 42 item ← data[1]

6 11 74 ” total ← total + item = 32 + 42

⋮

15 10 202 16 item ← data[6]

16 11 218 ” total ← total + item = 202 + 16

17 12 ” ” return 218 / 7

Return value: 31.142857142857142

Reflection 7.2 Fill in the missing steps above to show how the function arrives at a
total of 218.

The mean of a data set does not adequately describe it if there is a lot of variability
in the data, i.e., if there is no “typical” value. In these cases, we need to accompany
the mean with the variance , which is measure of how much the data varies from
the mean. Computing the variance is left as Exercise 7.1.10.
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Minimum and maximum
Now let’s think about how to find the minimum and maximum sales in the list. Of
course, it is easy for us to just look at a short list like the one above and pick out
the minimum and maximum. But a computer does not have this ability. Therefore,
as you think about these problems, it may be better to think about a very long list
instead, one in which the minimum and maximum are not so obvious.

Reflection 7.3 Think about how you would write an algorithm to find the minimum
value in a long list. (Similar to a running sum, keep track of the current minimum.)

As the hint suggests, we want to maintain the current minimum while we iterate
over the list with a for loop. When we examine each item, we need to test whether
it is smaller than the current minimum. If it is, we assign the current item to be the
new minimum. The following function implements this algorithm.

def min(data):
"""Compute the minimum value in a non-empty list of numbers.

Parameter:
data: a list of numbers

Return value: the minimum value in data or None if data is empty
"""

if len(data) == 0:
return None

minimum = data[0]
for item in data[1:]:

if item < minimum:
minimum = item

return minimum

Since lists are sequences like strings, they can also be indexed and sliced. But now
indices refer to list elements instead of characters and slices are sublists instead of
substrings. We use indexing before the loop to initialize minimum to be the first value
in the list. Then we iterate over the slice of remaining values in the list. In each
iteration, we compare the current value of item to minimum and, if item is smaller,
update minimum to be the value of item. At the end of the loop, minimum has been
assigned the smallest value in the list.

Reflection 7.4 If the list [32, 42, 11, 15, 58, 44, 16] is assigned to data, then
what are the values of data[0] and data[1:]?

Let’s look at a small example of how this function works when we call it with the
list containing only the first four numbers from the list above: [32, 42, 11, 15].
The function begins by assigning the value 32 to minimum. The first value of item is
42. Since 42 is not less than 32, minimum remains unchanged. In the next iteration
of the loop, the third value in the list, 11, is assigned to item. In this case, since 11
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is less than 32, the value of minimum is updated to 11. Finally, in the last iteration
of the loop, item is assigned the value 15. Since 15 is greater than 11, minimum is
unchanged. At the end, the function returns the final value of minimum, which is 11.
A function to compute the maximum is very similar, so we leave it as an exercise.

Reflection 7.5 What would happen if we iterated over data instead of data[1:]? Would
the function still work?

If we iterated over the entire list instead, the first comparison would be useless
(because item and minimum would be the same) so it would be a little less efficient,
but the function would still work fine.

Now what if we also wanted to know on which day of the week the minimum sales
occurred? To answer this question, assuming we know how indices correspond to
days of the week, we need to find the index of the minimum value in the list. As we
learned in Chapter 6, we need to iterate over the indices in situations like this:

def minDay(data):
"""Find the index of the minimum value in a non-empty list.

Parameter:
data: a list of numbers

Return value: index of the minimum value in data or -1 if data == [ ]
"""

if len(data) == 0:
return -1

minIndex = 0
for index in range(1, len(data)):

if data[index] < data[minIndex]:
minIndex = index

return minIndex

This function performs almost exactly the same algorithm as our min function, but
now each value in the list is identified by data[index] instead of item, and we
remember the index of current minimum in the loop instead of its value.

Reflection 7.6 How can we modify the minDay function to return a day of the week
instead of an index, assuming the sales data starts on a Sunday?

One option would be to replace return minIndex with if/elif/else statements,
like the following:

if minIndex == 0:

return 'Sunday'
elif minIndex == 1:

return 'Monday'
⋮
else:

return 'Saturday'
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But a more clever solution is to create a list of the days of the week that are in the
same order as the sales data. Then we can simply use the value of minIndex as an
index into this list to return the correct string.

days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday']

return days[minIndex]

There are many other descriptive statistics that we can use to summarize the contents
of a list. The following exercises challenge you to implement some of them.

Exercises
When an exercise asks you to write a function, test it with both common and boundary case
arguments, and document your test cases. Also use a trace table to show the execution of the
function with at least one of the test cases.

7.1.1. Suppose a list is assigned to the variable name data. Show how you would

(a)* print the length of data

(b)* print the third element in data

(c)* print the last three elements in data

(d) print the last element in data

(e) print the first four elements in data

(f) print the list consisting of the second, third, and fourth elements in data

7.1.2. In the mean function, we returned None if data was empty. Show how to modify
the following main function so that it properly tests for this possibility and
prints an appropriate message.

def main():
someData = getInputFromSomewhere()
average = mean(someData)
print('The mean value is ' + str(average) + '.')

7.1.3. Write a function

sumList(data)

that returns the sum of all of the numbers in the list data. For example,
sumList([1, 2, 3]) should return 6.

7.1.4* Write a function

sumOdds(data)

that returns the sum of only the odd integers in the list data. For example,
sumOdds([1, 2, 3]) should return 4.

7.1.5. Write a function

countOdds(data)

that returns the number of odd integers in the list data. For example,
countOdds([1, 2, 3]) should return 2.
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7.1.6. Write a function

multiples5(data)

that returns the number of multiples of 5 in a list of integers. For example,
multiples5([5, 7, 2, 10]) should return 2.

7.1.7. Write a function

countNames(words)

that returns the number of capitalized names in the list of strings named words.
For example,

countNames(['Fili', 'Oin', 'Thorin', 'and', 'Bilbo', 'are',
'characters', 'in', 'a', 'book', 'by', 'Tolkien'])

should return 5.

7.1.8. The percentile associated with a particular value in a data set is the number of
values that are less than or equal to it, divided by the total number of values,
times 100. Write a function

percentile(data, value)

that returns the percentile of value in the list named data.

7.1.9. Write a function

meanSquares(data)

that returns the mean of the squares of the numbers in a list named data.

7.1.10. Write a function

variance(data)

that returns the variance of a list of numbers named data. The variance is
defined to be the mean of the squares of the numbers in the list minus the
square of the mean of the numbers in the list. In your implementation, call your
function from Exercise 7.1.9 and the mean function from this section.

7.1.11. Write a function

max(data)

that returns the maximum value in the list of numbers named data. Do not use
the built-in max function.

7.1.12* Write a function

shortest(words)

that returns the shortest string in a list of strings named words. In case of ties,
return the first shortest string. For example,

shortest(['spider', 'ant', 'beetle', 'bug'])

should return the string 'ant'.

7.1.13. Write a function

span(data)

that returns the difference between the largest and smallest numbers in the list
named data. Do not use the built-in min and max functions. (But you may use
your own functions.) For example, span([9, 4, 1, 7, 7]) should return 8.
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7.1.14. Write a function

maxIndex(data)

that returns the index of the maximum item in the list of numbers named data.
Do not use any built-in functions.

7.1.15. Write a function

secondLargest(data)

that returns the second largest number in data. Do not use the built-in max

function. (But you may use your maxIndex function from Exercise 7.1.14.)

7.1.16* Write a function

linearSearch(data, target)

that returns True if target is in the list named data, and False otherwise. Do
not use the in operator to test whether an item is in the list. For example,

linearSearch(['Tris', 'Tobias', 'Caleb'], 'Tris')

should return True, but

linearSearch(['Tris', 'Tobias', 'Caleb'], 'Peter')

should return False.

7.1.17* Write a function

linearSearch(data, target)

that returns the index of target if it is found in data, and -1 otherwise. Do
not use the in operator or the index method to test whether items are in the
list. For example,

linearSearch(['Tris', 'Tobias', 'Caleb'], 'Tris')

should return 0, but

linearSearch(['Tris', 'Tobias', 'Caleb'], 'Peter')

should return -1.

7.1.18* Write a function

intersect(data1, data2)

that returns True if the two lists named data1 and data2 have any common
elements, and False otherwise. (You may use your linearSearch function from
Exercise 7.1.16.) For example,

intersect(['Katniss', 'Peeta', 'Gale'], ['Foxface', 'Marvel'])

should return False, but

intersect(['Katniss', 'Peeta', 'Gale'], ['Gale', 'Haymitch'])

should return True.

7.1.19. Write a function

differ(data1, data2)

that returns the first index at which the two lists data1 and data2 differ. If the
two lists are the same, your function should return -1. You may assume that
the lists have the same length. For example,

differ(['CS', 'rules', '!'], ['CS', 'totally', 'rules!'])

should return the index 1.
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Figure 7.1 Plots of (a) daily temperatures and (b) the same temperatures smoothed

over a five-day window.

7.1.20. The Luhn algorithm is the standard algorithm used to validate credit card
numbers and protect against accidental errors. Read about the algorithm online,
and then write a function

validateLuhn(number)

that returns True if the number if valid and False otherwise. The number

parameter will be a list of digits. For example, to determine if the credit card
number 4563 9601 2200 1999 is valid, one would call the function with the pa-
rameter [4, 5, 6, 3, 9, 6, 0, 1, 2, 2, 0, 0, 1, 9, 9, 9]. (Hint: use
a for loop that iterates in reverse over the indices of the list.)

7.2 WRANGLING DATA
Suppose, as part of an ongoing climate study, we are tracking daily surface seawater
temperatures recorded by a drifting buoy in the Atlantic Ocean.1 Our list of daily
temperature readings (in degrees Celsius) starts like this:

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 19.1, 19.4, 19.3, ...]

Often, when we are dealing with data sets like this, anomalies can arise due to
errors in the sensing equipment, human fallibility, or corruption in the network used
to send results to a lab or another collection point. We can mask these erroneous
measurements by “smoothing” the data, replacing each value with the mean of
the values in a “window” of values containing it. This technique is also useful for
extracting general patterns in data by eliminating distracting “bumpy” areas. For
example, Figure 7.1 shows a year’s worth of raw temperature data from an actual
ocean buoy, next to the same data smoothed over a five day window. Smoothing
data like this is sometimes also called computing moving averages , as in “the 5-day
moving average price of the stock is $27.13.”

1For example, see http://www.coriolis.eu.org.

http://www.coriolis.eu.org
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Figure 7.2 Plots of (a) ten daily temperatures and (b) the same temperatures smoothed

over a five-day window.

Smoothing data
Let’s design an algorithm for this problem. We will begin by looking at a small
example consisting of the ten temperature readings above, with an anomalous reading
inserted, marked in red:

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 22.1, 19.4, 19.3]

The plot of this data in Figure 7.2(a) illustrates this erroneous “bump.”

Now let’s smooth the data by averaging over windows of size five. For each value in
the original list, its window will include itself and the four values that come after it.
(The last four values do not have four values after them, so their windows will be
smaller.) Our algorithm will need to compute the mean of each of these windows,
and then add each of these means to a new smoothed list. The first window looks
like this:

[ 18.9, 18.9, 19.0, 19.2, 19.3,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean = 95.3 / 5 = 19.06

19.3, 19.2, 22.1, 19.4, 19.3]

To find the mean temperature for the window, we sum the five values and divide by
5. The result, 19.06, will represent this window in the smoothed list. The remaining
windows are computed in the same way:

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean = 95.7 / 5 = 19.14

19.2, 22.1, 19.4, 19.3]

⋮

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 22.1, 19.4, 19.3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean = 99.3 / 5 = 19.86

]
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[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 22.1, 19.4, 19.3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean = 80.0 / 4 = 20.00

]

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 22.1, 19.4, 19.3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean = 60.8 / 3 = 20.27

]

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 22.1, 19.4, 19.3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean = 38.7 / 2 = 19.35

]

[18.9, 18.9, 19.0, 19.2, 19.3, 19.3, 19.2, 22.1, 19.4, 19.3
´¹¹¹¹¹¸¹¹¹¹¹¶

mean = 19.3 / 1 = 19.3

]

In the end, our list of smoothed temperature readings is:

[19.06, 19.14, 19.20, 19.82, 19.86, 19.86, 20.0, 20.27, 19.35, 19.3]

We can see from the plot of this smoothed list in Figure 7.2(b) that the “bump” has
indeed been smoothed (although, due to the small window size, it still causes the
window means to increase more than we would probably like).

Suppose that our list of values is named data and our desired window size is
assigned to variable named width. Then we can realize this algorithm with a list
accumulator just like the ones we have been using to plot data since Chapter 4.

smoothedData = [ ] # initialize list
for index in range(len(data)):

window = data[index:index + width]
smoothedData.append(mean(window)) # append the next mean

Before the loop, the list smoothedData is initialized to be an empty list. In each
iteration, we call our mean function from the previous section on one window, and
append the result to the list of smoothed data. After the loop, we have “acccumulated”
the means for all of the windows.

A more efficient algorithm
Reflection 7.7 Can you think of a way to solve the smoothing problem with fewer
arithmetic operations?

We can design a more efficient algorithm by exploiting the simple observation that,
while finding the sums of neighboring windows in the mean function, we unnecessarily
performed some addition operations multiple times. For example, we added the
fourth and fifth temperature readings four different times, once in each of the
first four windows. We can eliminate this extra work by taking advantage of the
relationship between the sums of two contiguous windows. For example, consider
the first window:

18.9, 18.9, 19.0, 19.2, 19.3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sum = 95.3

19.3, 19.2, 22.1, 19.4, 19.3
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The sum for the second window must be almost the same as the first window, since
they have four numbers in common. The only difference in the second window is
that it loses the first 18.9 and gains 19.3. So once we have the sum for the first
window (95.3), we can get the sum of the second window with only two additional
arithmetic operations: 95.3 − 18.9 + 19.3 = 95.7.

18.9, 18.9, 19.0, 19.2, 19.3, 19.3,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sum = 95.7

19.2, 22.1, 19.4, 19.3

We can apply this process to every subsequent window as well, as demonstrated by
the following improved algorithm.

1 def smooth(data, width):
2 """Return a new list of data, smoothed over windows of the given width.

3 Parameters:
4 data: a list of numbers
5 width: the width of each window

6 Return value: a list of smoothed data values
7 """

8 smoothedData = []
9 total = 0 # get sum for the first window

10 for index in range(width):
11 total = total + data[index]

12 for index in range(len(data)):
13 width = min(width, len(data) - index) # adjust width near the end
14 smoothedData.append(total / width) # append the window mean
15 total = total - data[index] # subtract leftmost value
16 if index + width < len(data): # if possible,
17 total = total + data[index + width] # add rightmost value

18 return smoothedData

At the beginning of the function, in lines 8–11, we initialize a new list and get the
sum of the values in the first window. Then, in the for loop, in lines 13–14, the
mean for the window is appended to the new list. Before the mean is computed, if
necessary, the width of the window is reduced to the number of remaining values in
data. In lines 15–17, the sum is adjusted for the next iteration by subtracting the
leftmost value in the current window and, if possible, adding the next value after
the current window.

Reflection 7.8 To make sure you understand the algorithm, use a trace table to execute
the smooth function on the list above with a window size of 5. You should get the same
smoothed list that we derived previously.

To see how much better this algorithm is than our original, let’s compare the number
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of arithmetic operations that are performed by each algorithm, since this is the vast
majority of the work taking place. In the first algorithm, if each window has size 5,
then we perform five addition operations and one division operation each time we
call the mean function, for a total of six arithmetic operations per full-size window.
Therefore, the total number of arithmetic operations is at most six times the number
of windows. In general, if the window width is denoted w, the algorithm performs at
most w additions and one division per window, for a total of n(w + 1) arithmetic
operations.

The new algorithm is performing w additions in the first for loop. In each iteration
of the second for loop, it is performing a division and at most two additions, for a
total of at most 3n arithmetic operations. In total then, the new algorithm performs
at most 3n +w arithmetic operations. Therefore, our old algorithm requires

n(w + 1)
3n +w

times as many operations as the new one. It may be hard to tell from this ratio, but
our new algorithm is doing about w/3 times less work. To see this more concretely,
suppose our list contains ten years (about 3,652 days) worth of temperature readings,
so the speedup ratio is

3652 (w + 1)
3 ⋅ 3652 +w

.

The following table shows the value of this fraction for increasing window sizes w.

w Speedup

5 2.0
10 3.7
20 7.0

100 33.4

When w is small, our new algorithm does not make much difference, but the speedup
becomes quite pronounced when w gets larger. In real applications of smoothing on
extremely large data sets containing billions or trillions of items, such as statistics
on DNA sequences, window sizes can be as high as w = 100,000. So our refined
algorithm can have a marked impact!

Modifying lists in place
We can modify existing lists with append because, unlike strings, lists are mutable .
In other words, the items in a list can be changed directly. This means that we could
smooth the data in a list by overwriting each individual item in the list itself instead
of creating a new list. This is often referred to as modifying the list in place.

Before we tackle that problem, let’s look at a simpler problem to illustrate the
mechanics involved. Suppose we have a list of monthly unemployment rates like
those below.
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>>> unemployment = [0.082, 0.092, 0.091, 0.063, 0.068, 0.052]

If we need to change the second value in the list, we can do so like this:

>>> unemployment[1] = 0.062
>>> unemployment
[0.082, 0.062, 0.091, 0.063, 0.068, 0.052]

We can change individual elements in a list because each of the elements is an
independent reference to a value, like any other variable name. We can visualize the
original unemployment list like this:

index: 0 1 2 3 4 5

unemployment[index]:

0.082 0.092 0.091 0.063 0.068 0.052

The value 0.082 is assigned to the name unemployment[0], the value 0.092

is assigned to the name unemployment[1], etc. When we assigned a new
value to unemployment[1], we were simply assigning a new value to the name
unemployment[1], like any other assignment statement:

index: 0 1 2 3 4 5

unemployment[index]:

0.082 0.062 0.091 0.063 0.068 0.052

Suppose we wanted to adjust all of the unemployment rates in this list by subtracting
one percent from each of them. We can do this with a for loop that iterates over
the indices of the list.

>>> for index in range(len(unemployment)):

unemployment[index] = unemployment[index] - 0.01

>>> unemployment

[0.072, 0.052, 0.081, 0.053, 0.058, 0.042]

This for loop is equivalent to the following six assignment statements:

unemployment[0] = unemployment[0] - 0.01

unemployment[1] = unemployment[1] - 0.01

unemployment[2] = unemployment[2] - 0.01

unemployment[3] = unemployment[3] - 0.01

unemployment[4] = unemployment[4] - 0.01

unemployment[5] = unemployment[5] - 0.01

Reflection 7.9 Is it possible to modify a list in place by iterating over the values in the
list instead? In other words, does the following for loop accomplish the same thing? (Try
it.) Why or why not?

for rate in unemployment:
rate = rate - 0.01

This loop does not modify the list because rate, which is being modified, is not
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actually a name in the list. Instead, it is being assigned the same value as an item
in the list. So, although the value assigned to rate is being modified, the list itself
is not. As illustrated below, at the beginning of the first iteration, 0.082 is assigned
to rate.

index: 0 1 2 3 4 5

unemployment[index]:

rate

0.082   0.062   0.091   0.063   0.068   0.052

Then, when the modified value rate - 0.01 is assigned to rate, this only affects
rate, not the original list, as illustrated below.

index: 0 1 2 3 4 5

unemployment[index]:

rate

0.082   0.062   0.091   0.063   0.068   0.052

0.072

Now let’s put the correct loop above in a function named adjust that takes a list of
unemployment rates as a parameter.

def adjust(rates):
"""Subtract one percent (0.01) from each rate in a list.

Parameter:
rates: a list of numbers representing rates (percentages)

Return value: None
"""

for index in range(len(rates)):
rates[index] = rates[index] - 0.01

In the following main function, the list named unemployment is passed into the
adjust function for the parameter rates.

def main():
unemployment = [0.053, 0.071, 0.065, 0.074]
adjust(unemployment)
print(unemployment)

main()
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Inside the adjust function, every value in rates is decremented by 0.01. What
effect, if any, does this have on the list assigned to unemployment? To find out, we
need to look carefully at what happens when the function is called.

Right after the assignment statement in the main function, the situation looks
like the following, with the variable named unemployment in the main namespace
assigned the list [0.053, 0.071, 0.065, 0.074].

main

[0.053, 0.071, 0.065, 0.074]

unemployment

Now recall from Section 2.5 that, when an argument is passed to a function, it
is assigned to its associated parameter. Therefore, immediately after the adjust

function is called from main, the parameter rates is assigned the same list as
unemployment:

adjustmain

[0.053, 0.071, 0.065, 0.074]

unemployment rates

After adjust executes, 0.01 has been subtracted from each value in rates, as the
following picture illustrates.

adjustmain

[0.043, 0.061, 0.055, 0.064]

unemployment rates

Notice that, since the same list is assigned to unemployment, these changes will also
be reflected in the value of unemployment back in the main function. In other words,
after the adjust function returns, the picture looks like this:
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main

[0.043, 0.061, 0.055, 0.064]

unemployment

So when unemployment is printed at the end of main, the adjusted list
[0.043, 0.061, 0.055, 0.064] will be displayed.

Reflection 7.10 Why does the argument’s value change in this case when it did not in
the parameter passing examples in Section 2.5? What is different?

The difference here is that lists are mutable. When you pass a mutable type as an
argument, any changes to the associated formal parameter inside the function will be
reflected in the value of the argument. Therefore, when we pass a list as an argument
to a function, the values in the list can be changed inside the function.

What if we did not want to change unemployment when we passed it to the adjust

function, and instead return a new adjusted list? One alternative, illustrated in the
function below, would be to make a copy of rates, using the list method copy, and
then modify this copy instead.

def adjust(rates):
""" (docstring omitted) """

ratesCopy = rates.copy()
for index in range(len(ratesCopy)):

ratesCopy[index] = ratesCopy[index] - 0.01
return ratesCopy

The copy method creates an independent copy of the list in memory, and returns a
reference to this new list so that it can be assigned to a variable name (in this case,
ratesCopy). There are other solutions to this problem as well, which we leave as
exercises.

With this knowledge in hand, we can return to the problem of smoothing data in place.
The following modified function does this by replacing each value of data[index]
with the mean of the window starting at position index.

1 def smoothInPlace(data, width):
2 """Smooth data in place over windows with the given width.

3 Parameters:
4 data: a list of numbers
5 width: the width of each window

6 Return value: None
7 """
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8 total = 0 # get the sum for the first window
9 for index in range(width):

10 total = total + data[index]

11 for index in range(len(data)):
12 width = min(width, len(data) - index) # adjust width near the end
13 mean = total / width # compute the window mean
14 total = total - data[index] # subtract leftmost value
15 if index + width < len(data): # if possible,
16 total = total + data[index + width] # add rightmost value
17 data[index] = mean # replace with window mean

The first things to notice are that the function has no smoothedData list and it does
not return anything because smoothing will be reflected directly in data. The only
two other changes are highlighted. In the first highlighted line, the mean value is
computed for the window, but not yet changed in the list. The mean is assigned to
data[index] in the second highlighted line, at the bottom of the loop. The reason
for the separation between these two steps is subtle but important.

Reflection 7.11 Why can we not change the first highlighted line to
data[index] = total / width?

If we assigned the window mean to data[index] on line 13, then we would be
overwriting the original value of data[index] that we need in line 14! The ordering
of events here is crucial: computing the mean of the current window in line 13 must
come before total is modified for the next window in lines 14–16, and subtracting
data[index] from total on line 14 must come before updating data[index] on
line 17.

List operators and methods
In addition to append, there are several more ways to create and modify lists. These
will be especially helpful in the projects at the end of this chapter.

List operators

First, the two operators that we used to create new strings can also be used to create
new lists. The repetition operator * creates a new list that is built from repeats of
the contents of a smaller list. For example:

>>> empty = [0] * 5
>>> empty
[0, 0, 0, 0, 0]
>>> ['up', 'down'] * 4
['up', 'down', 'up', 'down', 'up', 'down', 'up', 'down']

The concatenation operator + creates a new list that is the result of “sticking together”
two lists. For example:

>>> unemployment = [0.082, 0.092, 0.091, 0.063, 0.068, 0.052]
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>>> unemployment = unemployment + [0.087, 0.101]
>>> unemployment
[0.082, 0.092, 0.091, 0.063, 0.068, 0.052, 0.087, 0.101]

Notice that the concatenation operator combines two lists to create a new list,
whereas the append method inserts a new element into the end of an existing list.
In other words,

unemployment = unemployment + [0.087, 0.101]

accomplishes the same thing as the two statements

unemployment.append(0.087)
unemployment.append(0.101)

However, using concatenation actually creates a new list that is then assigned to
unemployment, whereas using append modifies an existing list. So using append is
usually more efficient than concatenation if you are just adding to the end of an
existing list.

Sorting a list

The sort method sorts the items in a list in increasing order. For example, suppose
we have a list of SAT scores that we would like to sort:

>>> scores = [620, 710, 520, 550, 640, 730, 600]
>>> scores.sort()
>>> scores
[520, 550, 600, 620, 640, 710, 730]

It is worth emphasizing that none of these list methods return new lists; instead
they modify the lists in place. In other words, the following is a mistake:

>>> scores = [620, 710, 520, 550, 640, 730, 600]
>>> newScores = scores.sort() # MISTAKE

Reflection 7.12 What is the value of newScores after we execute the statements above?

Printing the value of newScores reveals that it refers to the value None because
sort does not return anything. However, scores was modified as we expected:

>>> newScores
>>> scores
[520, 550, 600, 620, 640, 710, 730]

The sort method will sort any list that contains comparable items, including strings.
For example, suppose we have a list of names that we want to be in alphabetical
order:

>>> names = ['Eric', 'Michael', 'Connie', 'Graham']
>>> names.sort()
>>> names
['Connie', 'Eric', 'Graham', 'Michael']

Reflection 7.13 What happens if you try to sort a list containing items that cannot be
compared to each other? For example, try sorting the list [3, 'one', 4, 'two'].
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Inserting and deleting items

The insert method inserts an item into a list at a particular index. For exam-
ple, suppose we want to insert new names into the sorted list above to maintain
alphabetical order:

>>> names.insert(3, 'John')
>>> names
['Connie', 'Eric', 'Graham', 'John', 'Michael']
>>> names.insert(0, 'Carol')
>>> names
['Carol', 'Connie', 'Eric', 'Graham', 'John', 'Michael']

The first parameter of the insert method is the index where the inserted item will
reside after the insertion.

The pop method is the inverse of insert; pop deletes the list item at a given index
and returns the deleted value. For example,

>>> inMemoriam = names.pop(3)
>>> names
['Carol', 'Connie', 'Eric', 'John', 'Michael']
>>> inMemoriam
'Graham'

If the argument to pop is omitted, pop deletes and returns the last item in the list.

Using pop in a loop can be tricky. To see why, try this loop, which is meant to delete
all of the items in names that start with a C.

>>> for index in range(len(names)):
name = names[index]
if name[0] == 'C':

names.pop(index)

'Carol'
IndexError: list index out of range

Reflection 7.14 Where and why does the IndexError occur in this loop? Were both
'Carol' and 'Connie' deleted as intended?

The error occurs because, after each call to pop is executed, the names list becomes
shorter. But the loop is still going to iterate through the length of the original
list because len(names) was evaluated before the loop started. So, in the latter
iterations, the value of index will be beyond the end of the modified list, triggering
an IndexError exception. There is also a more subtle issue. The condition in the if

statement is first true when the value of index is 0, causing 'Carol' to be popped. Af-
ter this happens, the list looks like this: ['Connie', 'Eric', 'John', 'Michael'].
In the next iteration of the loop, index will be 1, so names[index] will be 'Eric'.
But 'Connie', which is now at index 0, was skipped! To avoid this mistake, the
loop needs to not increment index when an item is popped.

To fix these errors, we need to use a while loop. In a while loop, we can make sure
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that the value of len(names) will be re-evaluated before each iteration and that
index is only incremented when an item is not popped:

>>> index = 0
>>> while index < len(names):

name = names[index]
if name[0] == 'C':

names.pop(index)
else:

index = index + 1

Reflection 7.15 Reset names to be ['Carol', 'Connie', 'Eric', 'John', 'Michael']
and try this new loop. How does it fix the problems in the for loop above?

The remove method also deletes an item from a list, but takes the value of an item
as its parameter rather than its index. If there are multiple items in the list with
the given value, the remove method only deletes the first one. For example,

>>> names.remove('John')
>>> names
['Carol', 'Connie', 'Eric', 'Michael']

Reflection 7.16 What happens if you try to remove 'Graham' from names?

As you saw, the remove method raises a ValueError exception if its argument is
not found. It is usually a good idea to catch this exception rather than have your
program abort. If it doesn’t matter whether the argument is found, you can catch
the exception but do nothing:

try:
names.remove('Graham')

except ValueError:
pass

*List comprehensions
The list accumulator pattern is so common that there is a shorthand for it in Python
called a list comprehension . A list comprehension allows us to build up a list in
a single statement. For example, suppose we wanted to create a list of the first 15
even numbers. Using a for loop, we can construct the desired list with:

evens = [ ]
for i in range(15):

evens.append(2 * i)

An equivalent list comprehension looks like this:

evens = [2 * i for i in range(15)]

The first part of the list comprehension is an expression representing the items we
want in the list. This is the same as the expression that would be passed to the
append method if we constructed the list the “long way” with a for loop. This
expression is followed by a for loop clause that specifies the values of an index
variable for which the expression should be evaluated. The for loop clause is also
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Tangent 7.1: NumPy arrays

NumPy is a Python module that provides a different list-like class named array.
(Because the numpy module is required by the matplotlib module, you should already
have it installed.) Unlike a list, a NumPy array is treated as a mathematical vector .
There are several different ways to create a new array. We will only illustrate two:

>>> import numpy
>>> a = numpy.array([1, 2, 3, 4, 5])
>>> print(a)
[1 2 3 4 5]
>>> b = numpy.zeros(5)
>>> print(b)
[ 0. 0. 0. 0. 0.]

In the first case, a was assigned an array created from a list of numbers. In the second,
b was assigned an array consisting of 5 zeros. One advantage of an array over a list

is that arithmetic operations and functions are applied to each of an array object’s
elements individually. For example:

>>> print(a * 3)
[ 3 6 9 12 15]
>>> c = numpy.array([3, 4, 5, 6, 7])
>>> print(a + c)
[ 4 6 8 10 12]

There are also many functions and methods available to array objects. For example:

>>> print(c.sum())
25
>>> print(numpy.sqrt(c))
[ 1.73205081 2. 2.23606798 2.44948974 2.64575131]

An array object can also have more than one dimension, as we will discuss in Chapter 8.
If you are interested in learning more about NumPy, visit http://www.numpy.org.

identical to the for loop that we would use to construct the list the “long way.”
This correspondence is illustrated below:

evens = [ ]
for i in range(15):
    evens.append(2 * i)

evens = [2 * i for i in range(15)]

List comprehensions can also incorporate if statements. For example, suppose we
wanted a list of the first 15 even numbers that are not divisible by 6. A for loop

http://www.numpy.org
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to create this list would look just like the previous example, with an additional if
statement that checks that 2 * i is not divisible by 6 before appending it:

evens = [ ]
for i in range(15):

if 2 * i % 6 != 0:
evens.append(2 * i)

This can be reproduced with a list comprehension that looks like this:

evens = [2 * i for i in range(15) if 2 * i % 6 != 0]

The corresponding parts of this loop and list comprehension are illustrated below:

evens = [ ]
for i in range(15):
    if 2 * i % 6 != 0:
        evens.append(2 * i)

evens = [2 * i for i in range(15) if 2 * i % 6 != 0]

In general, the initial expression in a list comprehension can be followed by any
sequence of for and if clauses that specify the values for which the expression
should be evaluated.

Exercises
When an exercise asks you to write a function, test it with both common and boundary case
arguments, and document your test cases.

7.2.1* Show how to add the string 'grapes' to the end of the following list using both
concatenation and the append method.

fruit = ['apples', 'pears', 'kiwi']

7.2.2* Write a function

squares(n)

that returns a list containing the squares of the integers 1 through n. Use a for

loop.

7.2.3. Write a function

getCodons(dna)

that returns a list containing the codons in the string dna. Your algorithm
should use a for loop. (This exercise assumes that you have read Section 6.8.)

7.2.4* Write a function

square(data)

that takes a list of numbers named data and squares each number in data

in place. The function should not return anything. For example, if the
list [4, 2, 5] is assigned to a variable named numbers then, after calling
square(numbers), numbers should have the value [16, 4, 25].
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7.2.5* Write a function

swap(data, i, j)

that swaps the positions of the items with indices i and j in the list named
data.

7.2.6. Write a function

reverse(data)

that reverses the list data in place. Your function should not return anything.
(Hint: use the swap function you wrote above.)

7.2.7. Suppose you are given a list of 'yea' and 'nay' votes. Write a function

winner(votes)

that returns the majority vote. For example, winner(['yea', 'nay', 'yea'])
should return 'yea'. If there is a tie, return 'tie'.

7.2.8* Write a function

delete(data, index)

that returns a new list that contains the same elements as the list data except
for the one at the given index. If the value of index is negative or exceeds the
length of data, return a copy of the original list. Do not use the pop method.
For example, delete([3, 1, 5, 9], 2) should return the list [3, 1, 9].

7.2.9. Write a function

removeAll(data, value)

that returns a new list that contains the same elements as the list data except
for those that equal value. Do not use the builit-in remove method. Note that,
unlike the built-in remove method, your function should remove all items equal
to value. For example, remove([3, 1, 5, 3, 9], 3) should return the list
[1, 5, 9].

7.2.10. Write a function

centeredMean(data)

that returns the average of the numbers in data with the largest and smallest
numbers removed. You may assume that there are at least three numbers in the
list. For example, centeredMean([2, 10, 3, 5]) should return 4.

7.2.11. On page 301, we showed one way to write the adjust function so that it returned
an adjusted list rather than modifying the original list. Give another way to
accomplish the same thing.

7.2.12. Write a function

shuffle(data)

that shuffles the items in the list named data in place, without using the shuffle
function from the random module. Instead, use the swap function you wrote
in Exercise 7.2.5 to swap 100 pairs of randomly chosen items. For each swap,
choose a random index for the first item and then choose a greater random
index for the second item.

7.2.13. Write a function

median(data)
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that returns the median number in a list of numbers named data.

7.2.14. Consider the following alphabetized grocery list:

groceries = ['cookies', 'gum', 'ham', 'ice cream', 'soap']
Show a sequence of calls to list methods that insert each of the following into
their correct alphabetical positions, so that the final list containing nine items
is alphabetized:

(a)* 'jelly beans'

(b)* 'donuts'

(c) 'bananas'

(d) 'watermelon'

Next, show a sequence of calls to the pop method that delete all of the following
items from the final list above.

(e)* 'soap'

(f)* 'watermelon'

(g) 'bananas'

(h) 'ham'

7.2.15* Stop words are common words that are often ignored when a text is analyzed.

(a) Write a function

getStopWords(fileName)

that reads stop words from the file with the given fileName and returns
them in a list. The file will contain one word per line; some stop word
files are available on the book website. Remove all punctuation from the
words using the removePunctuation function from Section 6.1.

(b) Write a function

removeStopWords(wordList, stopWordList)

that uses pop to delete all of the stop words in stopWordList from the
list of words named wordList.

7.2.16. Write a function

removeNumbers(wordList)

that uses pop to delete all of the words that begin with a digit from the list of
words named wordList.

7.2.17. The string method join takes a list of strings as an argument and
creates a new string that is the concatenation of the strings in the
list, separated by the string object on which the method is operat-
ing. For example, ', '.join('cookies', 'gum', 'ham') returns the string
'cookies, gum, ham' and '/'.join('either', 'or') returns the string
'either/or'.

Rewrite your makeQuestion function from Exercise 6.4.6 by using
textlib.wordTokens from Section 6.1 to split the sentence into a list words,
and then using join to create the question from this list.
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7.2.18. Given n people in a room, what is the probability that at least one pair of
people shares a birthday? To answer this question, first write a function

sameBirthday(numPeople)

that creates a list of numPeople random birthdays and returns True if two
birthdays are the same, and False otherwise. Use the numbers 0 to 364 to
represent 365 different birthdays. Next, write a function

birthdayProblem(numPeople, trials)

that performs a Monte Carlo simulation with the given number of trials to
approximate the probability that, in a room with numPeople people, two people
share a birthday.

7.2.19. Write a function

birthdayProblem2(trials)

that uses your birthdayProblem function from the previous problem to return
the smallest number of people for which the probability of a pair sharing a
birthday is at least 0.5.

7.2.20* Rewrite the squares function from Exercise 7.2.2 using a list comprehension.

7.2.21. Rewrite the remove function from Exercise 7.2.9 using a list comprehension.

7.2.22. Rewrite the getCodons function from Exercise 7.2.3 using a list comprehension.
(This exercise assumes that you have read Section 6.8.)

7.3 TALLYING FREQUENCIES
In Section 6.5, we designed an algorithm to track the frequency of specific words
across a text. In this section, we will use a new kind of abstract data type to record
the frequencies of every word in a text. Word frequencies are the most basic building
blocks of algorithms used to discover patterns and themes in raw texts.

Word frequencies
To find the number of times that each word appears in a text, we can iterate over
the list of words, keeping track of how many times we see each word. We can imagine
using a simple table for this purpose. To illustrate, suppose we have the following
very short text and associated list of words, obtained by calling the wordTokens

function from Section 6.1:

>>> import textlib
>>> drSeuss = 'one fish two fish red fish blue fish'
>>> wordList = textlib.wordTokens(drSeuss)
>>> wordList
['one', 'fish', 'two', 'fish', 'red', 'fish', 'blue', 'fish']
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Upon seeing the first word in the list, 'one', we create an entry in the table for it
and add a tally mark.

Word: 'one'
Frequency: :

The second word in the list is 'fish', so we create another entry and tally mark.

Word: 'one' 'fish'
Frequency: : :

The third word is 'two', so we create a third entry and tally mark.

Word: 'one' 'fish' 'two'
Frequency: : : :

The fourth word is 'fish' again, so we add a tally mark to that entry.

Word: 'one' 'fish' 'two'
Frequency: : :: :

Continuing in this way with the rest of the list, we get the following final table.

Word: 'one' 'fish' 'two' 'red' 'blue'
Frequency: : :::: : : :

Or, equivalently:

Word: 'one' 'fish' 'two' 'red' 'blue'
Frequency: 1 4 1 1 1

Dictionaries
Notice how the frequency table resembles the picture of a list on page 298, except
that the indices are replaced by words. In other words, the frequency table looks
like a generalized list in which the indices are replaced by values that we choose.
This kind of abstract data type is called a dictionary . In a dictionary, each index
is replaced with a unique key . Unlike a list, in which the indices are implicit, a
dictionary in Python (called a dict object) must define the correspondence between
a key and its value explicitly with a key:value pair. To differentiate it from a list, a
dictionary is enclosed in curly braces ({ }). For example, the frequency table above
would be represented in Python like this:

>>> wordFreqs = {'one': 1, 'fish': 4, 'two': 1, 'red': 1, 'blue': 1}

The first pair in wordFreqs has key 'one' and value 1, the second pair has key
'fish' and value 4, etc.

Each entry in a dictionary object can be referenced using the familiar indexing
notation, but using a key in the square brackets instead of an index. For example:

>>> wordFreqs['blue']
1
>>> wordFreqs['fish']
4
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The model of a dictionary in memory is similar to a list:
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Temperature: 18.9 19.1

Frequency:

The next value is 18.9 again, so we add a tally mark to the table.

Temperature: 18.9 19.1

Frequency:

The next value is 19.0, so we create another entry in the table and another tally

mark.

Temperature: 18.9 19.1 19.0

Frequency:

We continue in this way with the rest of the list to get a final table that looks like

this:

Temperature: 18.9 19.1 19.0 19.2 19.3

Frequency:

Now to find the mode, we must find the maximum frequency in the table, and then

return a list of the values with this maximum frequency.

The frequency table resembles a list, but the

key: 18.9 19.1 19.0 19.2 19.3

frequencies[key]:

2 1 1 1 2

248 8.1 Lists

m.append(item)

appends item to the end of the list m; returns None
m.insert(index, item)

inserts item into the list m at position index; returns None
m.pop([index])

deletes the item in position index from the list m and returns it; if index
is omitted, deletes and returns the last item in the list m

m.sort([key, reverse])

sorts the list m in place using a stable sort; if provided, key is a function
that returns a key for each list item to sort on; if reverse is True, the list
is sorted in reverse order; returns None

m.reverse()

reverses the items in the list m in place; returns None
m.index(item)

returns the index of the first occurrence of item in the list m; raises a
ValueError if item is not found in l

m.count(item)

returns the number of occurrences of item in the list m
m.remove(item)

removes the first occurrence of item from the list m and returns None; raises
a ValueError if item is not found in the list m

m.copy()

returns a shallow copy of the list m

random.choice(m)

returns a random element from the non-empty list m
random.shuffle(m)

shu✏es the list m in place; returns None
random.sample(m, k)

returns a list of k unique elements chosen from the list m; used for random
sampling without replacement

Table 8.1: Some common methods of the list class and three functions from
the random module that are useful for lists. The name m represents an arbitrary
list constant or object. Optional parameters are denoted in square brackets. For
a complete reference, see http://docs.python.org/3/library/stdtypes.html#

mutable-sequence-types.

index: 0 1 2 3 4 5 6

temperatures[index]:

18.9 18.9 19.0 19.1 19.2 19.3 19.3

>>> mylist = [[]] * 3

>>> mylist[1].append(9)

Why? References. See notes!

Lists as parameters: see notes!
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key: 18.9 19.1 19.0 19.2 19.3

frequency[key]:

2 1 1 1 2
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index: 0 1 2 3 4 5 6

temperatures[index]:

18.9 19.1 18.9 19.0 19.3 19.2 19.3

Exercises

8.2.1. Write a function

Exercises

8.2.1. Write a function

meanSquares(data)

that returns the mean (average) of the squares of the numbers in a list named

data.

8.2.2. Write a function

variance(data)

that returns the variance of a list of numbers named data. The variance is

defined to be the mean of the squares of the numbers in the list minus the

square of the mean of the numbers in the list. In your implementation, call

your function from Exercise 8.2.1.

8.2.3. Write a function

median(data)

that returns the median number in a list of numbers named data.

8.2.4. Write a function

max(data)

that returns the maximum value in the list of numbers named data.

8.2.5. Write a function

key: 'one' 'fish' 'two' 'red' 'blue'
wordFreqs[key]:

Each entry in the dictionary is a reference to a value in the same way that each
entry in a list is a reference to a value. So, as with a list, we can change any value in
a dictionary. For example, we can increment the value associated with the key 19.3:

>>> frequency[19.3] = frequency[19.3] + 1

Now let’s use a dictionary to implement the algorithm that we developed above
to find frequencies and the mode(s) of a list. To begin, we will create an empty
dictionary named frequency in which to record our tally marks:
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Dictionaries
Notice how the frequency table resembles the picture of a list on page 377, except
that the indices are replaced by words. In other words, the frequency table looks like
a generalized list in which the indices are replaced by values that we choose. This
kind of abstract data type is called a dictionarydictionary . In a dictionary, each index is
replaced with a more general keykey . Unlike a list, in which the indices are implicit, a
dictionary in Python (called a dict object) must define the correspondence between
a key and its value explicitly with a key:value pair. To di↵erentiate it from a list, a
dictionary is enclosed in curly braces ({ }). For example, the frequency table above
would be represented in Python like this:

>>> wordFreqs = {'one': 1, 'fish': 4, 'two': 1, 'red': 1, 'blue': 1}

The first pair in wordFreqs has key 'one' and value 1, the second pair has key
'fish' and value 4, etc.

Each entry in a dictionary object can be referenced using the familiar indexing
notation, but using a key in the square brackets instead of an index. For example:

>>> wordFreqs['blue']
1

>>> wordFreqs['fish']
4

As we alluded to above, the model of a dictionary in memory is similar to a list:
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Temperature: 18.9 19.1

Frequency:

The next value is 19.0, so we create another entry in the table and another tally

mark.

Temperature: 18.9 19.1 19.0

Frequency:

We continue in this way with the rest of the list to get a final table that looks like

this:

Temperature: 18.9 19.1 19.0 19.2 19.3

Frequency:

Now to find the mode, we must find the maximum frequency in the table, and then

return a list of the values with this maximum frequency.

The frequency table resembles a list, but the

key: 18.9 19.1 19.0 19.2 19.3

frequencies[key]:

2 1 1 1 2
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m.append(item)

appends item to the end of the list m; returns None
m.insert(index, item)

inserts item into the list m at position index; returns None
m.pop([index])

deletes the item in position index from the list m and returns it; if index
is omitted, deletes and returns the last item in the list m

m.sort([key, reverse])

sorts the list m in place using a stable sort; if provided, key is a function
that returns a key for each list item to sort on; if reverse is True, the list
is sorted in reverse order; returns None

m.reverse()

reverses the items in the list m in place; returns None
m.index(item)

returns the index of the first occurrence of item in the list m; raises a
ValueError if item is not found in l

m.count(item)

returns the number of occurrences of item in the list m
m.remove(item)

removes the first occurrence of item from the list m and returns None; raises
a ValueError if item is not found in the list m

m.copy()

returns a shallow copy of the list m

random.choice(m)

returns a random element from the non-empty list m
random.shuffle(m)

shu✏es the list m in place; returns None
random.sample(m, k)

returns a list of k unique elements chosen from the list m; used for random
sampling without replacement

Table 8.1: Some common methods of the list class and three functions from
the random module that are useful for lists. The name m represents an arbitrary
list constant or object. Optional parameters are denoted in square brackets. For
a complete reference, see http://docs.python.org/3/library/stdtypes.html#

mutable-sequence-types.

index: 0 1 2 3 4 5 6

temperatures[index]:

18.9 18.9 19.0 19.1 19.2 19.3 19.3

>>> mylist = [[]] * 3

>>> mylist[1].append(9)

Why? References. See notes!

Lists as parameters: see notes!
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temperatures[index]:
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Exercises

8.2.1. Write a function

Exercises

8.2.1. Write a function

meanSquares(data)

that returns the mean (average) of the squares of the numbers in a list named

data.

8.2.2. Write a function

variance(data)

that returns the variance of a list of numbers named data. The variance is

defined to be the mean of the squares of the numbers in the list minus the

square of the mean of the numbers in the list. In your implementation, call

your function from Exercise 8.2.1.

8.2.3. Write a function

median(data)

that returns the median number in a list of numbers named data.

8.2.4. Write a function

max(data)

that returns the maximum value in the list of numbers named data.

8.2.5. Write a function

key: 'one' 'fish' 'two' 'red' 'blue'
wordFreqs[key]:

1 4 1 1 1

Each entry in the dictionary is a reference to a value in the same way that each
entry in a list is a reference to a value. So, as with a list, we can change any value in
a dictionary. For example, we can increment the value associated with the key 19.3:

>>> frequency[19.3] = frequency[19.3] + 1

Now let’s use a dictionary to implement the algorithm that we developed above
to find frequencies and the mode(s) of a list. To begin, we will create an empty
dictionary named frequency in which to record our tally marks:

Each entry in a dictionary is a reference to a value in the same way that each entry in
a list is a reference to a value. So, as with a list, we can change values in a dictionary.
For example, we can increment the value associated with the key 'two':

>>> wordFreqs['two'] = wordFreqs['two'] + 1
>>> wordFreqs
{'one': 1, 'fish': 4, 'two': 2, 'red': 1, 'blue': 1}

To insert a new pair into the dictionary, we assign a value to the new key just like
we would assign a value to an item in a list:

>>> wordFreqs['whale'] = 5
>>> wordFreqs
{'one': 1, 'fish': 4, 'two': 2, 'red': 1, 'blue': 1, 'whale': 5}

Now let’s use a dictionary to implement the algorithm that we developed above to
find the frequencies of words. To begin, we will create an empty dictionary named
wordFreqs in which to record our tally marks:

wordFreqs = { }

Each entry in this dictionary will have its key equal to a unique word and its value
equal to the word’s frequency count. To tally the frequencies, we need to iterate over
the words in wordList. As in our tallying algorithm, if there is already an entry in
wordFreqs with a key equal to the word, we will increment the word’s associated
value; otherwise, we will create a new entry with wordFreqs[word] = 1. To dif-
ferentiate between the two cases, we can use the in operator: word in wordFreqs

evaluates to True if there is a key equal to word in the dictionary named wordFreqs.

The following function puts all of this together to create a word frequency dictionary
for all of the words in a given text.

1 import textlib

2 def wordFrequencies(text):
3 """ (docstring omitted) """

4 wordList = textlib.wordTokens(text) # get the list of words in text
5 wordFreqs = { }
6 for word in wordList:
7 if word in wordFreqs: # if word is already a key in wordFreqs,
8 wordFreqs[word] = wordFreqs[word] + 1 # count the word
9 else: # otherwise,

10 wordFreqs[word] = 1 # create a new entry word:1

11 return wordFreqs
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Carefully study the following trace table for the function, which assumes that
wordList and wordFreqs have already been assigned in lines 4–5.

Trace arguments: wordList = ['one', 'fish', 'two', 'fish', 'red',
'fish', 'blue', 'fish']

Step Line wordFreqs word Notes
3 6 { } 'one' word ← wordList[0]

4 7 ” ” 'one' not a key; skip to line 10
5 10 {'one': 1} ” insert 'one': 1

6 6 ” 'fish' word ← wordList[1]

7 7 ” ” 'fish' not a key; skip to line 10
8 10 {'one': 1, 'fish': 1} ” insert 'fish': 1

9 6 ” 'two' word ← wordList[2]

10 7 ” ” 'two' not a key; skip to line 10
11 10 {'one': 1, 'fish': 1, ” insert 'two': 1

'two': 1}

12 6 ” 'fish' word ← wordList[3]

13 7 ” ” 'fish' is a key; do line 8
14 8 {'one': 1, 'fish': 2, ” increment wordFreqs['fish']

'two': 1}

⋮

{'one': 1, 'fish': 3,
24 6 'two': 1, 'red': 1, 'fish' word ← wordList[7]

'blue': 1}

25 7 ” ” 'fish' is a key; do line 8
{'one': 1, 'fish': 4,

26 8 'two': 1, 'red': 1, ” increment wordFreqs['fish']
'blue': 1}

27 11 ” ” return wordFreqs

Return value: {'one': 1, 'fish': 4, 'two': 1, 'red': 1, 'blue': 1}

If we are to apply this function to a larger text, we will need a nice way to display
the results. The following function prints an alphabetized table of words with their
frequencies.

def printFrequencies(frequencies, number):
"""Print an alphabetized table of keys and frequencies.

Parameters:
frequencies: a dictionary containing key:count pairs
number: the number of entries to print

Return value: None
"""
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keyList = list(frequencies.keys()) # get a list of the keys
keyList.sort() # and sort them

print('{0:<20} {1}'.format('Key', 'Frequency'))
print('{0:<20} {1}'.format('---', '---------'))
for key in keyList[:number]: # iterate over the sorted list

print('{0:<20} {1:>5}'.format(str(key), frequencies[key]))

We have designed the function to refer to generic keys, rather than words, to make
it more general. To print the keys in alphabetical order, we first get a list of the
keys in the dictionary using the keys method. Since keys returns an object from
the specialized dict_keys class, we need to convert it to a list before we sort it.
Then we iterate over the desired number of words in this sorted list instead of the
frequencies dictionary.

We can find the frequencies of the first five words (alphabetically) in Frankenstein
with the following program:

def main():
textFile = open('frankenstein.txt', 'r')
text = textFile.read()
textFile.close()

freqs = wordFrequencies(text)
printFrequencies(freqs, 5)

main()

The result is the following table.

Key Frequency

--- ---------

1 4

10 2

11 2

11th 2

12 2

Reflection 7.17 Why are the first “words” in the table numbers?

If you remove the numbers from keyList before printing, using the removeNumbers

function from Exercise 7.2.16, you will see this instead:

Key Frequency

--- ---------

a 1384

abandon 2

abandoned 3

abbey 1

abhor 5
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Tangent 7.2: Hash tables

A Python dictionary can be implemented with a structure called a hash table. A hash
table contains a fixed number of indexed slots in which the key:value pairs are stored.
The slot assigned to a particular key:value pair is determined by a hash function that
“translates” the key to a slot index. The picture below shows how some items in the
wordFreqs dictionary might be placed in an underlying hash table.

'two': 1 'one': 1 'fish': 2
0 1 2 3 4 5

'one' 'fish' 'two'

hash hash hash

In this illustration, the hash function associates the key 'one' with slot 3, 'fish' with
slot 4, and 'two' with slot 0.

The underlying hash table allows us to access a value in a dictionary (e.g.,
wordFreqs['fish']) or test for inclusion (e.g., key in wordFreqs) in a constant
amount of time because each operation only involves a hash computation and then a
direct access (like indexing in a string or a list). In contrast, if the pairs were stored in a
list, then the list would need to be searched (in linear time) to perform these operations.

Unfortunately, this constant-time access could be foiled if a key is mapped to an occupied
slot, an event called a collision. Collisions can be resolved by using adjacent slots, using
a second hash function, or associating a list of items with each slot. A good hash function
tries to prevent collisions by assigning slots in a seemingly random manner, so that keys
are evenly distributed in the table and similar keys are not mapped to the same slot.
Because hash functions tend to be so good, we can still consider an average dictionary
access to be a constant-time operation, or one elementary step, even with collisions.

Finding the most frequent word
To find the highest frequency word(s) in a text, we first need to find the maximum
frequency. To do this, we first extract a list of the values from the frequency dictionary
using the values method.

frequencyValues = list(frequencies.values())

Because the values method returns an object from another special class called
dict_values, we convert the result to a list. Then we can find the maximum
frequency in that list:

maxFrequency = max(frequencyValues)

To find the word(s) (there could be more than one) with the highest frequencies, we
need to iterate over all the keys in the frequency dictionary, checking if the frequency
of each is equal to maxFrequency. To iterate over the keys in a dictionary, we simply
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iterate over the dictionary itself with a familiar for loop. The following function
uses a loop like this to append every key with the maximum frequency to a list.

def mostFrequent(frequencies):
"""Find the key(s) with the highest frequency.

Parameter:
frequencies: a dictionary containing key:count pairs

Return value: a list of the most frequent keys in frequencies
"""

frequencyValues = list(frequencies.values())
maxFrequency = max(frequencyValues)

mostFrequentKeys = [ ]
for key in frequencies:

if frequencies[key] == maxFrequency:
mostFrequentKeys.append(key)

return mostFrequentKeys

Reflection 7.18 Use this function to find the most frequent word in Frankenstein.

Not surprisingly, the word in Frankenstein with the highest frequency is the. Because
results like this are not very interesting, common words, called stop words , are often
removed from word lists. (You may have already written a function to do this in
Exercise 7.2.15.)

Let’s go one step further and write a function to print a table of words, sorted by
frequency, from highest to lowest. We did something similar in the printFrequencies
function by sorting the keys and then iterating over this sorted list. But this function
is a little trickier because, once we have a sorted list of dictionary values, there is no
way to recover the associated keys. In a dictionary, we can get the value of a pair
given the key, but not vice versa.

But here is a trick we can use. We will create a list of (value, key) pairs, and then
sort this list. When the sort method is given a list of tuples, it sorts the list by
the first item in the tuple, so this will give us a list sorted by frequency, and each
frequency will be accompanied by its key. Then we can iterate over this sorted list.
The following function demonstrates this technique.

def printMostFrequent(frequencies, number):
"""Print a table of the highest frequency keys.

Parameters:
frequencies: a dictionary containing key:count pairs
number: the number of entries to print

Return value: None
"""
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sortedValues = [] # create list of (value, key) tuples
for key in frequencies:

sortedValues.append((frequencies[key], key))
sortedValues.sort(reverse = True) # sort in descending order

print('{0:<20} {1}'.format('Key', 'Frequency'))
print('{0:<20} {1}'.format('---', '---------'))
for pair in sortedValues[:number]: # iterate over the sorted list

key = pair[1]
print('{0:<20} {1:>5}'.format(str(key), frequencies[key]))

Reflection 7.19 Use this function to find the five most frequent words in Frankenstein.

The five most frequent words are again not terribly surprising:

Key Frequency

--- ---------

the 4187

and 2970

i 2842

of 2639

to 2092

But after removing stop words, they are more meaningful. (Producing this list is
left as an exercise.)

Key Frequency

--- ---------

man 131

life 114

father 112

eyes 104

time 98

Bigram frequencies
In the field of natural language processing (NLP), word frequencies by themselves
are known as a “bag of words” language model. More insight into a text can be
had by computing the frequencies of pairs of adjacent words, called bigrams. For
example, in the drSeuss text, there are seven bigrams:

[('one', 'fish'), ('fish', 'two'), ('two', 'fish'), ('fish', 'red'),
('red', 'fish'), ('fish', 'blue'), ('blue', 'fish')]

Bigram frequencies, and n-gram frequencies more generally, are one of the basic
measures used in speech recognition algorithms; knowing which words are most
likely to follow other words can dramatically reduce the number of possibilities the
algorithm must consider. More generally, distributions of bigram frequencies serve
as the basis of language models in many NLP classification algorithms. Bigram
frequencies can also serve as a simple “digital signature” of an author’s writing style.
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Tangent 7.3: Sentiment analysis

Sentiment analysis is the problem of determining whether some text is expressing a
positive or negative opinion (or possibly something in between). It is frequently applied
to movie and product reviews, as well as social media posts, by those wishing to study
how a product or topic is being viewed by some constituency.

Word and bigram probabilities are the building blocks of machine learning algorithms
for this and other classification problems in the field of natural language processing
(NLP). The probability that a word appears in a text is simply the word’s frequency
divided by the total number of words in the text.

A machine learning algorithm first goes through a training phase in which probabilistic
models of the classes are built from large corpora that have been previously classified
by human beings. The algorithm classifies a new text by computing the probability that
the text is in each class, and outputting the class with the highest probability.

A naive Bayes classifier is the simplest machine learning algorithm used for sentiment
analysis. It is “naive” because it assumes that word probabilities are independent of
both their positions in the text and their relationships to other words in the text. The
algorithm is trained by computing two sets of probabilities. First, it computes the
probability that each word appears in a set of pre-classified documents with positive
sentiment. Then it computes the probability that each word appears in a different set
of pre-classified documents with negative sentiment. To classify an unknown text, the
algorithm computes the probability that the text belongs to each class, defined to be
the product of the prior probability of the class (usually 1/2) and the probabilities that
every word in the new text appears in that class. The output is the class giving the
highest probability.

Computing bigram frequencies is similar to computing word frequencies, with two
main differences. First, as we iterate over the list of words, since we are interested in
consecutive pairs of words, we need to also keep track of the previous word. (This is
similar to keeping track of the previous character in the splitIntoWords function
from Section 6.1.)

prevWord = wordList[0]
for index in range(1, len(wordList)):

word = wordList[index]

# count the bigram (prevWord, word)

prevWord = word

Before the loop, we initialize prevWord to be the first word in the list of words, and
then start the for loop at the second word in the list. In each iteration of the loop,
the bigram we are counting is the pair (prevWord, word). At the bottom of the
loop, we update prevWord in preparation for the next iteration.

The second difference is that a bigram is a pair of strings. We could store bigrams
as two-item lists, but dictionaries only allow immutable objects as keys. Instead,
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we will use tuples, which are like lists, except they are enclosed in parentheses and
are immutable. In general, tuples are used in place of lists when the objects being
represented have a fixed length, and individual components are not likely to change.
For example, tuples are often used to represent the (red, green, blue) components of
colors and the (x,y) coordinates of points. Tuples are also more memory efficient
because extra memory is set aside in a list for a few future appends.

With the exception of these two differences, highlighted below, the following
bigramFrequencies function is very similar to wordFrequencies.

import textlib

def bigramFrequencies(text):
"""Find the frequencies of all bigrams in a text.

Parameter:
text: a string object

Return value: a dictionary containing the bigram frequencies
"""

wordList = textlib.wordTokens(text)
bigramFreqs = { }
prevWord = wordList[0]
for index in range(1, len(wordList)):

word = wordList[index]
bigram = (prevWord, word)
if bigram not in bigramFreqs:

bigramFreqs[bigram] = 1
else:

bigramFreqs[bigram] = bigramFreqs[bigram] + 1
prevWord = word

return bigramFreqs

Reflection 7.20 Use this function and printMostFrequent to find the five most frequent
bigrams in Frankenstein.

The five most frequent bigrams in Frankenstein are:

Key Frequency

--- ---------

('of', 'the') 526

('of', 'my') 272

('in', 'the') 262

('i', 'was') 226

('i', 'had') 219

The following exercises ask you to apply and modify these functions, and explore
some additional uses for dictionaries. In Chapter 11, we will also use dictionaries to
model social networks and other types of highly connected phenomena, and show
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how computer algorithms applied to these networks can help diffuse pandemics,
market new products, and make infrastructures more resilient.

Exercises
7.3.1. Write a function

wordFrequenciesFile(fileName)

that uses the wordFrequencies function to return a dictionary containing the
frequencies of the words in the file with the given fileName.

7.3.2* Show how to find the five words in Jane Austen’s Sense and Sensibility (available
on the book website) with the highest frequencies. What are they? Similarly,
what are the five bigrams with the highest frequencies?

7.3.3* Use the functions from Exercise 7.2.15 to modify the wordFrequencies function
so that it does not include stop words. With your changes, what are the five
most frequent words in Sense and Sensibility?

7.3.4. Write a new version of the printMostFrequent function that prints a desired
number of most frequent words, but does not include stop words. Use the
getStopWords function from Exercise 7.2.15.

7.3.5* Write a function

firstLetterCounts(wordList)

that takes as a parameter a list of strings named words and returns a dictionary
with lowercase letters as keys and the number of words in words that begin
with that letter (lower or uppercase) as values. For example, if the list is
['ant', 'bee', 'armadillo', 'dog', 'cat'], then your function should
return the dictionary {'a': 2, 'b': 1, 'c': 1, 'd': 1}.

7.3.6. Similar to the Exercise 7.3.5, write a function

firstLetterWords(wordList)

that takes as a parameter a list of strings named words and returns a dictionary
with lowercase letters as keys. But now associate with each key the list of
the words in words that begin with that letter. For example, if the list is
['ant', 'bee', 'armadillo', 'dog', 'cat'], then your function should
return the following dictionary:

{'a': ['ant', 'armadillo'], 'b': ['bee'], 'c': ['cat'],
'd': ['dog']}

7.3.7. The probability mass function (PMF) of a data set gives the probability of each
value in the set. A dictionary representing the PMF is a frequency dictionary
with each frequency value divided by the total number of values in the original
data set. For example, the (rounded) probabilities for the values in the dictionary
{18.9: 2, 19.0: 1, 19.2: 1, 19.3: 2} are

{18.9: 0.286, 19.0: 0.143, 19.2: 0.143, 19.3: 0.286}

Write a function

pmf(frequency)

that returns a dictionary containing the PMF of the frequency dictionary passed
as a parameter.
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7.3.8. The probability that a word appears in a text can be found by dividing the
frequency of the word by the total number of words in the text. These probabil-
ities form the basis of many machine learning algorithms like those described in
Tangent 7.3. Write a function

wordProbabilities(text)

that returns a dictionary containing the probabilities of all words in text. Your
function should call the wordFrequencies function.

7.3.9. Write a function

histogram(data, numBins)

that displays a histogram of the values in the list data using numBins bins. The
bins correspond to equal sized intervals between the minimum and maximum
values in data. Each bin will count the number of values that fall in its corre-
sponding interval. For example, if data = [4, 7, 2, 8, 3] and numBins =

3, then the bins will correspond to the intervals [2, 4), [4, 6), and [6, 8], and the
counts in these bins will be 2, 1, and 3. The histogram can be displayed using
the bar function from matplotlib.pyplot:

pyplot.bar(range(1, numBins + 1), binCounts, align = 'center')
pyplot.xticks(range(1, numBins + 1)) # label the bins

Test your function with both small and large lists of randomly generated values
in a variety of ranges. Also test it with a list of sums of random values such as

data = []
for count in range(10000):

data.append(random.randrange(20, 80) + random.randrange(50))

What do you notice?

7.3.10* Write a function

bonus(salaries)

that takes as a parameter a dictionary named salaries, with names as keys
and salaries as values, and increases the salary of everyone in the dictionary by
5%.

7.3.11. Write a function

updateAges(names, ages)

that takes as parameters a list of names of people whose birthday is today and a
dictionary named ages, with names as keys and ages as values, and increments
the age of each person in the dictionary whose birthday is today.

7.3.12. Write a function

seniorList(students, year)

that takes as a parameter a dictionary named students, with names as keys and
class years as values, and returns a list of names of students who are graduating
in year.

7.3.13* Dictionaries are also well-suited for handling translations. For example, the fol-
lowing dictionary associates a meaning with each of three texting abbreviations.

translations = {'lol': 'laugh out loud', 'u': 'you', 'r': 'are'}

With this, we can find the meaning of lol with
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translations['lol']
Write a function

txtTranslate(txtWord)

that uses a dictionary to return the English meaning of the texting abbrevia-
tion txtWord. Incorporate translations for at least ten texting abbreviations. If
the abbreviation is not in the dictionary, your function should return a suit-
able string message instead. For example, txtTranslate('lol') should return
'laugh out loud'.

7.3.14. Write a function

createDictionary()

that creates a dictionary, inserts several English words as keys and the Pig Latin
(or any other language) translations as values, and then returns the completed
dictionary.

Next write a function

translate()

that calls your createDictionary function to create a dictionary, and then
repeatedly asks for a word to translate. For each entered word, it should print
the translation using the dictionary. If a word does not exist in the dictionary,
the function should say so. The function should end when the word quit is
typed.

7.3.15. Write a function

login(passwords)

that takes as a parameter a dictionary named passwords, with usernames as
keys and passwords as values, and repeatedly prompts for a username and
password until a valid pair is entered. Your function should continue to prompt
even if an invalid username is entered.

7.3.16. Write a function

union(dict1, dict2)

that returns a new dictionary that contains all of the entries of the two dictionar-
ies dict1 and dict2. If the dictionaries share a key, use the value in the first dic-
tionary. For example, union({'pies': 3, 'cakes': 5}, {'cakes': 4, 'tarts': 2})

should return the dictionary {'pies': 3, 'cakes': 5, 'tarts': 2}.

7.3.17. The Mohs hardness scale rates the hardness of a rock or mineral on a 10-point
scale, where 1 is very soft (like talc) and 10 is very hard (like diamond). Suppose
we have a list such as

rocks = [('talc', 1), ('lead', 1.5), ('copper', 3),
('nickel', 4), ('silicon', 6.5), ('emerald', 7.5),
('boron', 9.5), ('diamond', 10)]

where the first element of each tuple is the name of a rock or mineral, and the
second element is its hardness. Write a function

hardness(rocks)

that returns a dictionary organizing the rocks and minerals in such a list into
four categories: soft (1–3), medium (3.1–5), hard (5.1–8), and very hard (8.1–10).
For example, given the list above, the function would return the dictionary
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{'soft': ['talc', 'lead', 'copper'],
'medium': ['nickel'],
'hard': ['silicon', 'emerald'],
'very hard': ['boron', 'diamond']}

7.3.18. Write a function

getBigramProbabilities(bigramFreqs)

that returns a new dictionary containing, for each bigram in bigramFreqs, the
probability that the second word in the bigram follows the first word in the
bigram. This is defined as the bigram’s frequency divided by the sum of the
frequencies of all bigrams with the same first word.

7.3.19. Write a function

printNextWords(bigramFreqs, word)

that prints a table containing all of the words that come after word according to
the dictionary bigramFreqs. Each word in the table should be accompanied by
its frequency and the probability that it follows word, defined as its frequency
divided by the sum of the frequencies of all bigrams with word as their first
word. For example, in Sense and Sensibility, passing 'twisted' in for word

should print

Next Word Frequency Probability

--------- --------- -----------

in 1 0.250

tree 1 0.250

blasted 1 0.250

his 1 0.250

7.3.20* Write a function

wordPredictor(bigramFreqs)

that mimics the predictive text function of phones using the given dictionary of
bigram frequencies. The function should prompt for a first word, then suggest
the top three highest frequency words that follow that word. The chosen word
will serve as the next word in a loop. The loop should continue until either no
next word is found or a word is entered that is not among the choices offered.
For example, a possible session based on bigram frequencies from Sense and
Sensibility might look like the following.

First word: she

Choose among ['was', 'had', 'could']: could

she could

Choose among ['not', 'be', 'have']: be

she could be

Choose among ['a', 'the', 'in']: the

she could be the

Choose among ['same', 'world', 'house']: world

she could be the world

Choose among ['to', 'and', 'of']: quit
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7.3.21. Bigram frequencies can be used to create fun, computer-generated “poetry.”
Write a function

writer(bigramFreqs, firstWord, length)

that returns a string containing a sequence of words in which the next word
is randomly chosen from among the most likely words to follow the previous
word, based on the given bigram frequencies. When choosing the next word,
if there are n bigrams starting with the previous word, the list of candidates
should be created from the n/2 with the highest frequencies. The second and
third parameters are the starting word and the desired number of words in
the “poem.” For example, one particular 15-word output, based on the bigram
frequencies in Sense and Sensibility, is

she read and unaffected sincerity that what say it by him such

behaviour in many particulars

This exercise is very similar to the previous exercise, but with no human
intervention.

7.3.22. (This exercise assumes that you have read Section 6.8.) Rewrite the complement
function on page O6.8-5 using a dictionary. (Do not use any if statements.)

7.3.23. (This exercise assumes that you have read Section 6.8.) Suppose we have a set of
homologous DNA sequences with the same length. A profile for these sequences
contains the frequency of each base in each position. For example, suppose we
have the following five sequences, lined up in a table:

G G T T C

G A T T A

G C A T A

C A A T C

G C A T A

A: 0 2 3 0 3

C: 1 2 0 0 2

G: 4 1 0 0 0

T: 0 0 2 5 0

G A A T A ←Ð consensus sequence

Their profile is shown below the sequences. The first column of the profile
indicates that there is one sequence with a C in its first position and four
sequences with a G in their first position. The second column of the profile shows
that there are two sequences with A in their second position, two sequences with
C in their second position, and one sequence with G in its second position. And
so on. The consensus sequence for a set of sequences has in each position the
most common base in the profile. The consensus for this list of sequences is
shown below the profile.

A profile can be implemented as a list of 4-element dictionaries, one for each
column. A consensus sequence can then be constructed by finding the base with
the maximum frequency in each position. In this exercise, you will build up a
function to find a consensus sequence in four parts.
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(a) Write a function

profile1(sequences, index)

that returns a dictionary containing the frequency of each base in posi-
tion index in the list of DNA sequences named sequences. For exam-
ple, if we pass in ['GGTTC', 'GATTA', 'GCATA', 'CAATC', 'GCATA']
for sequences (the sequences from the example above) and
2 for index, then the function should return the dictionary
{'A': 3, 'C': 0, 'G': 0, 'T': 2}, equivalent to the third column
in the profile above.

(b) Write a function

profile(sequences)

that returns a list of dictionaries representing the profile for the list
of DNA sequences named sequences. For example, given the list of
sequences above, the function should return the list

[{'A': 0, 'C': 1, 'G': 4, 'T': 0},
{'A': 2, 'C': 2, 'G': 1, 'T': 0},
{'A': 3, 'C': 0, 'G': 0, 'T': 2},
{'A': 0, 'C': 0, 'G': 0, 'T': 5},
{'A': 3, 'C': 2, 'G': 0, 'T': 0}]

Your profile function should call your profile1 function in a loop.

(c) Write a function

maxBase(freqs)

that returns the base with the maximum frequency in a dictionary of
base frequencies named freqs. For example,

maxBase({'A': 0, 'C': 1, 'G': 4, 'T': 0})

should return 'G'.

(d) Write a function

consensus(sequences)

that returns the consensus sequence for the list of DNA sequences named
sequences. Your consensus function should call your profile function
and also call your maxBase function in a loop.

7.4 READING TABULAR DATA
The earthquake locations that we plotted back in Section 2.2 came from the U.S.
Geological Survey (USGS), which maintains up-to-the-minute data about earthquakes
happening around the world.2 In this section, we will read this data directly from
the USGS and plot it with matplotlib.pyplot, incorporating other characteristics
such as the magnitudes and depths of the earthquakes, to visualize our planet’s
major tectonic plates and how they interact.

2http://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php

http://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
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Earthquakes
USGS earthquake data is available in many formats, the simplest of which is a
tabular format called CSV, short for “comma-separated values.” The first few rows
and columns of a USGS CSV file look like the following.

time,latitude,longitude,depth,mag,...

2020-04-19T16:34:38.090Z,19.361166,-155.0753326,6.08,1.84,...

2020-04-19T16:34:03.110Z,35.7088333,-117.5816667,10.66,1.02,...

2020-04-19T16:32:18.020Z,61.3918,-150.1225,30.5,1.4,...

2020-04-19T16:27:34.030Z,35.768,-117.603,3.41,1,...

2020-04-19T16:24:50.590Z,38.0505,-118.6257,7.2,1.1,...

2020-04-19T16:16:42.700Z,38.1872,-118.7235,0.1,1.4,...

CSV files contain one row of text per line, with columns separated by commas. The
first row is a header row containing the names of the fifteen columns in the file, only
the first five of which are shown here. Each additional row consists of data from one
earthquake. If you were to view these first five columns in a spreadsheet program, it
would like something like this:

time latitude longitude depth mag

2020-04-19T16:34:38.090Z 19.361166 -155.0753326 6.08 1.84
2020-04-19T16:34:03.110Z 35.7088333 -117.5816667 10.66 1.02
2020-04-19T16:32:18.020Z 61.3918 -150.1225 30.5 1.4
2020-04-19T16:27:34.030Z 35.768 -117.603 3.41 1
2020-04-19T16:24:50.590Z 38.0505 -118.6257 7.2 1.1
2020-04-19T16:16:42.700Z 38.1872 -118.7235 0.1 1.4

The first earthquake in this file was detected at 16:34 UTC (Coordinated Univer-
sal Time) on 2020-04-19 at 19.361166 degrees latitude and −155.0753326 degrees
longitude. The earthquake occurred at a depth of 6.08 km and had magnitude 1.84.

A CSV file containing data about all of the earthquakes in the past 30 days is
available on the web at the URL

http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_month.csv

(If you have trouble with this file, you can try smaller files by replacing all_month

with 2.5_month or 4.5_month. The numbers indicate the minimum magnitude of
the earthquakes included in the file.)

Reflection 7.21 Enter the URL above into a web browser to see the data file for yourself.
About how many earthquakes were recorded in the past 30 days?

We can read the contents of this CSV file in Python using the same techniques you
learned in Section 6.2. We can either download and save the file manually (and then
read the file from our program), or we can download it directly in our program using
the urllib.request module. We use the latter method in the following function.
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1 import urllib.request as web
2 import matplotlib.pyplot as pyplot

3 def plotQuakes():
4 """Plot the locations of all earthquakes in the past 30 days.

5 Parameters: None

6 Return value: None
7 """

8 url = 'http://earthquake.usgs.gov/...' # see above for full URL
9 quakeFile = web.urlopen(url)

10 header = quakeFile.readline() # get past the header row

11 longitudes = []
12 latitudes = []
13 for rawLine in quakeFile:
14 line = rawLine.decode('utf-8') # interpret the line as text
15 row = line.split(',') # split columns at commas
16 latitudes.append(float(row[1])) # append latitude
17 longitudes.append(float(row[2])) # append longitude
18 quakeFile.close()

19 pyplot.scatter(longitudes, latitudes, 10) # 10 = area of each point
20 pyplot.show()

To begin our function, in lines 8–10, we open the URL, and read the header row
containing the column names. We do not actually use the header row; we just need
to get past it to get to the data.

To visualize fault boundaries with matplotlib.pyplot, we need all the longitude
(x) values in one list and all the latitude (y) values in another list. These lists are
initialized before the loop in lines 11–12. To maintain an association between the
latitude and longitude of a particular earthquake, we need these lists to be parallel
lists, in the sense that the longitude and latitude at any particular index belong to
the same earthquake.

The for loop in lines 13–17 iterates over the lines in the file. Remember that data
from the web is read as a raw bytes object that needs to be converted to text before
we can use it. To extract the necessary information from each line, we use the split

method from the string class. Recall that split splits a string at every instance of a
given character, and returns the list of strings that result. In this case, in line 15, we
want to split line at every comma. The resulting list named row will have the time
of the earthquake at index 0, the latitude at index 1, the longitude at index 2, etc.
Note that each of these values is a string, so we need to convert the latitude and
longitude to numbers using float. After converting each value, we append it to its
respective list in lines 16–17.
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Figure 7.3 Plotted earthquake locations with colors representing depths (yellow are

shallower, red are medium depth, and blue are deeper).

The plotted earthquakes are shown in Figure 7.3 over a map background. (Your
plot will not show the map, but if you would like to add it, look into the Basemap

class from the mpl_toolkits.basemap module.) The colors of the points in this plot
reflect the earthquakes’ depths. To incorporate these colors into our function, we
will also need to extract the depths of the earthquakes in a third list.

Reflection 7.22 What do we need to add to our function to also get a list of earthquake
depths?

Between lines 12 and 13, we will need to initialize a third parallel list named depths

and then, after line 17, append the value in column 3 to this list with

depths.append(float(row[3]))

We can color each point according to its depth by passing the scatter function a
list of colors, one for each point. Shallow (less than 10 km deep) earthquakes will
be yellow, medium depth (between 10 and 50 km) earthquakes will be red, and
deep earthquakes (greater than 50 km deep) will be blue. To create this list, we will
iterate over the final depths list and, for each depth, append the appropriate color
string to another list named colors:
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colors = []
for depth in depths:

if depth < 10:
colors.append('yellow')

elif depth < 50:
colors.append('red')

else:
colors.append('blue')

To assign colors to points, we pass this colors list into scatter as a keyword
argument :

pyplot.scatter(longitudes, latitudes, 10, color = colors)

We also saw keyword arguments briefly in Section 4.1. The name color is the name
of a parameter of the scatter function for which we are passing the argument
colors. (We will only use keyword arguments with matplotlib.pyplot functions,
although we could also use them in our functions if we wished to do so.)

Reflection 7.23 Make these modifications to the plotQuakes function, and look at the
resulting figure. Try to identify the different tectonic plates. Can you infer anything about
the way neighboring plates interact from the depth colors?

Looking at Figure 7.3, the ring of red and yellow dots around Africa encloses the
African plate, and the dense line of blue and red dots northeast of Australia delineates
the boundary between the Pacific and Australian plates. The depth information
gives geologists information about the types of the boundaries and the directions
in which the plates are moving. For example, the shallow earthquakes on the west
coast of North America mark a transform boundary in which the plates are sliding
past from each other, while the deeper earthquakes in the Aleutian islands in Alaska
mark a subduction zone at a convergent boundary where the Pacific plate to the
south is diving underneath the North American plate to the north.

Exercises
7.4.1* Modify plotQuakes so that it also reads earthquake magnitudes into a list, and

draws larger circles for higher magnitude earthquakes. The sizes of the points
can be changed by passing a list of sizes, similar to the list of colors, as the
third argument to the scatter function. The size of each point should be the
square of the magnitude of the corresponding earthquake.

7.4.2. Modify the firstLetterCounts function from Exercise 7.3.5 so that it takes a
file name as a parameter and uses the words from this file instead. Test your
function using the SCRABBLE dictionary on the book website.3

7.4.3* Modify the login function from Exercise 7.3.15 so that it takes a file name as a
parameter and creates a username/password dictionary with the usernames and
passwords in that file before it starts prompting for a username and password.
Assume that the file contains one username and password per line, separated by
a space. There is an example file on the book website.

3SCRABBLE is a registered trademark of Hasbro Inc.
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7.4.4. Write a function

plotPopulation()

that plots the world population over time from the tab-separated data file on
the book website named worldpopulation.txt. To read a tab-separated file,
split each line with line.split('\t'). These figures are U.S. Census Bureau
midyear population estimates from 1950–2050. Your function should create two
plots. The first shows the years on the x-axis and the populations on the y-axis.
The second shows the years on the x-axis and the annual growth rate on the
y-axis. The growth rate is the difference between this year’s population and last
year’s population, divided by last year’s population. Be sure to label your axes
in both plots with the xlabel and ylabel functions.

What is the overall trend in world population growth? Do you have any hy-
potheses regarding the most significant spikes and dips?

7.4.5. Write a function

plotMeteorites()

that plots the location (longitude and latitude) of every known meteorite
that has fallen to earth, using a tab-separated data file from the book web-
site named meteoritessize.txt. Split each line of a tab-separated file with
line.split('\t'). There are large areas where no meteorites have apparently
fallen. Is this accurate? Why do you think no meteorites show up in these areas?

7.4.6* Write a function

plotTemps()

that reads a CSV data file from the book website named madison_temp.csv

to plot several years of monthly minimum temperature readings from Madison,
Wisconsin. The temperature readings in the file are integers in tenths of a
degree Celsius and each date is expressed in a YYYYMMDD format. Rather than
putting every date in a list for the x-axis, just make a list of the years that are
represented in the file. Then plot the data and put a year label at each January
tick with

pyplot.plot(range(len(minTemps)), minTemps)
pyplot.xticks(range(0, len(minTemps), 12), years)

The first argument to the xticks function says to only put a tick at every
twelfth x value, and the second argument supplies the list of years to use to label
those ticks. It will be helpful to know that the data file starts with a January 1
reading.

7.4.7. Write a function

plotZebras()

that plots the migration of seven Burchell’s zebra in northern Botswana. (The
very interesting story behind this data can be found at https://www.movebank.
org/node/11921.) The function should read a CSV data file from the book
website named zebra.csv. Each line in the data file is a record of the location of
an individual zebra at a particular time. Each individual has a unique identifier.
There are over 50,000 records in the file. For each record, your function should
extract the individual identifier (column index 9), longitude (column index 3),
and latitude (column index 4). Store the data in two dictionaries, each with

https://www.movebank.org/node/11921
https://www.movebank.org/node/11921
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identifiers as keys. In one dictionary, the value associated with each identifier
should be a list of the longitudes of all tracking events for the zebra with that
identifier. Similarly, the second dictionary should contain the corresponding
latitude values. Plot the locations of the seven zebras in seven different colors
to visualize their migration patterns.

How can you determine from the data which direction the zebras are migrating?

7.4.8. On the book website, there is a tab-separated data file named education.txt

that contains information about the maximum educational attainment of U.S.
citizens, as of 2013. Each non-header row contains the number of people in a
particular category (in thousands) that have attained each of fifteen different
educational levels. Look at the file in a text editor (not a spreadsheet program)
to view its contents. Write a function

plotEducation()

that reads this data and then plots separately (but in one figure) the educational
attainment of all males, females, and both sexes together over 18 years of age.
The x-axis should be the fifteen different educational attainment levels and
the y axis should be the percentage of each group that has attained that level.
Notice that you will only need to extract three lines of the data file, skipping
over the rest. To label the ticks on the x-axis, use the following:

pyplot.xticks(range(15), titles[2:], rotation = 270)
pyplot.subplots_adjust(bottom = 0.45)

The first statement labels the x ticks with the educational attainment categories,
rotated 270 degrees. The second statement reserves 45% of the vertical space for
these x tick labels. Can you draw any conclusions from the plot about relative
numbers of men and women who pursue various educational degrees?

7.4.9. The ocean temperature data that we used in Section 7.2 is based on data
acquired from Coriolis4, a French organization that monitors the characteristics
of the oceans from satellites, ships, and floating monitoring stations. These
data are used to better understand and predict climate change. A CSV file
containing data from one floating station in the eastern Mediterranean Sea can
be downloaded on the book website as float.csv. Each row in the file contains
one measurement of temperature and practical salinity of the seawater at a
particular depth. The depth is recorded in terms of decibars of water pressure.
This file contains the records of 45 profiles, where each profile consists of 39–164
measurements at varying depths. Each profile is designated by a date and time.
Look at the data file carefully to understand its format.

(a) Write a function

getData()

that reads the data from the file into a dictionary in which each key is a
date (a string) representing a profile. The value corresponding to each
date will be a list of (pressure, salinity, temperature) tuples representing
the measurements made in that profile. To simplify matters, use the
first ten characters of the values in the DATE column as your keys. Your
function should return the data dictionary for use by the functions that
follow.

4http://www.coriolis.eu.org

http://www.coriolis.eu.org
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(b) Write a function

plotDateTemp(dataDict)

that plots the surface seawater temperature recorded for each date
in the dictionary named dataDict. You may assume that the max-
imum recorded temperature represents the surface temperature. La-
bel your axes appropriately. Since there are too many dates to dis-
play on the x-axis neatly, you can display every tenth date with
pyplot.xticks(range(0, len(dates), 10), dates[::10]).

(c) Write a function

plotTempPressure(dataDict)

that plots temperature (x-axis) vs. water pressure (y-axis) readings
for November 17, 2019 ('2019/11/17'). Sort the list of triples for
that day (by pressure) to ensure a clean plot. You can reverse the
y axis so that the pressure reading decreases to mimic ocean depth with
pyplot.ylim(maxPressure, 0), where maxPressure is the maximum
pressure reading on that day.

(d) Write a function

plotSalinityTemp(dataDict)

that plots salinity (x-axis) vs. temperature (y-axis) readings from all 45
profiles on a single plot. To differentiate the different curves, you can
use a colormap that gradually changes color as the days progress. Doing
this is much more arcane than usual, so here is an outline of the function
that includes the colormap implementation:

def plotSalinityTemp(dataDict):
numberDays = len(dataDict) # set up the color map
colorMap = cm.get_cmap('plasma', numberDays)
normalizer = pyplot.Normalize(0, numberDays)
pyplot.colorbar(cm.ScalarMappable(norm = normalizer,

cmap = colorMap),
label = 'Profile Number')

count = 0
for date in dataDict:

readings = dataDict[date]
readings.sort()

# get the lists of salinity and temperature
# measurements for this date

pyplot.plot(salinities, temperatures,
linewidth = 0.25,
color = colorMap(count / numberDays))

count = count + 1

pyplot.xlabel('Practical Salinity')
pyplot.ylabel('Temperature (degrees Celsius)')
pyplot.show()
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*7.5 DESIGNING EFFICIENT ALGORITHMS
This section is available on the book website.

*7.6 LINEAR REGRESSION
This section is available on the book website.

*7.7 DATA CLUSTERING
This section is available on the book website.

7.8 SUMMARY AND FURTHER DISCOVERY
It is often said that those who know how to manipulate and extract meaning from
data will be the decision makers of the future.

In this chapter, we developed algorithms to summarize the contents of a list with
various descriptive statistics, modify the contents of lists, and use dictionaries to
describe the frequency of values in a list. The beauty of these techniques is that they
can be used with a wide variety of data types and applications. But before any of
them can be used on real data, the data must be read from its source and wrangled
into a usable form. To this end, we also discussed basic methods for reading and
formatting tabular data both from local files and from the web.

In later sections, we went beyond simply describing data sets to data mining tech-
niques that can make predictions from them. Linear regression seeks a linear pattern
in data and then uses this pattern to predict missing data points. The k-means
clustering algorithm partitions data into clusters of like items to elicit hidden rela-
tionships.

Algorithms that manipulate lists can quickly become much more complicated than
what we have seen previously, and therefore paying attention to their time complexity
is important. To illustrate, we worked through a sequence of increasingly more elegant
and more efficient algorithms for removing duplicates from a list. In the end, we saw
that the additional time taken to think through a problem carefully and reduce its
time complexity can pay dividends.

Notes for further discovery
Sherlock Holmes was an early (fictional) data scientist, always insisting on fact-based
theories (and not vice versa). The chapter epigraph is from Sir Arthur Conan Doyle’s
short story, The Adventure of the Copper Beeches [14].

A good resource for current data-related news is the “data journalism” website
FiveThirtyEight at http://fivethirtyeight.com . If you are interested in learning
more about the emerging field of data science, one resource is Doing Data Science
by Rachel Schutt and Cathy O’Neil [58].

http://fivethirtyeight.com
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Tangent 7.4: Privacy in the age of big data

Companies collect (and buy) a lot of data about their customers, including demographics
(age, address, marital status), education, financial and credit history, buying habits,
and web browsing behavior. They then mine this data, using techniques like clustering,
to learn more about customers so they can target them with advertising that is more
likely to lead to sales. But when does this practice lead to unacceptable breaches of
privacy? For example, a recent article explained how a major retailer is able to figure
out when a woman is pregnant before her family does.

When companies store this data online, it also becomes vulnerable to unauthorized
access by hackers. In recent years, there have been several high-profile incidents of retail,
government, and financial data breaches. As our medical records also begin to migrate
online, more people are taking notice of the risks involved in storing “big data.”

So as you continue to work with data, remember to always balance the reward with the
inherent risk. Just because we can do something doesn’t mean that we should do it.

There really are drifting buoys (called profiling floats) in the world’s oceans that are
constantly taking temperature readings to monitor climate change. For example, see

http://www.coriolis.eu.org .

The article referenced in Tangent 7.4 is from The New York Times [15]. The non-
profit Electronic Frontier Foundation (EFF), founded in 1990, works at the forefront
of issues of digital privacy and free speech. To learn more about contemporary privacy
issues, visit its website at http://www.eff.org. For more about ethical issues in
computing in general, we recommend Computer Ethics by Deborah Johnson and
Keith Miller [27].

*7.9 PROJECTS
This section is available on the book website.

http://www.coriolis.eu.org
http://www.eff.org
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Flatland

Suffice it that I am the completion of your incomplete self. You are a Line, but I am a Line of
Lines, called in my country a Square: and even I, infinitely superior though I am to you, am
of little account among the great nobles of Flatland, whence I have come to visit you, in the
hope of enlightening your ignorance.

Edwin A. Abbott
Flatland: A Romance of Many Dimensions (1884)

In Edwin Abbott’s eponymous novel, a square who lives in the two-dimensional
world of Flatland grapples with comprehending the three-dimensional world of

Spaceland, while simultaneously recognizing the profound advantages he enjoys over
those living in the zero- and one-dimensional worlds of Pointland and Lineland.

Analogously, we have discovered the advantages of one-dimensional data (strings
and lists) over zero-dimensional numbers and characters. In this chapter, we will
discover the further possibilities afforded us by understanding how to work with two-
dimensional data. We will begin by looking at how we can create a two-dimensional
table of data read in from a file. Then we will explore a powerful two-dimensional
simulation technique called cellular automata. At the end of the chapter are several
projects that illustrate how simulations similar to cellular automata can be used to
model a variety of problems. We will also explore how digital photos are stored, and
write some image filters to enhance them.

8.1 TABULAR DATA
There are a few different ways to store two-dimensional data as a table. To illustrate
the most straightforward technique, let’s revisit the simple tabular data set from
Exercise 7.4.6. This CSV file (madison_temp.csv, available on the book website)

335
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contains over forty years worth of monthly extreme temperature readings from
Madison, Wisconsin. The first few rows look like this:

STATION,STATION_NAME,DATE,EMXT,EMNT

GHCND:USW00014837,MADISON DANE CO REGIONAL AIRPORT WI US,19700101,33,-294

GHCND:USW00014837,MADISON DANE CO REGIONAL AIRPORT WI US,19700201,83,-261

GHCND:USW00014837,MADISON DANE CO REGIONAL AIRPORT WI US,19700301,122,-139

⋮

Because all of the data in this file is based on conditions at the same site, the first
two columns are identical in every data row. The third column contains the dates, in
YYYYMMDD format, on which data was collected. The fourth and fifth columns contain
the maximum and minimum monthly temperatures, respectively, which are in tenths
of a degree Celsius (i.e., 33 represents 3.3○ C). Previously, we would have extracted
these data into three parallel lists containing dates, maximum temperatures, and
minimum temperatures, like this:

def readDataLists():
"""Read monthly extreme temperature data into 3 parallel lists.

Parameters: none

Return value: 3 lists containing dates, and min and max temperatures
"""

dataFile = open('madison_temp.csv', 'r')
header = dataFile.readline()

dates = []
maxTemps = []
minTemps = []
for line in dataFile:

row = line.split(',')
dates.append(row[2])
maxTemps.append(int(row[3]))
minTemps.append(int(row[4]))

dataFile.close()

return dates, maxTemps, minTemps

Reading a table of temperatures
Alternatively, we may wish to extract the data into a single table. For example, the
last three columns could be stored in a unified tabular structure like the following:
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DATE EMXT EMNT

19700101 33 -294

19700201 83 -261

19700301 122 -139

⋮ ⋮ ⋮

We can represent this structure in Python as a list of rows, where each row is a list
of values in that row. In other words, the table above can be stored like this:

[['19700101', 33, -294], ['19700201', 83, -261], ['19700301', 122, -139], ...]

To better visualize this list as a table, we can reformat its presentation a bit:

[

[ '19700101', 33, -294 ], # row 0

[ '19700201', 83, -261 ], # row 1

[ '19700301', 122, -139 ], # row 2

⋮
]

In the readDataLists function, row is already assigned to each of these row lists
in the for loop. Therefore, to create this structure, we can simply append each
value of row, with the temperature values converted to integers and the first two
redundant columns removed, to a growing list of rows named table. These changes
are highlighted below.

def readDataTable():
"""Read monthly extreme temperature data into a table.

Parameters: none

Return value: list of lists containing dates and extreme temperatures
"""

dataFile = open('madison_temp.csv', 'r')
header = dataFile.readline()

table = []
for line in dataFile:

row = line.split(',')
row[3] = int(row[3])
row[4] = int(row[4])
table.append(row[2:]) # add a new row to the table

dataFile.close()

return table

Since each element of table is a list containing one row, the first row is assigned to
table[0], the second row is assigned to table[1], and the third row is assigned to
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table[2], as illustrated below.

[['19700101', 33, -294]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

table[0]

,['19700201', 83,

table[1][2]

−261]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
table[1]

,['19700301',

table[2][1]
«
122, -139]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
table[2]

,...]

Reflection 8.1 How would you access the minimum temperature in February, 1970
('19700201') from this list?

The minimum temperature in February, 1970 is the third value in table[1]. Since
table[1] is a list, we can use indexing to access individual items contained in it.
Therefore, the third value in table[1] is table[1][2], which equals -261 (−26.1○ C),
as indicated above. Likewise, table[2][1] is the maximum temperature in March,
1970: 122 (12.2○ C).

Reflection 8.2 In general, how can you access the value in row r and column c?

Notice that, for a particular value table[r][c], r is the index of the row and c is
the index of the column. So if we know the row and column of any desired value, it
is easy to retrieve that value with this convenient notation.

Now suppose we want to search this table for the minimum temperature in a
particular month. To access this value in the table, we will need both its row
and column indices. We already know that the column index must be 2, since the
minimum temperatures are in the third column. To find the correct row index, we
need to search all of the values in the first column until we find the row that contains
the desired string. Once we have the correct row index r, we can simply return the
value of table[r][2]. The following function does exactly this.

def getMinTemp(table, date):
"""Return the minimum temperature for the given date string.

Parameters:
table: a table containing extreme temperature data
date: a date string

Return value: the minimum temperature for the given date
or None if the date does not exist

"""

numRows = len(table)
for r in range(numRows):

if table[r][0] == date:
return table[r][2]

return None

The for loop iterates over the the indices of the rows in the table. For each row
with index r, we check if the first value in that row, table[r][0], is equal to the
date we are looking for. If it is, we return the value in column 2 of that row. If we
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Tangent 8.1: Pandas

The Python module pandas is used by many data scientists to analyze tabular data. It
allows one to easily read a CSV file into a tabular object called a data frame, and then
perform a variety of analyses on it. Here’s how you could read the Madison temperature
data using pandas:

>>> import pandas as pd
>>> temps = pd.read_csv('madison_temp.csv',

usecols = ['DATE', 'EMXT', 'EMNT'],
index_col = 'DATE')

The variable temps is now a data frame containing the data from the file
madison_temp.csv. Since we noticed that the first two columns in this file are re-
dundant, we elected to create the data frame with only the last three columns, and
we selected the DATE column as the index, allowing us to use the dates as unique row
identifiers. The first few rows of the data frame look like this:

>>> temps.head(3) # display first 3 rows
EMXT EMNT

DATE
19700101 33 -294
19700201 83 -261
19700301 122 -139

Now if we want the minimum temperature in February, 1970, we can select the desired
row and column:

>>> temps.at[19700201, 'EMNT']
-261

This just barely scratches the surface of what pandas can do. If you find yourself
working with a lot of CSV data in the future, you might want to learn more by visiting
https://pandas.pydata.org.

get all the way through the loop without returning a value, the desired date must
not exist, so we return None.

Reflection 8.3 We see in the getMinTemp function that the number of rows in the table
can be found with len(table). How could we get the number of columns in the table?

The number of columns in a table is the length of any row, for example
len(table[0]).

If a tabular data set contains a unique key that is frequently searched, we can
alternatively store it as a dictionary. We leave an exploration of this alternative as
an exercise.

https://pandas.pydata.org
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Exercises
From this point on, we will generally not specify what the name and parameters of a function
should be. Instead, we would like you to design the function(s).

8.1.1* Show how the following table can be stored in a list named scores.

Student SAT SAT

ID MATH EBRW

10305 700 610

11304 680 590

10254 710 730

12007 650 690

10089 780 760

8.1.2. In the list you created above, how do you refer to each of the following?

(a)* the SAT M value for student 10089

(b)* the SAT EBRW value for student 11304

(c) the SAT M value for student 10305

(d) the SAT EBRW value for student 12007

8.1.3. Alternatively, a table could be stored as a list of columns.

(a) Show how to store the table in Exercise 8.1.1 in this way.

(b) Redo Exercise 8.1.2 using this new list.

(c) Why is this method less convenient when reading data in from a file?

(d) Why might this method be more convenient if you are plotting the data
in the table?

8.1.4. Write a program that calls the readDataTable function to read the Madison
temperatures into a table, and then repeatedly asks for a date string to search
for in the table. For each date string entered, your function should call the
getMinTemp function to get the corresponding minimum temperature. For
example, your function should print something like the following:

Minimum temperature for which date (q to quit)? 20050501

The minimum temperature for 20050501 was -2.2 degrees Celsius.

Minimum temperature for which date (q to quit)? 20050801

The minimum temperature for 20050801 was 8.3 degrees Celsius.

Minimum temperature for which date (q to quit)? q

8.1.5. Write a function that does the same thing as the getMinTemp function above,
but returns the maximum temperature for a particular date instead.

8.1.6* As mentioned previously, a table can alternatively be stored as a dictionary. In
this representation, one column acts as the key and the remaining columns are
stored in a list as the corresponding value. For example, the temperature table
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[

[ '19700101', 33, -294 ],

[ '19700201', 83, -261 ],

[ '19700301', 122, -139 ]

]

could be stored in a dictionary as

{

'19700101': [33, -294],

'19700201': [83, -261],

'19700301': [122, -139]

}

This implementation makes searching for a particular row very efficient.

Rewrite the readDataTable and getMinTemp functions so that the temperature
data is stored in this way instead. Then incorporate these new functions into
your program from Exercise 8.1.4.

8.1.7. Write a function that reads the earthquake data from the CSV file at http://
earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.csv into
a table with four columns containing the latitude, longitude, depth, and mag-
nitude of each earthquake. All four values should be stored as floating point
numbers.

8.1.8. Write a function that takes the table returned by Exercise 8.1.7 as its parameter
and plots the earthquake locations in that table.

8.1.9. Write a function that takes as a parameter a table returned by your function
from Exercise 8.1.7 and prints a formatted table of the data. Your table should
look similar to this:

Latitude Longitude Depth Magnitude

-------- --------- ----- ---------

33.49 -116.46 19.8 1.1

33.14 -115.65 2.1 1.8

-2.52 146.12 10.0 4.6

⋮

8.1.10. Write a function that takes as a parameter a table returned by your function from
Exercise 8.1.7, and repeatedly prompts for a minimum earthquake magnitude.
With each response, the function should create a new table containing the rows
corresponding to earthquakes with at least that magnitude, and then print this
table using your function from Exercise 8.1.9. The output from your function
should look similar to this:

Minimum magnitude (q to quit)? 6.2

Latitude Longitude Depth Magnitude

-------- --------- ----- ---------

-46.36 33.77 10.0 6.2

-37.68 179.69 22.0 6.7

1.93 126.55 35.0 7.1

-6.04 148.21 43.2 6.6

http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.csv
http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.csv
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Minimum magnitude (q to quit)? 7

Latitude Longitude Depth Magnitude

-------- --------- ----- ---------

1.93 126.55 35.0 7.1

Minimum magnitude (q to quit)? 8

There were no earthquakes with magnitude at least 8.0.

Minimum magnitude (q to quit)? q

8.1.11. On the book website is a CSV file named rents.csv that contains the average
monthly rents for studio through four-bedroom apartments in every state.

(a) Write a function that reads this data into a list of lists.

(b) Write a function that repeatedly prompts for a state and an apartment
type, and uses the list of lists from part (a) to print the corresponding
rent. For example, your program output might look like the following:

State (or quit): Ohio

Apartment type (0-4): 1

The average rent is $667.

State (or quit): Delaware

Apartment type (0-4): 3

The average rent is $1653.

State (or quit): Albuquerque

That is not a state.

State (or quit): quit

(c) Write a function that computes the average rent for each apartment
type using the list of lists from part (a).

8.1.12. Redo Exercise 8.1.11 but read the data into a dictionary like that in Exercise 8.1.6
instead.

8.2 THE GAME OF LIFE
A cellular automaton is a rectangular grid of discrete cells, each of which has
an associated state or value. Each cell represents an individual entity, such as an
organism or a particle. At each time step, every cell can simultaneously change
its state according to some rule that depends only on the states of its neighbors.
Depending upon on the rules used, cellular automata may evolve global, emergent
behaviors based only on these local interactions.

The most famous example of a cellular automaton is the Game of Life, invented by
mathematician John Conway in 1970. In the Game of Life, each cell can be in one
of two states: alive or dead. At each time step, the makeup of a cell’s neighborhood
dictates whether it will pass into the next generation alive (or be reborn if it is dead).
Depending upon the initial configuration of cells (which cells are initially alive and
which are dead), the Game of Life can produce amazing patterns.
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Each cell in the Game of Life has the eight neighbors illustrated below:

In each step, every cell simultaneously observes the states of its neighbors, and
changes its state according to the following rules:

1. If a live cell has fewer than two live neighbors, it dies from loneliness.

2. If a live cell has two or three live neighbors, it remains alive.

3. If a live cell has more than three live neighbors, it dies due to overcrowding.

4. If a dead cell has exactly three live neighbors, it is reborn.

To see how these rules affect the cells in the Game of Life, consider the initial
configuration in the top left of Figure 8.1. Dead cells are represented by white
squares and live cells are represented by black squares. To apply rule 1 to the initial
configuration, we need to check whether there are any live cells with fewer than two
live neighbors. As illustrated below, there are two such cells, each marked with D.

DA
AD

According to rule 1, these two cells will die in the next generation. To apply rule
2, we need to check whether there are any live cells that have two or three live
neighbors. Since this rule applies to the other three live cells, they will remain alive
into the next generation. There are no cells that satisfy rule 3, so we move on to
rule 4. There are two dead cells with exactly three live neighbors, marked with A.
According to rule 4, these two cells will come alive in the next generation.

Reflection 8.4 Show what the second generation looks like, after applying these rules.

The figure in the top center of Figure 8.1 shows the resulting second generation,
followed by generations three, four, and five. After five generations, as illustrated
in the bottom center of Figure 8.1, the grid has returned to its initial state, but
it has moved one cell down and to the right of its initial position. If we continued
computing generations, we would find that it would continue in this way indefinitely,
or until it collides with a border. For this reason, this initial configuration generates
what is known as a “glider.”
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Figure 8.1 The first five generations of a “glider” in the Game of Life.

[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

Figure 8.2 Views of the “empty” cellular automaton as a grid and as a list.

Creating a grid
To implement this cellular automaton, we first need to create an empty grid of cells.
For simplicity, we will keep it relatively small, with 10 rows and 10 columns. We
will represent each live cell with a 1 and each dead cell with a 0. For clarity, it is
best to assign these values to meaningful names:

ALIVE = 1
DEAD = 0

An initially empty grid, like the one on the left side of Figure 8.2, will be represented
by a list of row lists, each of which contains a zero for every column. For example,
the list on the right side of Figure 8.2 represents the grid to its left.

Reflection 8.5 How can we easily create a list of many zeros?

If the number of columns in the grid is assigned to columns, then each of these rows
can be created with the list repetition operator:

row = [DEAD] * columns
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We can then create the entire grid by simply appending copies of row to a list named
grid:

def makeGrid(rows, columns):
"""Create a rows x columns grid of zeros.

Parameters:
rows: the number of rows in the grid
columns: the number of columns in the grid

Return value: a list of ROWS lists of COLUMNS zeros
"""

grid = []
for r in range(rows):

row = [DEAD] * columns
grid.append(row)

return grid

Initial configurations
The cellular automaton will evolve differently depending upon the initial configuration
of alive and dead cells. We will assume that all cells are dead initially, except for
those we explicitly specify. Each cell can be conveniently represented by a (row,
column) tuple. The coordinates of the initially live cells can be stored in a list of
tuples, and passed into the following function to initialize the grid.

def initialize(grid, coordinates):
"""Set a given list of coordinates to be ALIVE in the grid.

Parameters:
grid: a grid of values for a cellular automaton
coordinates: a list of coordinates

Return value: None
"""

for (r, c) in coordinates:
grid[r][c] = ALIVE

The function iterates over the list of tuples and sets the cell at each position to be
alive. For example, to match the initial configuration in the upper left of Figure 8.1,
we would pass in the list

[(1, 3), (2, 3), (3, 3), (3, 2), (2, 1)]

Notice that by using a generic tuple as the index variable, we can conveniently assign
the two values in each tuple to r and c.
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Surveying the neighborhood
To algorithmically carry out the rules in the Game of Life, we will need a function
that returns the number of live neighbors of any particular cell.

Reflection 8.6 Consider a cell at position (r, c). What are the coordinates of the eight
neighbors of this cell?

The coordinates of the eight neighbors are visualized in the following grid with
coordinates (r, c) in the center.

(r − 1, c − 1) (r − 1, c) (r − 1, c + 1)

(r, c − 1) (r, c) (r, c + 1)

(r + 1, c − 1) (r + 1, c) (r + 1, c + 1)

We could use an eight-part if/elif/else statement to check whether each neighbor
is alive. However, an easier approach is illustrated below.

def neighborhood(grid, row, column):
"""Finds the number of live neighbors of the cell at (row, column).

Parameters:
grid: a two-dimensional grid of cells
row: the row index of a cell
column: the column index of a cell

Return value: the number of live neighbors of (row, column)
"""

offsets = [(-1, -1),(-1, 0), (-1, 1), (0, -1),
(0, 1), (1, -1), (1, 0), (1, 1)]

rows = len(grid)
columns = len(grid[0])
count = 0
for offset in offsets:

r = row + offset[0]
c = column + offset[1]
if (r >= 0 and r < rows) and (c >= 0 and c < columns):

if grid[r][c] == ALIVE:
count = count + 1

return count

The list offsets contains tuples with the offsets of all eight neighbors. We iterate
over these offsets, adding each one to the given row and column to get the coordinates
of each neighbor. Then, if the neighbor is on the grid and is alive, we increment a
counter.
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Performing one pass
Once we can count the number of live neighbors, we can simulate one generation of
Life by iterating over all of the cells and updating them appropriately. But before we
look at how to iterate over every cell in the grid, let’s consider how we can iterate
over just the first row.

Reflection 8.7 What is the name of the first row of grid?

The first row of grid is named grid[0]. Since grid[0] is a list, we already know
how to iterate over it, either by value or by index.

Reflection 8.8 Should we iterate over the indices of grid[0] or over its values? Does it
matter?

As we saw above, we need to access a cell’s neighbors by specifying their relative
row and column indices. So we are going to need to know the indices of the row and
column of each cell as we iterate over them. This means that we need to iterate over
the indices of grid[0], which are also its column indices, rather than over its values.
Therefore, the for loop looks like this, assuming the number of columns is assigned
to the variable name columns:

for c in range(columns):
# update grid[0][c] here

Notice that, in this loop, the row number stays the same while the column number
(c) increases. We can generalize this idea to iterate over any row with index r by
simply replacing the row index with r:

for c in range(columns):
# update grid[r][c] here

Now, to iterate over the entire grid, we need to repeat the loop above with values of
r ranging from 0 to rows - 1, where rows is assigned the number of rows in the
grid. We can do this by nesting the loop above in the body of another for loop that
iterates over the rows:

for r in range(rows):
for c in range(columns):

# update grid[r][c] here

Reflection 8.9 In what order will the cells of the grid be visited in this nested loop? In
other words, what sequence of r,c values does the nested loop generate?

The value of r is initially set to 0. While r is 0, the inner for loop iterates over
values of c from 0 to columns - 1. So the first cells that will be visited are

grid[0][0], grid[0][1], grid[0][2], ..., grid[0][9]

Once the inner for loop finishes, we go back up to the top of the outer for loop.
The value of r is incremented to 1, and the inner for loop executes again. So the
next cells that will be visited are

grid[1][0], grid[1][1], grid[1][2], ..., grid[1][9]
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9
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(a)

0
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4
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7
8
9

0 1 2 3 4 5 6 7 8 9

(b)

Figure 8.3 Passing over a grid (a) row by row and (b) column by column.

This process repeats with r assigned to 2, 3, . . . , 9, until finally the cells in the last
row are visited:

grid[9][0], grid[9][1], grid[9][2], ..., grid[9][9]

Therefore, the cells in the grid are being visited row by row, as illustrated in
Figure 8.3(a).

Reflection 8.10 How would we change the nested loop so that the cells in the grid are
visited column by column instead?

To visit the cells column by column, we can simply swap the positions of the loops:

for c in range(columns):
for r in range(rows):

# update grid[r][c] here

In this new nested loop, for each value of c, the inner for loop iterates all of the
values of r, visiting all of the cells in that column. So the first cells that will be
visited are

grid[0][0], grid[1][0], grid[2][0], ..., grid[9][0]

Then the value of c is incremented to 1 in the outer for loop, and the inner for

loop executes again. So the next cells that will be visited are

grid[0][1], grid[1][1], grid[2][1], ..., grid[9][1]

This process repeats with consecutive values of c, until finally the cells in the last
column are visited:

grid[0][9], grid[1][9], grid[2][9], ..., grid[9][9]

This is illustrated in Figure 8.3(b).

In some two-dimensional simulations, the order in which cells are visited is important
but, in the Game of Life, it isn’t. We will choose to update the cells row by row.
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Tangent 8.2: NumPy arrays in two dimensions

Two-dimensional (and higher) data can also be represented with a NumPy array object.
(See Tangent 7.1.) As in one dimension, we can initialize an array by either passing in
a list, or passing a size to one of several functions that fill the array with particular
values. Here are some examples.

>>> import numpy
>>> temps = numpy.array([[3.3, -29.4, 8.3], [-26.1, 12.2, -13.9]])
>>> temps
array([[ 3.3, -29.4, 8.3],

[-26.1, 12.2, -13.9]])
>>> grid = numpy.zeros((2, 4)) # zero-filled with 2 rows, 4 cols
>>> grid
array([[ 0., 0., 0., 0.],

[ 0., 0., 0., 0.]])

In the second case, the tuple (2, 4) specifies the “shape” of the array: two rows and four
columns. We can modify individual array elements with indexing by simply specifying
the comma-separated row and column in a single pair of square brackets:

>>> grid[1, 3] = 1
>>> grid
array([[ 0., 0., 0., 0.],

[ 0., 0., 0., 1.]])

As we saw in Tangent 7.1, the real power of NumPy arrays lies in the ability to change
every element in a single statement. For example, the following statement adds one to
every element of the temps array.

>>> temps = temps + 1
>>> temps
array([[ 4.3, -28.4, 9.3],

[-25.1, 13.2, -12.9]])

For more details, see http://numpy.org .

Updating the grid
Now we are ready to implement one generation of the Game of Life by iterating over
all of the cells and applying the rules to each one. For each cell in position (r,c),
we first need to find the number of neighbors by calling the neighborhood function
that we wrote above. Then we set the cell’s new value, if it changes, according to
the four rules, as follows.

for r in range(rows):
for c in range(columns):

neighbors = neighborhood(grid, r, c)
if grid[r][c] == ALIVE and neighbors < 2: # rule 1

grid[r][c] = DEAD
elif grid[r][c] == ALIVE and neighbors > 3: # rule 3

grid[r][c] = DEAD
elif grid[r][c] == DEAD and neighbors == 3: # rule 4

grid[r][c] = ALIVE

http://numpy.org
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Reflection 8.11 Why is rule 2 not represented in the code above?

Since rule 2 does not change the state of any cells, there is no reason to check for it.

Reflection 8.12 There is one problem with the algorithm we have developed to update
cells. What is it? (Think about the values referenced by the neighborhood function when
it is applied to neighboring cells. Are the values from the previous generation or the current
one?)

To see the subtle problem, suppose that we change cell (r,c) from alive to dead.
Then, when the live neighbors of the next cell in position (r+ 1,c) are being counted,
the cell at (r,c) will not be counted. But it should have been because it was alive
in the previous generation. To fix this problem, we cannot modify the grid directly
while we are updating it. Instead, we need to make a copy of the grid before each
generation. When we count live neighbors, we will look at the original grid, but
make modifications in the copy. Then, after we have looked at all of the cells, we
can update the grid by assigning the updated copy to the main grid. These changes
are shown below in red.

newGrid = copy.deepcopy(grid)
for r in range(rows):

for c in range(columns):
neighbors = neighborhood(grid, r, c)
if grid[r][c] == ALIVE and neighbors < 2: # rule 1

newGrid[r][c] = DEAD
elif grid[r][c] == ALIVE and neighbors > 3: # rule 3

newGrid[r][c] = DEAD
elif grid[r][c] == DEAD and neighbors == 3: # rule 4

newGrid[r][c] = ALIVE
grid = newGrid

The deepcopy function from the copy module creates a completely independent
copy of the grid.

Now that we can simulate one generation, we can simply repeat this process to
simulate many generations. The complete function is shown below. The grid is
initialized with our makeGrid and initialize functions, then the nested loop that
updates the grid is further nested in a loop that iterates for the number of generations.

def life(rows, columns, generations, initialCells):
"""Simulates the Game of Life for the given number of

generations, starting with the given live cells.

Parameters:
rows: the number of rows in the grid
columns: the number of columns in the grid
generations: the number of generations to simulate
initialCells: a list of (row, column) tuples indicating

the positions of the initially alive cells

Return value: the final configuration of cells in a grid
"""
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grid = makeGrid(rows, columns)
initialize(grid, initialCells)

for g in range(generations):
newGrid = copy.deepcopy(grid)
for r in range(rows):

for c in range(columns):
neighbors = neighborhood(grid, r, c)
if grid[r][c] == ALIVE and neighbors < 2: # rule 1

newGrid[r][c] = DEAD
elif grid[r][c] == ALIVE and neighbors > 3: # rule 3

newGrid[r][c] = DEAD
elif grid[r][c] == DEAD and neighbors == 3: # rule 4

newGrid[r][c] = ALIVE
grid = newGrid

return grid

On the book website, you can find an enhanced version of this function that uses
turtle graphics to display the evolution of the system with a variety of initial
configurations. Two projects at the end of this chapter use similar algorithms to
simulate two very different scenarios: the evolution of segregated urban neighborhoods
and ferromagnetic materials.

Exercises
8.2.1* Download the enhanced Game of Life program from the book website and run

it with each of the following lists of coordinates set to be alive in the initial
configuration. Use at least a 50 × 50 grid. Describe what happens in each case.

(a) [(1, 3), (2, 3), (3, 3), (3, 2), (2, 1)]

(b) [(9, 10), (10, 10), (11, 10)]

(c) [(18, 5), (18, 6), (18, 7), (19, 5), (19, 7), (20, 5),
(20, 7), (21, 6), (22, 3), (22, 5), (22, 6), (22, 7),
(23, 4), (23, 6), (23, 8), (24, 6), (24, 9), (25, 5),
(25, 7), (26, 5), (26, 7)]

(d) [(10, c + 1), (10, c + 4), (11, c), (12, c), (12, c + 4),
(13, c), (13, c + 1), (13, c + 2), (13, c + 3)]

with c = columns - 5

(e) [(r + 1, c + 2), (r + 2, c + 4), (r + 3, c + 1),
(r + 3, c + 2), (r + 3, c + 5), (r + 3, c + 6),
(r + 3, c + 7)]

with r = rows // 2 and c = columns // 2
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8.2.2. Modify the neighborhood function so that
it treats the grid as if all four sides “wrap
around.” For example, in the first 7×7 grid
to the right, the neighbors of (4,6) include
(3,0), (4,0), and (5,0). In the rightmost
grid, the neighbors of the corner cell (6,6)
include (0,0), (0,5), (0,6), (5,0), and (6,0).

8.2.3* Write a function that prints the contents of a parameter named grid, which
is a list of lists. The contents of each row should be printed on one line with
spaces in between. Each row should be printed on a separate line.

8.2.4. Write a function that takes an integer n as a parameter, and returns an n × n
multiplication table as a list of lists. The value in row r and column c should be
the product of r and c.

8.2.5* Write a function that takes an integer n as a parameter, and returns an n × n
grid (list of lists) in which all cells on the main diagonal contain a 1 and the
rest of the cells contain a 0. For example, if n = 5, your function should return
the grid

[[1, 0, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 0, 0, 1]]

8.2.6. Write a function that takes an integer n as a parameter, and returns an n × n
grid (list of lists) in which all cells on and below the main diagonal contain a 1
and the rest of the cells contain a 0. For example, if n = 5, your function should
return

[[1, 0, 0, 0, 0],

[1, 1, 0, 0, 0],

[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],

[1, 1, 1, 1, 1]]

8.2.7. Write a function that takes as a parameter a two-dimensional grid (list of lists)
of numbers, and prints (a) the sum of each row, (b) the sum of each column,
and (c) the sum of all the entries.

8.2.8* Write a function that takes as parameters a two-dimensional grid (list of lists)
and a value to search for, and returns the (row, column) where the value first
appears, if it appears anywhere in the grid, and (−1,−1) otherwise.

8.2.9. Write a function that returns a two-dimensional grid (list of lists) representation
of an 8×8 checkerboard in which the squares in both directions alternate between
the values 'B' and 'R'.

8.2.10. A magic square is a grid of numbers for which the sum of all
the columns and all the rows is the same. For example, in the
magic square to the right, all the rows and columns add up to 15.
The following algorithm generates magic squares with odd-length
sides, using the consecutive numbers 1,2,3, . . .

5 7 3
1 6 8
9 2 4
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(a) Put 1 in a randomly chosen cell in your square.

(b) Look in the cell diagonally to the lower right of the previous cell, wrapping
around if you go off the right or bottom edge.

i. If this cell is unoccupied, put the next number there.

ii. Otherwise, put the next number directly above the previous number
(again wrapping to the bottom if you are on the top row).

(c) Continue step (b) until all the positions are filled.

Write a function that takes an odd integer n as a parameter and returns an
n × n magic square.

8.2.11. A two-dimensional grid can also be stored as a dictionary in which the keys are
tuples representing grid positions. For example, the small grid

[ [0, 1],
[1, 1] ]

would be stored as the following dictionary:

{ (0, 0): 0,
(0, 1): 1,
(1, 0): 1,
(1, 1): 1 }

Rewrite the Game of Life program on the book website so that it stores the grid
in this way instead. The following four functions will need to change: emptyGrid,
initialize, neighborhood, and life.

8.3 DIGITAL IMAGES
Digital photographs and other images are also “flat” two-dimensional objects that
can be manipulated with the same techniques that we discussed in previous sections.
A digital image is a two-dimensional grid (sometimes called a bitmap) in which
each cell, called a pixel (short for “picture element”), contains a value representing
its color.

Colors
In a grayscale image, colors are limited to shades of gray. These shades are more
commonly referred to as levels of brightness or luminance, and in theory are repre-
sented by values between 0 and 1, 0 being black and 1 being white. As we briefly
explained in Tangent 2.1, each pixel in a color image can be represented by a (red,
green, blue), or RGB , tuple. Each component, or channel, of the tuple represents
the brightness of the respective color. The value (0,0,0) is black and (1,1,1) is
white. Values between these can represent any color in the spectrum. For example,
(0,0.5,0) is a medium green and (1,0.5,0) is orange. In practice, each channel is
represented by eight bits (one byte) or, equivalently, a value between 0 and 255. So
black is represented by (0,0,0) or

00000000 00000000 00000000 ,
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Tangent 8.3: Additive vs. subtractive color models

Colors in digital images are usually represented in one of two ways. In the text, we focus
on the RGB color model because it is the most common, especially for digital cameras
and displays. RGB is called an additive color model because the default “no color”
(0,0,0) is black, and adding all of the colors, represented by (255, 255, 255), is white. In
contrast, printers use a subtractive color model that “subtracts” from the brightness
of a white paper background by applying color. The most common subtractive color
model is CMY (short for “Cyan Magenta Yellow”). In CMY, the “no color” (0,0,0)
is white, and (255,255,255) combines cyan, magenta, and yellow at full intensities to
produce black. In practice, a black channel is added to the CMY color model because
black is so common in print, and combining cyan, magenta, and yellow to produce black
tends to be both imperfect and expensive in practice. The resulting four-color model is
called CMYK where K stands for “Key” or “blacK,” depending on who you ask.

Some color models also allow an alpha channel to specify transparency. An alpha value
of 0 means the color is completely transparent (i.e., invisible), 255 means it is opaque,
and values in between correspond to degrees of translucency. Translucency effects are
implemented by combining the translucent color in the foreground with the background
color to an extent specified by the alpha channel. In other words,

displayed color = α ⋅ foreground color + (1 − α) ⋅ background color.

white is (255,255,255) or

11111111 11111111 11111111 ,

and orange is (255,127,0) or

11111111 01111111 00000000.

RGB is generally used for images produced by digital cameras and viewed on a
screen. Another encoding, called CMYK is used for print. See Tangent 8.3 for details.

Reflection 8.13 If we use eight bits to represent the intensity of each channel, can we still
represent any color in the spectrum? If not, how many different colors can we represent?

Using eight bits per channel, we cannot represent the continuous range of values
between 0 and 1 that would be necessary to represent any color in the spectrum. In
effect, we are only able to represent 254 values between 0 and 1: 1/255, 2/255, . . . ,
254/255. This is another example of how some objects represented in a computer
are limited versions of those existing in nature. Looking at it another way, by using
8 bits per channel, or 24 bits total, we can represent 224 = 16,777,216 distinct colors.
The good news is that, while this does not include all the colors in the spectrum, it
is greater than the number of colors distinguishable by the human eye.

Reflection 8.14 Assuming eight bits are used for each channel, what RGB tuple represents
pure blue? What tuple represents purple? What color is (0,128,128)?

Bright blue is (0,0,255) and any tuple with equal parts red and blue, for example
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(128, 0, 128) is a shade of purple. The tuple (0, 128, 128), equal parts medium green
and medium blue, is teal.

The digital images produced by digital cameras can be quite large. For example,
some high end cameras can produce an image that is 6720 pixels wide and 4480
pixels high, and therefore contains a total of 6720 × 4480 = 30,105,600 pixels. At one
byte per pixel, a grayscale image of this size would require about 28.7 MB of storage.
A 6720 by 4480 color image requires 6720 × 4480 × 3 = 90,316,800 bytes, or about
86.1 MB, of storage. In practice, color image files are compressed to take up much
less space. (See Tangent 8.4.)

Image filters
To illustrate some basic image processing techniques, let’s consider how we can
produce a grayscale version of a color image. An operation such as this is known as
an image filter algorithm. Photo-editing software typically includes several different
image filters for enhancing digital photographs.

To change an image to grayscale, we need to convert every color pixel (an RGB tuple)
to a gray pixel with similar brightness. A white pixel (RGB color (255, 255, 255)) is
the brightest, so we would map this to a grayscale brightness of 255 while a black
pixel (RGB color (0,0,0)) is the least bright, so we would map this to a grayscale
brightness of 0.

Reflection 8.15 How can we compute the brightness of a color pixel in general?

Consider the RGB color (250,50,200). The red and blue channels of this color
contribute a lot of brightness to the color while the green channel does not. To
estimate the overall brightness, we can simply average the three values. In this case,
(250 + 50 + 200)/3 ≈ 167. In RGB, any tuple with equal parts red, green, and blue
will be a shade of gray. Therefore, we can encode this shade of gray in RGB with
the tuple (167,167,167). A function to perform this conversion is straightforward:

def color2gray(color):
"""Convert a color to a shade of gray.

Parameter:
color: a tuple representing an RGB color

Return value: a tuple representing an equivalent gray
"""

brightness = (color[0] + color[1] + color[2]) // 3
return (brightness, brightness, brightness)

The parameter color is a three-element tuple of integers between 0 and 255. The
function computes the average of the three channels and returns a tuple representing
a shade of gray with that brightness.
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Tangent 8.4: Image storage and compression

Digital images are stored in a variety of file formats. Three of the most common are
BMP, GIF, and JPEG. The technical details of each format can be quite complex, so
we will just highlight the key differences, advantages, and disadvantages.

All image files begin with a short header that contains information about the dimensions
of the image, the number of bits that are used to encode the color of each pixel (usually
24), and other format-specific characteristics. The header is followed by information
about the actual pixels. In a BMP (short for “BitMaP”) file, the pixels are simply
stored row by row, starting from the bottom left corner (upside down). Assuming 24-bit
color, the size of a BMP file is roughly three bytes per pixel. For example, the 300× 200
pixel color image in Figure 8.4 requires about 300 ⋅ 200 ⋅ 3 = 180,000 bytes ≈ 180 KB in
BMP format.

GIF (short for “Graphics Interchange Format”) files try to cut down on the amount of
memory required to store an image in two ways. First, rather than store the actual color
of each pixel individually, GIF files encode each pixel with an 8-bit index into a table of
28 = 256 image-dependent colors. Second, GIF files compress the resulting pixel data
using the Lempel-Ziv-Welch (LZW) data compression algorithm (see Tangent 6.2). This
compression algorithm is lossless, meaning that the original data can be completely
recovered from the compressed data, resulting in no loss of image quality. So the size
of a GIF file is typically less than one byte per pixel. The color image in Figure 8.4
requires about 46 KB in GIF format.

JPEG (short for “Joint Photographic Experts Group,” the name of the group that
created it) files use a lossy compression algorithm to further cut down on their size.
“Lossy” means that information is lost from the original image. However, the lossy
compression algorithm used in JPEG files selectively removes characteristics that are
less noticeable to the naked eye, resulting in very little noticeable difference in quality.
The color image in Figure 8.4 requires about 36 KB in JPEG format.

To apply this transformation to an entire image, we need to iterate over the positions
of all of the pixels. Since an image is a two-dimensional object, we can process its
pixels row by row as we did in the previous section:

for r in range(rows):
for c in range(columns):

# process the pixel at position (r, c)

To be consistent with the language typically used in image processing, we will use
different names for the variables, however. Rather than referring to the size of an
image in terms of rows and columns, we will use height and width. And we will
use x and y (with (0,0) in the top left corner) to denote the horizontal and vertical
positions of a pixel instead of the row and column numbers. So the following is
equivalent to the nested loop above:

for y in range(height):
for x in range(width):

# process the pixel at coordinates (x, y)
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The standard Python module for displaying images (and creating graphical interface
elements like windows and buttons) is called tkinter (This name is short for “Tk
interface.” Tk is a widely used graphical programming package that predates Python;
tkinter provides an “interface” to Tk.) Because simple image manipulation in
tkinter is slightly more complicated than we would like, we will interact with
tkinter indirectly through a simple class named Image. The Image class is available
in the module image.py on the book website. Download this file and copy it into
the same folder as your programs for this section.

The following program illustrates how to use the Image class to read a digital image
file, iterate over its pixels, and produce a new image that is a grayscale version of
the original. Each of the methods and functions below is described in Appendix A.8.

import image

def grayscale(photo):
"""Convert a color image to grayscale.

Parameter:
photo: an Image object

Return value: a new grayscale Image object
"""

width = photo.width()
height = photo.height()
newPhoto = image.Image(width, height, title = 'Grayscale image')
for y in range(height):

for x in range(width):
color = photo.get(x, y)
newPhoto.set(x, y, color2gray(color))

return newPhoto

def main():
penguin = image.Image(file = 'penguin.gif', title = 'Penguin')
penguinGray = grayscale(penguin)
penguin.show()
penguinGray.show()
image.mainloop()

main()

Let’s look at the grayscale function first. The lone parameter named photo is
the Image object that we want to turn to grayscale. The first two statements
in the function call the width and height methods of photo to get the image’s
dimensions. Then the third statement creates a new, empty Image object with the
same dimensions. This will be our grayscale image. Next, we iterate over all of the
pixels in photo. Inside the nested loop, we call the get method to get the color of
the pixel at each position (x,y) in photo. The color is returned as a three-element
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Figure 8.4 The original image of a penguin and the grayscale version.

tuple of integers between 0 and 255. Next, we set the pixel at the same position in
newPhoto to the color returned by the color2gray function that we wrote above.
Once the nested loop has finished, we return the grayscale photo.

In the main function, we create an Image object named penguin from a GIF file
named penguin.gif that can be found on the book website. (GIF is a common image
file format; see Tangent 8.4 for more about image files.) We then call the grayscale

function with penguin, and assign the resulting grayscale image to penguinGray.
Finally, we display both images in their own windows by calling the show method of
each one. The mainloop function at the end causes the program to wait until all of
the windows have been closed before it quits the program. The results are shown in
Figure 8.4.

This simple filter is just the beginning; we leave several other fun image filters as
exercises. If you would like to save any of your creations, you can do so with the
save method. For example, to save the final penguinGray image above, call

penguinGray.save('gray penguin.gif')

Transforming images
There are, of course, many other ways we might want to transform an image. For
example, we commonly need to rotate landscape images 90 degrees clockwise. This
is illustrated in Figure 8.5. From the figure, we notice that the pixel in the corner at
(0,0) in the original image needs to be in position (h − 1,0) after rotation. Similarly,
the pixel in the corner at (w−1,0) needs to be in position (h−1,w−1) after rotation.
The transformations for all four corners are shown below.

Before After

(0,0) ⇒ (h − 1,0)
(w − 1,0) ⇒ (h − 1,w − 1)
(w − 1,h − 1) ⇒ (0,w − 1)
(0,h − 1) ⇒ (0,0)
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(0,0)
(0,0)

(w−1,0)

(0,h−1) (w−1,h−1)
(h−1,w−1)

(h−1,0)

(0,w−1)

Figure 8.5 Rotating an image 90 degrees clockwise. After rotation, the corners with

the same colors should line up. The width and height of the image are represented

by w and h, respectively.

Reflection 8.16 Do you see a pattern in these transformations? Use this pattern to infer
a general rule about where each pixel at coordinates (x,y) should be in the rotated image.

The first thing to notice is that the width and height of the image are swapped, so
the x and y coordinates in the original image need to be swapped in the rotated
image. However, just swapping the coordinates leads to the mirror image of what
we want. Notice that the y coordinate of each rotated corner is the same as the x
coordinate of the corresponding original corner. But the x coordinate of each rotated
corner is h − 1 minus the y coordinate of the corresponding corner in the original
image. So we want to draw each pixel at (x,y) in the original image at position
(h− 1− y, x) in the rotated image. The following function does this. Notice that it is
identical to the grayscale function, with the exceptions of parts of two statements
in red.

def rotate90(photo):
"""Rotate an image 90 degrees clockwise.

Parameter:
photo: an Image object

Return value: a new rotated Image object
"""

width = photo.width()
height = photo.height()
newPhoto = image.Image(height, width, title = 'Rotated image')
for y in range(height):

for x in range(width):
color = photo.get(x, y)
newPhoto.set(height - y - 1, x, color)

return newPhoto

Let’s look at one more example, and then we will leave several more as exercises.
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Figure 8.6 Reducing an image by one quarter.

Suppose we want to reduce the size of an image to one quarter of its original size. In
other words, we want to reduce both the width and height by half. In the process,
we are obviously going to lose three quarters of the pixels. Which ones do we throw
away? One option would be to group the pixels of the original image into 2×2 blocks
and choose the color of one of these four pixels for the corresponding pixel in the
reduced image, as illustrated in Figure 8.6. This is accomplished by the following
function. Again, it is very similar to the previous functions.

def reduce(photo):
"""Reduce an image to one quarter of its size.

Parameter:
photo: an Image object

Return value: a new reduced Image object
"""

width = photo.width()
height = photo.height()
newPhoto = image.Image(width // 2, height // 2, title = 'Reduced')
for y in range(0, height, 2):

for x in range(0, width, 2):
color = photo.get(x, y)
newPhoto.set(x // 2, y // 2, color)

return newPhoto

Although this works, a better option would be to average the three channels of the
four pixels in the block, and use this average color in the reduced image. This is left
as an exercise.

Once we have filters like this, we can combine them in any way we like. For example,
we can create an image of a small, upside down, grayscale penguin:
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def main():
penguin = image.Image(file = 'penguin.gif', title = 'Penguin')
penguinSmall = reduce(penguin)
penguinGray = grayscale(penguinSmall)
penguinRotate1 = rotate90(penguinGray)
penguinRotate2 = rotate90(penguinRotate1)
penguinRotate2.show()
image.mainloop()

By implementing some of the additional filters in the exercises below, you can devise
many more fun creations.

Exercises
8.3.1. Real grayscale filters take into account how different colors are perceived by

the human eye. Human sight is most sensitive to green and least sensitive to
blue. Therefore, for a grayscale filter to look more realistic, the intensity of the
green channel should contribute the most to the grayscale luminance and the
intensity of the blue channel should contribute the least. The following formula
is a common way to weigh these intensities:

luminance = 0.2126 ⋅ red + 0.7152 ⋅ green + 0.0722 ⋅ blue

Modify the color2gray function in the text so that it uses this formula instead.

8.3.2* The colors in an image can be made “warmer” by increasing the yellow tone. In
the RGB color model, this is accomplished by increasing the intensities of both
the red and green channels. Write a function that returns an Image object that
is warmer than the original by some factor between -1 and 1 that is passed as a
parameter. If the factor is positive, the image should be made warmer; if the
factor is negative, it should be made less warm.

8.3.3. The colors in an image can be made “cooler” by increasing the intensity of the
blue channel. Write a function that returns an Image object that is cooler than
the original by some factor between -1 and 1 that is passed as a parameter. If
the factor is positive, the image should be made cooler; if the factor is negative,
it should be made less cool.

8.3.4. The overall brightness in an image can be adjusted by increasing the intensity
of all three channels. Write a function that returns an Image object that is
brighter than the original by some factor between -1 and 1 that is passed as a
parameter. If the factor is positive, the image should be made brighter; if the
factor is negative, it should be made less bright.

8.3.5. A negative image is one in which the colors are the opposite of the original. In
other words, the intensity of each channel is 255 minus the original intensity.
Write a function that returns an Image object that is the negative of the original.

8.3.6* Write a function that returns an Image object that is a horizontally flipped
version of the original. Put another way, the image should be reflected along an
imaginary vertical line drawn down the center. See the example on the left of
Figure 8.7.
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Figure 8.7 Horizontally flipped and mirrored versions of the original penguin image

from Figure 8.4.

8.3.7. Write a function that returns an Image object with left half the same as the
original but with right half that is a mirror image of the original. (Imagine
placing a mirror along a vertical line down the center of an image, facing the
left side.) See the example on the right of Figure 8.7.

8.3.8* In the text, we wrote a function that reduced the size of an image to one quarter
of its original size by replacing each 2 × 2 block of pixels with the pixel in the
top left corner of the block. Now write a function that reduces an image by the
same amount by instead replacing each 2 × 2 block with a pixel that has the
average color of the pixels in the block.

8.3.9. An image can be blurred by replacing each pixel with the average color of its
eight neighbors. Write a function that returns a blurred version of the original.

8.3.10. An item can be further blurred by repeatedly applying the blur filter you wrote
above. Write a function that returns a version of the original that has been
blurred any number of times.

8.3.11. Write a function that returns an image that is a cropped version of the original.
The portion of the original image to return will be specified by a rectangle, as
illustrated below.

The function should take in four additional parameters that specify the (x,y)
coordinates of the top left and bottom right corners (shown above) of the crop
rectangle.
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8.4 SUMMARY AND FURTHER DISCOVERY
As we saw in the previous chapter, a lot of data is naturally stored in two-dimensional
tables. So it makes sense that we would also want to store this data in a two-
dimensional structure in a program. We discussed two ways to do this. First, we
can store the data in a list of lists in which each inner list contains one row of data.
Second, in Exercises 8.1.6 and 8.2.11, we looked at how two-dimensional data can
be stored in a dictionary. The latter representation has the advantage that it can be
searched efficiently, if the data has an appropriate key.

Aside from storing data, two-dimensional structures have many other applications.
Two-dimensional cellular automata are widely used to model a great variety of
phenomena. The Game of Life is probably the most famous, but cellular automata
can also be used to model actual cellular systems, pigmentation patterns on sea shells,
climate change, racial segregation (Project 8.1), ferromagnetism (Project 8.2), and to
generate pseudorandom numbers. Digital images are also stored as two-dimensional
structures, and image filters are simply algorithms that manipulate these structures.

Notes for further discovery
The chapter epigraph is from Flatland: A Romance of Many Dimensions, written
by Edwin A. Abbott in 1884 [1].

If you are interested in learning more about cellular automata, or emergent systems in
general, we recommend Turtles, Termites, and Traffic Jams by Mitchell Resnick [53]
and Emergence by Steven Johnson [28] as good places to start. Also, we recommend
Agent-Based Models by Nigel Gilbert [19] if you would like to learn more about using
cellular automata in the social sciences. Biological Computation by Ehud Lamm and
Ron Unger [34] is about using biologically-inspired computational techniques, such
as cellular automata, genetic algorithms and artificial neural networks, to solve hard
problems.

*8.5 PROJECTS
This section is available on the book website.





C H A P T E R 9

Self-similarity and Recursion

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not
smooth, nor does lightning travel in a straight line.

Benoît Mandelbrot
The Fractal Geometry of Nature (1983)

Though this be madness, yet there is method in’t.

William Shakespeare
Hamlet (Act II, Scene II)

Have you ever noticed, while laying on your back under a tree, that each branch
of the tree resembles the tree itself? If you could take any branch, from the

smallest to the largest, and place it upright in the ground, it could probably be
mistaken for a smaller tree. This phenomenon, called self-similarity , is widespread
in nature. There are also computational problems that, in a more abstract way,
exhibit self-similarity. In this chapter, we will discuss a computational technique,
called recursion, that we can use to elegantly solve problems that exhibit this
property. As the second quotation above suggests, recursion may seem foreign at
first, but it really is quite natural and just takes some practice to master.

9.1 FRACTALS
Nature is not geometric, at least not in a traditional sense. Instead, natural structures
are complex and not easily described. But many natural phenomena do share a
common characteristic: if you zoom in on any part, that part resembles the whole.
For example, consider the images in Figure 9.1. In the bottom two images, we can

365
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Figure 9.1 Fractal patterns in nature. Clockwise from top left: a nautilus shell [69],

the coastline of Norway [70], a closeup of a leaf [71], branches of a tree, a rock

outcropping, and lightning [72]. The insets in the bottom two images show how

smaller parts resemble the whole.
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Figure 9.2 A tree produced by tree(george, 100, 4). The center figure illustrates

what is drawn by each numbered step of the function. The figure on the right

illustrates the self-similarity in the tree.

see that if we zoom in on parts of the rock face and tree, these parts resemble the
whole. (In nature, the resemblance is not always exact, of course.) These kinds of
structures are called fractals, a term coined by mathematician Benôıt Mandelbrot,
who developed the first theory of fractal geometry.

Trees
An algorithm for creating a fractal shape is recursive, meaning that it invokes itself
on smaller and smaller scales. Let’s consider the example of the simple tree shown
on the left side of Figure 9.2. Notice that each of the two main branches of the tree
is a smaller tree with the same structure as the whole. As illustrated in the center of
Figure 9.2, to create this fractal tree, we first draw a trunk and then, for each branch,
we draw two smaller trees at 30-degree angles using the same algorithm. Each of
these smaller trees is composed of a trunk and two yet smaller trees, again drawn
with the same tree-drawing algorithm. This process could theoretically continue
forever, producing a tree with infinite complexity. In reality, however, the process
eventually stops by invoking a non-recursive base case . The base case in Figure 9.2
is a “tree” that consists of only a single line segment.

This recursive structure is shown more precisely on the right side of Figure 9.2. The
depth of the tree is a measure of its distance from the base case. The overall tree
in Figure 9.2 has depth 4 and each of its two main branches is a tree with depth
3. Each of the two depth 3 trees is composed of two depth 2 trees. Finally, each of
the four depth 2 trees is composed of two depth 1 trees, each of which is only a line
segment.

The following tree function uses turtle graphics to draw this tree.
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import turtle

def tree(tortoise, length, depth):

"""Recursively draw a tree.

Parameters:

tortoise: a Turtle object

length: the length of the trunk

depth: the desired depth of recursion

Return value: None

"""

if depth <= 1: # the base case

tortoise.forward(length)

tortoise.backward(length)

else: # the recursive case
1 tortoise.forward(length)

2 tortoise.left(30)

3 tree(tortoise, length * (2 / 3), depth - 1)

4 tortoise.right(60)

5 tree(tortoise, length * (2 / 3), depth - 1)

6 tortoise.left(30)

7 tortoise.backward(length)

def main():

george = turtle.Turtle()

george.left(90) # point north

tree(george, 100, 4) # draw the tree

main()

The initial statements in the main function initialize the turtle and orient it to the
north. Then the tree function is called with tree(george, 100, 4). On lines 1–2,
the turtle moves forward length units to draw the trunk, and then turns 30 degrees
to the left. This is illustrated in the center of Figure 9.2; the numbers correspond to
the line numbers in the function. Next, to draw the smaller tree, we call the tree

function recursively on line 3 with two-thirds of the length, and a value of depth

that is one less than what was passed in. The depth parameter controls how long we
continue to draw smaller trees recursively. After the call to tree returns, the turtle
turns 60 degrees to the right on line 4 to orient itself to draw the right tree. On line
5, we recursively call the tree function again with arguments that are identical to
those on line 3. When that call returns, the turtle retraces its steps in lines 6–7 to
return to the origin.
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tree
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  length ➞ 100
  depth ➞ 3
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Figure 9.3 An illustration of the recursive calls in tree(george, 100, 4).

The case when depth is at most 1 is called the base case because it does not make a
recursive call to the function; this is where the recursion stops.

Reflection 9.1 Try running the tree-growing function with a variety of parameters. Also,
try changing the turn angles and the amount length is shortened. Do you understand the
results you observe?

Figure 9.3 illustrates the recursive function calls that are made by the tree function
when length is 100 and depth is 3. The top box represents a call to the tree

function with parameters tortoise = george, length = 100, and depth = 3. This
function calls two instances of tree with length = 100 * (2 / 3) = 66.67 and
depth = 2. Then, each of these instances of tree calls two instances of tree

with length = 66.67 * (2 / 3) = 44.44 and depth = 1. When depth is 1, tree
simply draws a line segment and returns.

Reflection 9.2 The numbers on the lines in Figure 9.3 represent the order in which the
recursive calls are made. Can you see why that is?

Reflection 9.3 What would happen if we removed the base case from the algorithm
by deleting the first four statements, so that the line numbered 1 was always the first
statement executed?

Without the base case, the function would continue to make recursive calls forever!
Therefore, the base case is extremely important to the correctness of the algorithm.

Snowflakes
One of the most famous fractal shapes is the Koch curve, named after Swedish
mathematician Helge von Koch. A Koch curve begins with a single line segment
with length `. Then, as shown in Figure 9.4(b), that line segment is divided into
three equal parts, each with length `/3. The middle part of this divided segment is
replaced by two sides of an equilateral triangle (with side length `/3). Next, each
of the four line segments of length `/3 is divided in the same way, with the middle
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depth 0 depth 1 depth 2 depth 3
(a) (b) (c) (d)

Figure 9.4 The Koch curve at depths 0, 1, 2, and 3.

segment again replaced by two sides of an equilateral triangle with side length `/9,
etc., as shown in Figures 9.4(c)–(d). As with the tree above, this process could
theoretically go on forever, producing an infinitely intricate pattern.

Notice that, like the tree, this shape exhibits self-similarity; each “side” of the Koch
curve is itself a Koch curve with smaller depth. The Koch curve in Figure 9.4(b) with
depth 1 consists of four smaller Koch curves with depth 0 and length `/3. Likewise,
the Koch curve with depth 2 in Figure 9.4(c) consists of four smaller Koch curves
with depth 1, and the Koch curve with depth 3 in Figure 9.4(d) consists of four
smaller Koch curves with depth 2.

We can use our understanding of this self-similarity to write an algorithm to produce
a Koch curve with any desired overall length and depth:

Algorithm Koch Curve

Input: overall length and the depth
1 if depth is 0:
2 draw a line with length equal to length
3 else:
4 draw a Koch curve with length = length / 3 and depth = depth − 1
5 turn left 60 degrees
6 draw another Koch curve with length = length / 3 and depth = depth − 1
7 turn right 120 degrees
8 draw another Koch curve with length = length / 3 and depth = depth − 1
9 turn left 60 degrees

10 draw another Koch curve with length = length / 3 and depth = depth − 1

The base case occurs when the depth is zero, in which case we simply draw a line.
Otherwise, the algorithm runs through the steps we followed above. But notice that
steps 4, 6, 8, and 10 are actually recursively calling upon the algorithm itself to draw
smaller Koch curves. So the algorithm is more correctly written as follows.
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Algorithm Koch Curve

Input: overall length and the depth
1 if depth is 0:
2 draw a line with length equal to length
3 else:
4 Koch Curve (length / 3, depth − 1)
5 turn left 60 degrees
6 Koch Curve (length / 3, depth − 1)
7 turn right 120 degrees
8 Koch Curve (length / 3, depth − 1)
9 turn left 60 degrees

10 Koch Curve (length / 3, depth − 1)

Reflection 9.4 Follow the algorithm above to draw (on paper) a Koch curve with depth
1. Then follow the algorithm again to draw one with depth 2.

This algorithm can be directly translated into Python. The only additional thing we
need is a turtle to do the drawing.

def koch(tortoise, length, depth):
"""Recursively draw a Koch curve.

Parameters:
tortoise: a Turtle object
length: the length of a line segment
depth: the desired depth of recursion

Return value: None
"""

if depth == 0: # base case
tortoise.forward(length)

else: # recursive case
koch(tortoise, length / 3, depth - 1)
tortoise.left(60)
koch(tortoise, length / 3, depth - 1)
tortoise.right(120)
koch(tortoise, length / 3, depth - 1)
tortoise.left(60)
koch(tortoise, length / 3, depth - 1)

Reflection 9.5 Write a main function that creates a Turtle object and calls this function.
Experiment by calling koch with different values of length and depth.

We can attach three Koch curves at 120-degree angles to produce an intricate
snowflake shape like that in Figure 9.5.
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Figure 9.5 A three-sided Koch snowflake.

Reflection 9.6 Look carefully at Figure 9.5. Can you see where the three individual Koch
curves are connected?

The following function draws this Koch snowflake.

def kochSnowFlake(tortoise, length, depth):
"""Recursively draw a Koch snowflake.

Parameters:
tortoise: a Turtle object
length: the length of a line segment
depth: the desired depth of recursion

Return value: None
"""

for side in range(3):
koch(tortoise, length, depth)
tortoise.right(120)

Reflection 9.7 Insert this function into the previous program and call it from main. Try
making different snowflakes by increasing the number of sides (and decreasing the right
turn angle).

Imagine a Koch snowflake made from infinitely recursive Koch curves. Paradoxically,
while the area inside any Koch snowflake is clearly finite (because it is bounded),
the length of its border is infinite! In fact, the distance between any two points on
its border is infinite! To see this, notice that, at every stage in its construction, each
line segment is replaced with four line segments that are one-third the length of the
original. Therefore, the total length of that “side” increases by one-third. Since this
happens infinitely often, the perimeter of the snowflake continues to grow forever.
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Figure 9.6 Depths 0, 1, 2, and 3 of a quadratic Koch curve.

depth 0 depth 1 depth 2 depth 3
(a) (b) (c) (d)

Figure 9.7 Depths 0, 1, 2, and 3 of a Sierpinski triangle.

Exercises
9.1.1* Modify the recursive tree-growing function so that it branches at random angles

between 10 and 60 degrees (instead of 30 degrees) and it shrinks the trunk/branch
length by a random fraction between 0.5 and 0.75. Do your new trees now look
more “natural”?

9.1.2. The quadratic Koch curve is similar to the Koch curve, but it replaces the
middle segment of each side with three sides of a square instead, as illustrated
in Figure 9.6. Write a recursive function

quadkoch(tortoise, length, depth)

that draws the quadratic Koch curve with the given segment length and depth.

9.1.3. The following activities are recursive in the sense that each step can be considered
a smaller version of the original activity. Describe how this is the case and how
the “input” gets smaller each time. What is the base case of each operation
below?

(a) evaluating an arithmetic expression like 7 + (15 − 3)/4

(b) the chain rule in calculus (if you have taken calculus)

(c) one hole of golf

(d) driving directions to some destination

9.1.4* Generalize the Koch snowflake function with an additional parameter so that it
can be used to draw a snowflake with any number of sides.

9.1.5. The Sierpinski triangle, depicted in Figure 9.7, is another famous fractal. The
fractal at depth 0 is simply an equilateral triangle. The triangle at depth 1 is
composed of three smaller triangles, as shown in Figure 9.7(b). (The larger
outer triangle and the inner “upside down” triangle are indirect effects of the
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Figure 9.8 Hilbert space-filling curves with depths 0, 1, 2, and 3.

positions of these three triangles.) At depth 2, each of these three triangles is
replaced by three smaller triangles. And so on. Write a recursive function

sierpinski(tortoise, p1, p2, p3, depth)

that draws a Sierpinski triangle with the given depth. The triangle’s three
corners should be at coordinates p1, p2, and p3 (all tuples). It will be helpful
to also write two smaller functions that you can call from sierpinski: one to
draw a simple triangle, given the coordinates of its three corners, and one to
compute the midpoint of a line segment.

9.1.6. The Hilbert space-filling curve, shown in Figure 9.8, is a
fractal path that visits all of the cells in a square grid in
such a way that close cells are visited close together in
time. For example, the figure to the right shows how a
depth 2 Hilbert curve visits the cells in an 8 × 8 grid.

The following high-level algorithm draws a Hilbert curve.

Algorithm Hilbert Curve

Input: depth and mode
1 if depth > 0:
2 turn 90 degrees to the right [left]
3 Hilbert Curve (depth − 1, opposite mode)
4 draw a line segment
5 turn 90 degrees to the left [right]
6 Hilbert Curve (depth − 1, same mode)
7 draw a line segment
8 Hilbert Curve (depth − 1, same mode)
9 turn 90 degrees to the left [right]

10 draw a line segment
11 Hilbert Curve (depth − 1, opposite mode)
12 turn 90 degrees to the right [left]
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depth 0 depth 1 depth 2
(a) (b) (c)

Figure 9.9 Sierpinski carpets with depths 0, 1, and 2. (The gray bounding box shows

the extent of the drawing area; it is not actually part of the fractal.)

In the base case, when the depth is 0, the algorithm draws nothing. In the
recursive case, the algorithm can be in one of two different modes. In the first
mode, lines 2 and 12 turn right, and lines 5 and 9 turn left. In the other mode,
these directions are reversed (indicated in square brackets). Lines 3 and 11
make recursive calls that switch the mode. The algorithm assumes the turtle is
initially pointing north. Each of the line segments is the same length (say 10).

Write a recursive function

hilbert(tortoise, mode, depth)

that draws a Hilbert space-filling curve with the given depth. The Boolean
parameter mode indicates which mode the algorithm should draw in. (Think
about how you can accommodate both drawing modes by changing the angle of
the turns.)

9.1.7. A fractal pattern called the Sierpinski carpet is shown in Figure 9.9. At depth
0, it is simply a filled square one-third the width of the overall square space
containing the fractal. At depth 1, this center square is surrounded by eight
one-third size Sierpinski carpets with depth 0. At depth 2, the center square
is surrounded by eight one-third size Sierpinski carpets with depth 1. Write a
function

carpet(tortoise, upperLeft, width, depth)

that draws a Sierpinski carpet with the given depth. The parameter upperLeft
refers to the coordinates of the upper left corner of the fractal and width refers
to the overall width of the fractal.

9.1.8. Modify your Sierpinski carpet function from the last exercise so that it displays
the color pattern shown in Figure 9.10.

9.2 RECURSION AND ITERATION
We typically only solve problems recursively when they obviously exhibit self-
similarity or seem “naturally recursive,” as with fractals. But recursion is not some
obscure problem-solving technique. Although recursive algorithms may seem quite
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depth 0 depth 1 depth 2

Figure 9.10 Colorful Sierpinski carpets with depths 0, 1, and 2.

different from iterative algorithms, recursion and iteration are actually just two sides
of the same coin. Every iterative algorithm can be written recursively, and vice versa.
This realization may help take some of the mystery out of the technique.

Consider the problem of summing the numbers in a list. Of course, this is easily
achieved iteratively with a for loop:

def sumList(data):
"""Compute the sum of the values in a list.

Parameter:
data: a list of numbers

Return value: the sum of the values in the list
"""

total = 0
for value in data:

total = total + value
return total

Let’s think about how we could achieve the same thing recursively. To solve a problem
recursively, we need to think about how we could solve it if we had a solution to a
smaller subproblem . A subproblem is the same as the original problem, but with
only part of the original input.

In the case of summing the numbers in a list named data, a subproblem would be
summing the numbers in a slice of data. Consider the following example:

data Ð→ [1, 7, 3, 6
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
data[1:]

]

If we had the sum of the numbers in data[1:], i.e., sumList(data[1:]), then
we could compute the value of sumList(data) by simply adding this sum to
data[0]. In other words, sumList(data) is equal to data[0] plus the solu-
tion to the subproblem sumList(data[1:]). In terms of the example above, if
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Figure 9.11 A representation of the function calls in the recursive sumList function.

The red numbers indicate the order in which the events occur. The black numbers

next to the dashed arrows are return values.

we knew that sumList([7, 3, 6]) returned 16, then we could easily find that
sumList([1, 7, 3, 6]) is 1 + 16 = 17.

Reflection 9.8 Will this work if data is empty?

Since there is no data[0] or data[1:] when data is empty, the method above will
not work. But we can easily check for this case and return 0; this is the base case
of the function. Putting these two parts together, we have the following recursive
version of the function:

def sumList(data):
""" (docstring omitted) """

if len(data) == 0: # base case
return 0

return data[0] + sumList(data[1:]) # recursive case
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But does this actually work? It sure does. To see why, let’s look at Figure 9.11. At
the top of the diagram, in box (a), is a representation of a main function that calls
sumList with the argument [1, 7, 3, 6]. The steps that follow are marked in red
in the figure.

1. Calling sumList creates an instance of the sumList function, represented in
box (b), with the parameter data assigned the list [1, 7, 3, 6]. Since data

is not an empty list, the function will return 1 + sumList([7, 3, 6]), the
value enclosed in the gray box.

2. To evaluate the return value in box (b), we must call sumList again with the
argument [7, 3, 6], resulting in another instance of the sumList function,
represented in box (c). The instance of sumList in box (b) must wait to
return its value until it receives the return value from box (c). The instance of
sumList in box (c) will return 7 + sumList([3, 6]).

3. Evaluating this return value requires that sumList be called again, resulting
in the instance of sumList in box (d). This instance will return the result of
3 + sumList([6]).

4. Calling sumList([6]) creates yet another instance of the sumList function,
shown in box (e). This instance will return 6 + sumList([]).

5. The instance of sumList in box (e) calls sumList([]), creating the instance
of sumList in box (f).

6. The value of the data parameter in box (f) is an empty list, so the if condition
in sumList is True, invoking the base case. The base case immediately returns
0 to the instance of sumList that called it, in box (e).

7. Once the instance of sumList in box (e) receives 0 from sumList([]), it
returns 6 + 0 = 6 to the instance of sumList in box (d).

8. Since the instance of sumList in box (d) now has a value for sumList([6]),
it can return 3 + 6 = 9 to the instance of sumList in box (c).

9. Now that the instance of sumList in box (c) has a value for sumList([3, 6]),
it returns 7 + 9 = 16 to the instance of sumList in box (b).

10. Finally, the instance of sumList in box (b) can return 1 + 16 = 17 to main.

Notice that the sequence of function calls, moving down the figure from (a) to (f),
only ended because we eventually reached the base case in step 6, which caused
the function to return without making another recursive call. This step initiated a
process of moving back up through the previous function calls, allowing each one in
turn to return their value to the instance of the function that called it.

Every recursive function must have a non-recursive base case, and each recursive
call must get one step closer to the base case. This may sound familiar; it is very
similar to the way we must think about while loops. Each iteration of a while loop
must move one step closer to the loop condition becoming false.
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Solving a problem recursively
The following five questions generalize the process we followed to design the recursive
sumList function. We will illustrate each question by summarizing how we answered
it in the design of the sumList.

1. What does a subproblem look like?

A subproblem is to compute the sum of a slice of the list.

2. Suppose you could ask an all-knowing oracle for the solution to any subproblem
(but not for the problem itself). Which subproblem solution would be the most
useful for solving the original problem?

The most useful subproblem solution would be the solution for the slice of the
list that contains all but one element of the original, e.g., sumList(data[1:]).

3. How do you find the solution to the original problem using this subproblem
solution? Implement this as the recursive step of your recursive function.

The solution to sumList(data) is data[0] + sumList(data[1:]). Therefore,
the recursive step in the function should be

return data[0] + sumList(data[1:])

4. What are the simplest subproblems that you can solve non-recursively, and
what are their solutions? Implement your answer as the base case of the re-
cursive function.

The simplest subproblem would be to compute the sum of an empty list, which
is 0, of course. So the base case should be

if len(data) == 0:
return 0

5. For any possible parameter value, will the recursive calls eventually reach the
base case?

Yes, since an empty list will obviously reach the base case and passing any
other list as an argument will result in a sequence of recursive calls, each of
which involves a list that is one element shorter than in the previous call.

Reflection 9.9 How could we have answered question 2 differently? What is another
subproblem that involves all but one element of the original list? Using this subproblem
instead, answer the rest of the questions to write an alternative recursive sumList function.

An alternative subproblem would be sumList(data[:-1]) (all but the last element).
In this version of the function, the base case is the same, but the recursive case
would be

return sumList(data[:-1]) + data[-1] # recursive case
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Palindromes
Let’s look at another example. A palindrome is any sequence of characters that reads
the same forward and backward. For example, radar, star rats, and now I won are all
palindromes. An iterative function that determines whether a string is a palindrome
is shown below.

def palindrome(text):
"""Determine whether a string is a palindrome.

Parameter: a string text

Return value: a Boolean value indicating whether text is a palindrome
"""

for index in range(len(text) // 2):
if text[index] != text[-(index + 1)]:

return False
return True

Let’s answer the five questions above to develop an equivalent recursive algorithm
for this problem.

Reflection 9.10 First, what does a subproblem look like?

A subproblem would be to determine whether a slice of the string (i.e., a substring)
is a palindrome.

Reflection 9.11 Second, if you could know whether any slice is a palindrome, which
would be the most helpful?

It is often helpful to look at an example. Consider the following:

text Ð→ 'n o w I w o
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
text[1:-1]

n'

If we begin by looking at the first and last characters and determine that they are
not the same, then we know that the string is not a palindrome. But if they are the
same, then the question of whether the string is a palindrome is decided by whether
the slice that omits the first and last characters, i.e., text[1:-1], is a palindrome.
So it would be helpful to know the result of palindrome(text[1:-1]).

Reflection 9.12 Third, how could we use this information to determine whether the
whole string is a palindrome?

If the first and last characters are the same and text[1:-1] is a palindrome, then
text is a palindrome. Otherwise, text is not a palindrome. In other words, our
desired return value is the value of the following Boolean expression.

return (text[0] == text[-1]) and palindrome(text[1:-1])

If the first part is true, then the answer depends on whether the slice is a palindrome
(palindrome(text[1:-1])). Otherwise, if the first part is false, then the entire
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Figure 9.12 A representation of the function calls in the recursive palindrome function.

The red numbers indicate the order in which the events happen. On the left is an

instance in which the function reaches the base case and returns True. On the right

is an instance in which the function returns False.

and expression is false. Furthermore, due to the short circuit evaluation of the and

operator, the recursive call to palindrome will be skipped.

Reflection 9.13 What are the simplest subproblems that we can solve non-recursively,
and what are their solutions? Implement your answer as the base case.

The simplest string is, of course, the empty string, which we can consider a palindrome.
But strings containing a single character are also palindromes, since they read the
same forward and backward. So we know that any string with length at most one
is a palindrome. But we also need to think about strings that are obviously not
palindromes. Our discussion above already touched on this; when the first and last
characters are different, we know that the string cannot be a palindrome. Since this
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situation is already handled by the Boolean expression above, we do not need a
separate base case for it.

Putting this all together, we have the following elegant recursive function:

def palindrome(text):
""" (docstring omitted) """

if len(text) <= 1: # base case
return True

else:
return (text[0] == text[-1]) and palindrome(text[1:-1])

Let’s look more closely at how this recursive function works. On the left side
of Figure 9.12 is a representation of the recursive calls that are made when the
palindrome function is called with the argument 'now I won'. From the main

function in box (a), palindrome is called with 'now I won', creating the instance of
palindrome in box (b). Since the first and last characters of the parameter are equal
(the (text[0] == text[-1]) part of the return statement is not shown to make the
pictures less cluttered), the function will return the value of palindrome('ow I wo').
But, in order to get this value, it needs to call palindrome again, creating the instance
in box (c). These recursive calls continue until we reach the base case in box (f),
where the length of the parameter is one. The instance of palindrome in box (f)
returns True to the previous instance of palindrome in box (e). Now the instance
in box (e) returns to (d) the value True that it just received from (f). The value of
True is propagated in this way all the way up the chain until it eventually reaches
main, where it is assigned to the variable named pal.

To see how the function returns False, let’s consider the example on the right side
of Figure 9.12. In this example, the recursive palindrome function is called from
main in box (a) with the non-palindromic argument 'now I win', which creates the
instance of palindrome in box (b). As before, since the first and last characters of the
parameter are equal, the function will return the value of palindrome('ow I wi').
Calling palindrome with this parameter creates the instance in box (c). But now,
since (text[0] == text[-1]) is False, the instance of palindrome in box (c)
returns False, and this value is propagated up to the main function.

Guessing passwords
One technique that hackers use to compromise computer systems is to rapidly try
all possible passwords up to some given length.

Reflection 9.14 How many possible passwords are there with length n, if there are c
possible characters to choose from?

The number of different passwords with length n is

c ⋅ c ⋅ c ⋅ ⋯ ⋅ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

= cn.
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For example, there are

268 = 208,827,064,576 ≈ 208 billion

different eight-character passwords that use only lowercase letters. But there are

6712 = 8,182,718,904,632,857,144,561 ≈ 8 sextillion

different twelve-character passwords that draw from the lower and uppercase letters,
digits, and the five special characters $, &, #, ?, and !, which is why websites make
you use long passwords with all of these characters! When you use a long enough
password and enough different characters, the “guess and check” method is useless.

Let’s think about how we could generate a list of possible passwords by first con-
sidering the simpler problem of generating all binary strings (or “bit strings”)
of a given length. This is the same problem, but using only two characters:
'0' and '1'. For example, the list of all binary strings with length three is
['000', '001', '010', '011', '100', '101', '110', '111'].

Thinking about this problem iteratively can be daunting. However, it becomes easier
if we think about it recursively, in terms of smaller versions of itself. As shown below,
a list of binary strings with a particular length can be created easily if we already
have a list of binary strings that are one bit shorter. We simply make two copies of
the list of shorter binary strings, and then precede all of the strings in the first copy
with a 0 and all of the strings in the second copy with a 1.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
1 0
1 1

0
1

In the illustration above, the list of binary strings with length 2 is created from two
copies of the list of binary strings with length 1. Then the list of binary strings with
length 3 is created from two copies of the list of binary strings with length 2. In
general, the list of all binary strings with a given length is the concatenation of

(a) the list of all binary strings that are one bit shorter and preceded by zero and

(b) the list of all binary strings that are one bit shorter and preceded by one.

Reflection 9.15 What is the base case of this algorithm?

The base case occurs when the length is 0, and there are no binary strings. However,
the problem says that the return value should be a list of strings, so we will return a
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list containing an empty string in this case. The following function implements this
recursive algorithm.

def bitStrings(length):
"""Return a list of all binary strings with the given length.

Parameter:
length: the length of the binary strings

Return value: the list of binary strings
"""

if length == 0: # base case
return ['']

shorterList = bitStrings(length - 1) # recursively get shorter
# bit strings

newBitStrings = [] # create a list
for shorterString in shorterList: # of bit strings

newBitStrings.append('0' + shorterString) # with prefix 0
for shorterString in shorterList: # append bit strings

newBitStrings.append('1' + shorterString) # with prefix 1

return newBitStrings # return all bit strings

In the recursive step, we call bitStrings(length - 1) to get a list of all bit strings
with length equal to length - 1, and then assign this list to shorterList. Next
we create a new list named newBitStrings that will hold all of the bit strings with
the desired length. In the first for loop, we append to this list all of the bit strings
in shorterList, preceded by '0'. Then, in the second for loop, we append all of
the bit strings in shorterList, preceded by '1'.

Reflection 9.16 Why will this algorithm not work if we return an empty list in the base
case instead of a list containing an empty string? What would be returned if we did return
an empty list instead?

If we return an empty list in the base case instead of a list containing an empty
string, the function will return an empty list. To see why, consider what would
happen if we called bitStrings(1). Then shorterList = bitStrings(0) will be
assigned an empty list. This would mean that there is nothing to iterate over in the
two for loops, and nothing is appended to newBitStrings. Since bitStrings(2)

calls bitStrings(1), this means that bitStrings(2) will also return the empty
list, and so on for any value of length!

Reflection 9.17 The bitStrings function above contains two nearly identical for loops,
one for the '0' prefix and one for the '1' prefix. How can we combine these two loops?

We can combine the two loops by repeating a more generic version of the loop for
each of the characters '0' and '1':
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def bitStrings(length):
""" (docstring omitted) """

if length == 0:
return ['']

shorterList = bitStrings(length - 1)

newBitStrings = []
for character in ['0', '1']:

for shorterString in shorterList:
newBitStrings.append(character + shorterString)

return newBitStrings

We can use a very similar algorithm to generate a list of possible passwords. The
only difference is that, instead of preceding each shorter string with 0 and 1, we
need to precede each shorter string with every character in the set of allowable
characters. The following function, with a string of allowable characters assigned to
an additional parameter, is a simple generalization of our bitStrings function.

def passwords(length, characters):
"""Return a list of all possible passwords with the given length,

using the given characters.

Parameters:
length: the length of the passwords
characters: a string containing the characters to use

Return value: the list of passwords
"""

if length == 0:
return ['']

shorterList = passwords(length - 1, characters)

passwordList = []
for character in characters:

for shorterPassword in shorterList:
passwordList.append(character + shorterPassword)

return passwordList

Reflection 9.18 How would we call the passwords function to generate a list of all bit
strings with length 5? What about all passwords with length 4 containing the characters
'abc123'? What about all passwords with length 8 containing lowercase letters? (Do not
actually try this last one!)
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Exercises
Write a recursive function for each of the following problems. Test your functions with both
common and boundary case arguments, and document your test cases.

9.2.1* Write a recursive function

sumIt(n)

that returns the sum of the integers from 1 to n.

9.2.2. Write a recursive function

factorial(n)

that returns the value of n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n.

9.2.3. Write a recursive function

power(a, n)

that returns the value of an without using the ** operator.

9.2.4. Euclid’s greatest common divisor (GCD) algorithm uses the fact that the GCD
of m and n is the same as the GCD of n and m mod n. Write a recursive function

gcd(m, n)

that implements Euclid’s algorithm. In the base case, gcd(m, 0) is m.

9.2.5* Write a recursive function

length(data)

that returns the length of the list data without using the len function.

9.2.6* Write a recursive function

minList(data)

that returns the minimum of the items in the list of numbers named data.
You may use the built-in min function for finding the minimum of (only) two
numbers.

9.2.7* Write a recursive function

reverse(text)

that returns the reverse of the string named text.

9.2.8. Write a recursive function

underscore(text)

that returns a version of the string named text with all spaces replaced by
underscore (_) characters.

9.2.9. Write a recursive function

noSpaces(text)

that returns a version of the string named text with all spaces removed.

9.2.10. Write a recursive function

increment(data)

that returns a new list containing all of the values in the list of numbers named
data incremented by one.
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9.2.11. Write a recursive function

int2string(n)

that converts an integer value n to its string equivalent, without using the str

function. For example, int2string(1234) should return the string '1234'.

9.2.12* Write a recursive function

countUpper(text)

that returns the number of uppercase letters in the string text.

9.2.13. Write a recursive function

count(text, target)

that returns the number of occurrences of the string target in the string text.

9.2.14. Write a recursive function

evenLength(data)

that returns True if data contains an even number of items, and False otherwise.
Do not use the len function.

9.2.15. Write a recursive function

search(data, target)

that returns True if target is contained in the list data, and False otherwise.

9.2.16. Write a recursive function

equal(list1, list2)

that returns a Boolean value indicating whether the two lists are equal without
testing whether list1 == list2. Only compare the lengths of the lists and
test whether individual list elements are equal.

9.2.17. Write a recursive function

powerSet(n)

that returns a list of all subsets of the integers 1,2, . . . , n. A subset is a list
of zero or more unique items from a set. The set of all subsets of a set is
also called the power set . For example, subsets(n) should return the list
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], [3, 2, 1]]. (Hint: this is
similar to the bitStrings function.)

9.2.18. Suppose you work for a state in which all vehicle license plates consist of a
string of letters followed by a string of numbers, such as 'ABC 123'. Write a
recursive function

licensePlates(length, letters, numbers)

that returns a list of strings representing all possible license plates of this form,
with length letters and length numbers chosen from the given strings. For
example, licensePlates(2, 'XY', '12') should return the following list of
16 possible license plates consisting of two letters drawn from 'XY' followed by
two digits drawn from '12':

['XX 11', 'XX 21', 'XY 11', 'XY 21', 'XX 12', 'XX 22',
'XY 12', 'XY 22', 'YX 11', 'YX 21', 'YY 11', 'YY 21',
'YX 12', 'YX 22', 'YY 12', 'YY 22']

(Hint: this is similar to the passwords function.)
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(a) (b)

(c) (d)

Figure 9.13 Illustration of the recursive algorithm for Tower of Hanoi with three disks.

9.3 THE MYTHICAL TOWER OF HANOI
The Tower of Hanoi is a game that was first marketed in 1883 by French mathe-
matician Édouard Lucas. As illustrated in Figure 9.13(a), the game is played on a
board with three pegs. One peg holds some number of disks with unique diameters,
ordered smallest to largest. The objective of the game is to move this “tower” of
disks from their original peg to another peg, one at a time, without ever placing a
larger disk on top of a smaller one. The game was purported to have originated in
an ancient legend. In part, the game’s instruction sheet reads:

According to an old Indian legend, the Brahmins have been following
each other for a very long time on the steps of the altar in the Temple of
Benares, carrying out the moving of the Sacred Tower of Brahma with
sixty-four levels in fine gold, trimmed with diamonds from Golconde.
When all is finished, the Tower and the Brahmins will fall, and that will
be the end of the world!1

This game is interesting because it is naturally solved using the following recursive
insight. To move n disks from the first peg to the third peg, we must first be able to
move the bottom (largest) disk on the first peg to the bottom position on the third
peg. The only way to do this is to somehow move the top n − 1 disks from the first
peg to the second peg, to get them out of the way, as illustrated in Figure 9.13(b).
But notice that moving n − 1 disks is a subproblem of moving n disks because it is
the same problem but with only part of the input. The source and destination pegs
are different in the original problem and the subproblem, but this can be handled
by making the source, destination, and intermediate pegs additional inputs to the
problem. Because this step is a subproblem, we can perform it recursively! Once
this is accomplished, we are free to move the largest disk from the first peg to the
third peg, as in Figure 9.13(c). Finally, we can once again recursively move the n − 1
disks from the second peg to the third peg, shown in Figure 9.13(d). In summary,
we have the following recursive algorithm:

1http://www.cs.wm.edu/~pkstoc/toh.html

http://www.cs.wm.edu/~pkstoc/toh.html
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1. Recursively move the top n − 1 disks from the source peg to the intermediate
peg, as in Figure 9.13(b).

2. Move one disk from the source peg to the destination peg, as in Figure 9.13(c).

3. Recursively move the n − 1 disks from the intermediate peg to the destination
peg, as in Figure 9.13(d).

Reflection 9.19 What is the base case in this recursive algorithm? In other words, what
is the simplest subproblem that will be reached by these recursive calls?

The simplest case would involve having no disks at all, in which case, we do nothing.

We cannot actually write a Python function to move the disks for us, but we can
write a function that gives us instructions on how to do so. The following hanoi

function does this, following exactly the algorithm described above.

def move(source, destination): # just print an instruction
print('Move a disk from peg ' + str(source) + ' to peg '

+ str(destination) + '.')

def hanoi(n, source, destination, intermediate):
"""Print instructions for solving the Tower of Hanoi puzzle.

Parameters:
n: the number of disks
source: the source peg
destination: the destination peg
intermediate: the other peg

Return value: None
"""

if n >= 1:
hanoi(n - 1, source, intermediate, destination)
move(source, destination)
hanoi(n - 1, intermediate, destination, source)

The parameters n, source, destination, and intermediate represent the number
of disks, the source peg, the destination peg, and the remaining peg that can be
used as a temporary resting place for disks that we need to get out of the way. In
our examples, the left peg was the source, the right peg was the destination, and
the middle peg was the intermediate. Notice that the base case is implicit: if n is
less than one, the function simply returns.

When we execute this function, we can name our pegs anything we want. For example,
if we name our pegs A, B, and C, then

hanoi(8, 'A', 'C', 'B')

will print instructions for moving eight disks from A to C, using B as the intermediate.
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Reflection 9.20 Execute the function with three disks. Does it work? How many steps
are necessary? What about with four and five disks? Do you see a pattern?

*Is the end of the world nigh?
The original game’s instructions claimed that the world would end when the monks
finished moving 64 disks. So how long does this take? To derive a general answer, let’s
start by looking at small numbers of disks. When there is one disk, only one move is
necessary: move the disk from the source peg to the destination peg. When there
are two disks, the algorithm moves the smaller disk to the intermediate peg, then
the larger disk to the destination peg, and finally the smaller disk to the destination
peg, for a total of three moves.

When n is three, we need to first move the top two disks to the intermediate peg
which, we just deduced, requires three moves. Then we move the largest disk to the
destination peg, for a total of four moves so far. Finally, we move the two disks from
the intermediate peg to the destination peg, which requires another three moves, for
a total of seven moves.

In general, notice that the number of moves required for n disks is the number of
moves required for n−1 disks, plus one move for the bottom disk, plus the number of
moves required for n− 1 disks again. In other words, if the function M(n) represents
the number of moves required for n disks, then

M(n) =M(n − 1) + 1 +M(n − 1) = 2M(n − 1) + 1.

Does this look familiar? This is a difference equation, just like those in Chapter 4. In
this context, a function that is defined in terms of itself is also called a recurrence
relation . The sequence produced by this recurrence relation is shown in the following
table.

n M(n)
1 1
2 3
3 7
4 15
5 31
⋮ ⋮

Reflection 9.21 Do you see the pattern in the table? What is the formula for M(n) in
terms of n?

M(n) is always one less than 2n. In other words, the algorithm requires

M(n) = 2n − 1

moves to solve the game when there are n disks. This expression is called a closed
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form for the recurrence relation because it is defined only in terms of n, not M(n−1).
According to this formula, moving 64 disks would require

264 − 1 = 18,446,744,073,709,551,615

moves. The end of the world is apparently not coming any time soon!

Exercises
9.3.1. Design a recursive algorithm for a version of the Tower of Hanoi puzzle in which

you can only move disks between adjacent pegs, in either direction. In other
words, you cannot move a disk directly from A to C or from C to A. Implement
your algorithm as a recursive function in Python.

9.3.2. How many moves does your algorithm from Exercise 9.3.1 make when there
are n disks? (Think about n = 1, 2, and 3 disks first. Then derive a general
formula.)

9.3.3* In another variation of the Tower of Hanoi puzzle, there are four pegs, labeled
A, B, C, and D, and two stacks of disks. A white stack of n disks starts on peg
A and a black stack starts on peg C. The goal is to exchange the two stacks,
i.e., move the white stack to peg C and the black stack to peg A, without ever
placing a larger disk on top of a smaller one. This problem can be solved by
using the classical Tower of Hanoi algorithm three times.

(a) Explain how with a pseudocode algorithm.

(b) Implement your algorithm in Python. You will first need to create slightly
modified versions of the move and hanoi functions that incorporate the
color of the disk(s) that are being moved. Then write a new function
solveTower4 that calls your modified hanoi function appropriately to
solve this problem.

(c) How many moves does your algorithm make with n disks?

9.3.4. The four-peg problem in Exercise 9.3.3 can be solved in fewer moves with the
following algorithm:

1. Use the classical Tower of Hanoi algorithm to move the top n − 1 white
disks from peg A to peg B, using peg D as the intermediate peg.

2. Move the largest white disk from peg A to peg D.

3. Use the classical algorithm to move all n black disks from peg C to peg
A, using peg D as the intermediate.

4. Move the largest white disk from peg D to peg C.

5. Use the classical algorithm to move the top n − 1 white disks from peg
B to peg C, using peg D as the intermediate.

(a) When all n black disks are moved in step 3 of the algorithm, using peg
D as the intermediate peg, the largest white disk is still on peg D. Why
does this not violate the rules of the puzzle?

(b) Implement this algorithm in Python.

(c) How many moves does this algorithm make with n disks?
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9.4 RECURSIVE LINEAR SEARCH
As we have already seen, linear search is a workhorse of an algorithm, used in a
variety of settings. In this section, we will develop a recursive version of this algorithm
and then show that it has the same time complexity as the iterative version. Later,
in Section 10.1, we will develop a more efficient algorithm for searching in a sorted
list.

Reflection 9.22 What does a subproblem look like in the search problem? What would
be the most useful subproblem to have an answer for?

In the search problem, a subproblem is to search for the target item in a smaller list.
Since we can only “look at” one item at a time, the most useful subproblem will be
to search for the target item in a sublist that contains all but one item, say the first
one. This way, we can break the original problem into two parts: (a) determine if
the target is the first item and (b) determine if the target is in the rest of the list.
Of course, if the first item is the one we are searching for, we can avoid the recursive
call altogether. Otherwise, we return the index that is returned by the search of the
rest of the list.

Reflection 9.23 What is the base case for this problem?

We have already discussed one base case: if the target item is the first item in the list,
we simply return its index. Another base case would be when the list is empty. In
this case, the item for which we are searching is not in the list, so we return −1. The
following function (almost) implements the recursive algorithm we have described.

def linearSearch_Draft1(data, target):
"""Recursively find the first occurrence of target in data.

Parameters:
data: a list object to search in
target: an object to search for

Return value: index of the first occurrence of target in data
"""

if len(data) == 0: # base case 1: not found
return -1

if target == data[0]: # base case 2: found
return ??

return linearSearch_Draft1(data[1:], target) # recursive case

However, as indicated by the red question marks above, we have a problem.

Reflection 9.24 What is the problem indicated by the red question marks? Why can we
not just return 0 in that case?

When we find the target at the beginning of the list and are ready to return its
index in the original list, we do not know what it was! We know that it is at index 0
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in the current sublist being searched, but we have no way of knowing where this
sublist starts in the original list. Therefore, we need to add a third parameter to the
function that keeps track of the original index of the first item in the sublist data.
In each recursive call, we add one to this argument since the index of the new front
item in the list will be one more than that of the current front item.

def linearSearch_Draft2(data, target, first):
""" (docstring omitted) """

if len(data) == 0: # base case 1: not found
return -1

if target == data[0]: # base case 2: found
return first

return linearSearch_Draft2(data[1:], target, first + 1) # recursive

Creating a new slice of the list in each recursive call, which is a relatively costly
operation, can also now be eliminated. We can pass in the entire list instead, and
use the value of first to identify the “first” item we are considering in the second
base case.

def linearSearch(data, target, first):
""" (docstring omitted) """

if (first < 0) or (first >= len(data)): # base case 1: not found
return -1

if target == data[first]: # base case 2: found
return first

return linearSearch(data, target, first + 1) # recursive case

As shown above, this change also necessitates a change in our first base case because
the length of the list is no longer decreasing to zero. Since the intent of the function
is to search in the list between indices first and len(data) - 1, we will consider
the list under consideration to be empty if the value of first is greater than the
last index in the list. Just to be safe, we also make sure that first is at least zero.

Reflection 9.25 Use the recursive linearSearch function to search for 'keys' in the list
['sock', 'keys', 'phone', 'remote']. What do you pass in for the third parameter?

When calling the recursive linearSearch function, we need to initially pass 0 in as
the third parameter since that is the index of the first item that we wish to search.

position = linearSearch(['sock', 'keys', 'phone', 'remote'], 'keys', 0)

*Efficiency of recursive linear search
Like the iterative linear search, this algorithm has linear time complexity. But we
cannot derive this result in the same way we did for the iterative version. Instead,
we need to use a recurrence relation, as we did to find the number of moves required
in the Tower of Hanoi algorithm.
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Let T (n) represent the worst case number of comparisons required by a linear search
when the length of the list is n. When we look at the algorithm above, we see that
there are two comparisons that the algorithm must make before reaching a recursive
function call. But since it only matters asymptotically that this number is a constant,
we will simply represent the number of comparisons before the recursive call as a
constant value c. Therefore, the number of comparisons necessary in the base case
in which the list is empty (n = 0) is T (0) = c. In recursive cases, there are additional
comparisons to be made in the recursive call.

Reflection 9.26 How many more comparisons are made in the recursive call to
linearSearch?

The size of the sublist yet to be considered in each recursive call is n − 1, one less
than in the current instance of the function. Therefore, the number of comparisons
in each recursive call must be the number of comparisons required by a linear search
on a list with length n − 1, which is T (n − 1). So the total number of comparisons is

T (n) = T (n − 1) + c.

But this is not very helpful in determining what the time complexity of the linear
search is. To get this recurrence relation into a more useful form, we can think
about the recurrence relation as saying that the value of T (n) is equal to, or can be
replaced by, the value of T (n − 1) + c, as illustrated below:

T(n − 1) c+

T(n)

Reflection 9.27 Now what can we replace T (n − 1) with?

T (n − 1) is just T (n) with n − 1 substituted for n. Therefore, using the definition of
T (n) above,

T (n − 1) = T (n − 1 − 1) + c = T (n − 2) + c.

So we can also substitute T (n − 2) + c for T (n − 1), as shown in the third row of
Figure 9.14. Similarly, Figure 9.14 uses the equivalences

T (n − 2) = T (n − 2 − 1) + c = T (n − 3) + c

and
T (n − 3) = T (n − 3 − 1) + c = T (n − 4) + c

to continue these substitutions until we reach T (0).
The right side of the figure illustrates the accumulation of c’s (which are not
substituted) as we proceed downward. Since c is the number of comparisons in each
recursive call, these values on the right represent the total number of comparisons
made so far. Notice that the number subtracted from n in the argument of T at
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T(n − 1) c+

T(n − 2) c+

T(n − 3) c+

T(n)

T(1)

⋰
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c
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(n − 1) c
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⋮

T(n − i) c+ ic

⋰ ⋮

T(0) c+

c (n + 1) c

Figure 9.14 An illustration of how to derive a closed form for the recurrence relation

T (n) = T (n − 1) + c.

each step is equal to the multiplier in front of the accumulated c’s at that step. In
other words, to the right of each T (n− i), the accumulated value of c’s is i ⋅ c. When
we finally reach T (0), which is the same as T (n − n), the total on the right must be
nc. Finally, we showed above that T (0) = c, so the total number of comparisons is
(n+1)c. This expression is called the closed form of the recurrence relation because it
does not involve any values of T (n). Since (n+ 1)c is O(n) asymptotically, recursive
linear search is a linear-time algorithm, just like the iterative linear search. Intuitively,
this should make sense because the two algorithms essentially do the same thing:
they both look at every item in the list until the target is found.
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Exercises
9.4.1* The linearSearch_Draft1 function, without the first parameter, can work if

we only need to know whether the target is in the list. Write a working version
of this function that returns True if the target item is contained in the list and
False otherwise.

9.4.2* Unlike our final version of the linearSearch function, the function you wrote
in the previous exercise uses slicing. Is this still a linear-time algorithm?

9.4.3. Write a new version of recursive linear search that instead looks at the last item
in the list, and recursively calls the function with the sublist not containing the
last item.

9.4.4. Write a new version of recursive linear search that only looks at the items in the
list with even indices. For example, linearSearch([1, 2, 3, 4, 2], 2, 0)

should return the index 4 because it would not see the target, 2, at index 1.

9.4.5. Write a recursive function

sumSearch(data, total, first)

that returns the first index in data, greater than or equal to first, for which
the sum of the values in data[:index + 1] is greater than or equal to total.
If the sum of all of the values in the list is less than total, the function should
return -1. For example, sumSearch([2, 1, 4, 3], 4) returns index 2 because
2 + 1 + 4 ≥ 4 but 2 + 1 < 4.

9.5 DIVIDE AND CONQUER
The algorithm for the Tower of Hanoi game elegantly used recursion to divide the
problem into three simpler subproblems: recursively move n − 1 disks, move one
disk, and then recursively move n− 1 disks again. Such algorithms came to be called
divide and conquer algorithms because they “divide” a hard problem into two
or more subproblems, and then “conquer” each subproblem recursively. The divide
and conquer technique has been found to yield similarly elegant, and often quite
efficient, algorithms for a wide variety of problems.

It is actually useful to think of divide and conquer algorithms as comprising three
steps instead of two:

1. Divide the problem into two or more subproblems.

2. Conquer each subproblem recursively.

3. Combine the solutions to the subproblems into a solution for the original
problem.

In the Tower of Hanoi algorithm, the “combine” step was essentially non-existent.
Once the subproblems had been “conquered,” we were done. But other problems do
require this step at the end.

In this section, we will design elegant divide and conquer algorithms that choose
optimal buy and sell dates on the stock market and navigate a rover through a maze.
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Buy low, sell high
Suppose that you have created a model to predict the future daily closing prices of
a particular stock. With this list of prices, you would like to determine when to buy
and sell the stock to maximize your profit. For example, when should you buy and
sell if your model predicts the following prices for the next ten days?

Day 1 2 3 4 5 6 7 8 9 10

Price 3.90 3.60 3.65 3.71 3.78 4.95 3.21 4.50 3.18 3.53

It is tempting to look for the minimum price ($3.18) and then look for the maximum
price after that day. But this clearly does not work with this example. Even choosing
the second smallest price ($3.21) does not give the optimal answer. The most
profitable choice is to buy on day 2 at $3.60 and sell on day 6 at $4.95, for a profit
of $1.35 per share.

One way to find this answer is to look at all possible pairs of buy and sell dates, and
pick the pair with the maximum profit. (You may actually have already done this in
Exercise 7.5.7.) Since there are n(n − 1)/2 such pairs, this yields an algorithm with
time complexity O(n2).
However, divide and conquer yields a more efficient algorithm. Notice that if we
divide the list of prices in half, then the optimal pair of dates must either be in the
left half, the right half, or straddle the two halves, with the buy date in the left half
and sell date in the right half. This observation can be used to design the following
divide and conquer algorithm:

1. Divide the problem into two subproblems: (a) finding the optimal buy and sell
dates in the left half of the list and (b) finding the optimal buy and sell dates
in the right half of the list.

2. Conquer the two subproblems by executing the algorithm recursively on these
two smaller lists of prices.

3. Combine the solutions by choosing the most profitable buy and sell dates from
among (a) the best dates in the left half, (b) the best dates in the right half,
and (c) the best dates that straddle the two halves.

Reflection 9.28 Is there an easy way to find the best buy and sell dates that straddle
the two halves, with the buy date in the left half and sell date in the right half?

At first glance, it might look like the “combine” step would require another recursive
call to the algorithm. But finding the optimal buy and sell dates with this particular
restriction is actually quite easy. The best buy date in the left half must be the one
with the minimum price, and the best sell date in the right half must be the one
with the maximum price. So finding these buy and sell dates simply amounts to
finding the minimum price in the left half of the list and the maximum price in the
right half, which we already know how to do.
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Before we implement this algorithm, let’s apply it to the example above:

[3.90, 3.60, 3.65, 3.71, 3.78, 4.95, 3.21, 4.50, 3.18, 3.53]

1. First, we divide the list into two halves: [3.90, 3.60, 3.65, 3.71, 3.78]

and [4.95, 3.21, 4.50, 3.18, 3.53].

2. Next, we recursively find the maximum profits in the left half and the right
half. In the left half, the maximum profit is attained by buying on day 2 for
3.60 and selling on day 5 at 3.78, for a profit of 3.78 − 3.60 = 0.18. In the right
half, we maximize our profit by buying on day 7 for 3.21 and selling on day 8
at 4.50, for a profit of 4.50 − 3.21 = 1.29. In the actual algorithm, these results
will be derived from a sequence of several more recursive calls, but we will
pretend for now that this has already happened.

3. Finally, we find the maximum profit possible by holding the stock from the
first half to the second half. Since the minimum price in the first half is 3.60
on day 2 and the maximum price in the second half is 4.95 on day 6, this profit
is 4.95 − 3.60 = 1.35. We return the maximum of 0.18, 1.29, and 1.35, which is
1.35. We achieved this by buying on day 2 and selling on day 6.

Reflection 9.29 Since this is a recursive algorithm, we also need a base case. What is
the simplest list in which to find the optimal buy and sell dates?

The easiest case would be a list with less than two prices; then we never buy at
all (or, equivalently, buy and sell on the same day), for zero profit. The following
function implements the divide and conquer algorithm in a very straightforward way,
but it just finds the optimal profit, not the actual buy and sell days. Finding these
days requires just a little more work, which we leave for you as an exercise.

1 def profit(prices):
2 """Find the maximum profit from a list of daily stock prices.

3 Parameter:
4 prices: a list of daily stock prices

5 Return value: the maximum profit
6 """

7 if len(prices) <= 1: # base case
8 return 0

9 midIndex = len(prices) // 2 # divide in half
10 leftProfit = profit(prices[:midIndex]) # conquer 2 halves
11 rightProfit = profit(prices[midIndex:])

12 buy = min(prices[:midIndex]) # min price on left
13 sell = max(prices[midIndex:]) # max price on right
14 midProfit = sell - buy # max left -> right profit

15 return max(leftProfit, rightProfit, midProfit) # combine 3 cases
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Figure 9.15 A representation of the function calls in the recursive profit function.

The red numbers indicate the order in which the events happen.

Reflection 9.30 Call this function with the list of prices that we used in the example
above.

That this algorithm actually works may seem like magic at this point. But rest assured
that, like all recursive algorithms, there is a perfectly good reason why it works. The
process is sketched out in Figure 9.15 for a small list containing just the first four
prices in our example. Each bold rectangle represents an instance of a function call.
The smaller gray boxes represent how the return value is computed in each one. In all
but the base cases, the return value is the maximum of leftProfit (represented by
left), rightProfit (represented by right), and midProfit (represented by mid).

At the top of Figure 9.15, the profit function is called with a list of four prices.
The profit function then recursively calls itself with the first two prices and the
last two prices (lines 10–11 in the function). The red numbers on the arrows in the
figure show the order of the subsequent events.

1. The first recursive call (on line 10) to profit([3.90, 3.60]) is represented
by box (b). This call to profit results in two more recursive calls, labeled (c)
and (d).

2–3. The call to profit([3.90]) in box (c) is a base case which returns 0. This
value is assigned to leftProfit (left) in box (b).

4–5. The second recursive call from box (b) to profit([3.60]), shown in box (d),
is also a base case which returns 0. This value is assigned to rightProfit

(right) in box (b).

6. Back in box (b), after the two recursive calls return, the profit from holding the
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stock in the combine step, -0.30, is assigned in line 14 to midProfit (mid).
The maximum of the three values, which in this case is 0, is returned back to
box (a) and assigned to leftProfit (left).

7. Now the second recursive call (on line 11) to profit([3.65, 3.71]) is made
from box (a). This instance of the function is shown in box (e).

8-11. This recursive call results in a sequence of function calls that is very similar to
steps 2–5, as illustrated in boxes (e)–(g).

12. The recursive call to profit([3.65, 3.71]) returns 0.06, which is assigned
to rightProfit (right) in box (a).

13. Finally, the maximum profit across the two halves in (a) is found to be 3.71

- 3.60 = 0.11. Then the maximum of leftProfit, which is 0, rightProfit,
which is 0.06, and midProfit, which is 0.11, is returned by the original
function call.

Navigating a maze
Suppose we want to navigate a robotic rover through an unknown, obstacle-filled
terrain. For simplicity, we will assume that the landscape is laid out on a grid and
the rover is only able to “see” and move to the four grid cells to its east, south, west,
and north in each step, as long as they do not contain obstacles.

To navigate the rover to its destination on the grid (or determine that the destination
cannot be reached), we can use a technique called depth-first search . The depth-
first search algorithm explores a grid by first exploring in one direction as far as it
can from the source. Then it backtracks to follow paths that branch off in each of
the other three directions.

Put another way, a depth-first search divides the problem of searching for a path to
the destination into four subproblems: searching for a path starting from the cell to
the east, from the cell to the south, from the cell to the west, and from the cell to
the north. To solve each of these subproblems, the algorithm follows this identical
procedure again, just from a different starting point. In terms of the three divide
and conquer steps, the depth-first search algorithm looks like this:

1. Divide the problem into four subproblems. Each subproblem searches for a
path that starts from one of the four neighboring cells.

2. Conquer the subproblems by recursively executing the algorithm from each of
the neighboring cells.

3. Combine the solutions to the subproblems by returning success if any of the
subproblems were successful. Otherwise, return failure.

To illustrate, consider the grid in Figure 9.16(a). In this example, we are attempting
to find a path from the green cell in position (1,1) to the red cell in position (3,0).
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Figure 9.16 An illustration of a depth-first search on a grid.

The black cells represent obstacles that the rover cannot move through. The depth-
first search algorithm will visit neighboring cells in clockwise order: east, south, west,
north. The algorithm starts at cell (1,1) and looks east to (1,2), but cannot move in
that direction due to an obstacle. Therefore, it next explores the cell to the south in
position (2,1), colored blue in Figure 9.16(b). From this cell, it recursively executes
the same algorithm, first looking east to (2,2). Since this cell is not blocked, it is the
next one visited, as represented in Figure 9.16(c). The depth-first search algorithm is
recursively called again from cell (2,2), but the cells to the east, south, and north are
blocked; and the cell to the west has already been visited. Therefore, the depth-first
search algorithm returns failure to the cell at (2,1). We color cell (2,2) light blue
to indicate that it has been visited, but is no longer on the path to the destination.
From cell (2,1), the algorithm has already looked east, so it now moves south to
(3,1), as shown in Figure 9.16(d). In the next step, shown in Figure 9.16(e), the
algorithm moves south again to (4,1) because the cell to the east is blocked.

Reflection 9.31 When it is at cell (3,1), why does the algorithm not “see” the destination
in cell (3,0)?

It does not yet “see” the destination because it looks east and south before it
looks west. Since there is an open cell to the south, the algorithm will follow that
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possibility first. In the next steps, shown in Figure 9.16(f)–(g), the algorithm is able
to move east, and in Figure 9.16(h), it is only able to move north. At this point,
the algorithm backtracks to (4,1) over three steps, as shown in Figure 9.16(i)–(k),
because all possible directions have already been attempted from cells (3,3), (4,3),
and (4,2). From cell (4,1), the algorithm next moves west to cell (4,0), as shown in
Figure 9.16(l), because it has already moved east and there is no cell to the south.
Finally, from cell (4,0), it cannot move east, south, or west; so it moves north where
it finally finds the destination.

The final path shown in blue illustrates the path that the algorithm from the source
to destination.

Reflection 9.32 Did the depth-first search algorithm find the shortest path?

A depth-first search is not guaranteed to find the shortest, or even a short, path.
But it will find a path if one exists. Another algorithm, called a breadth-first search,
can be used to find the shortest path.

Reflection 9.33 What is the base case of the depth-first search algorithm? For what
types of source cells can the algorithm finish without making any recursive calls?

There are two kinds of base cases in depth-first search, corresponding to the two
possible outcomes. One base case occurs when the source cell is not a “legal” cell
from which to start a new search. These source cells are outside the grid, blocked,
or already visited. In these cases, we simply return failure. The other base case
occurs when the source cell is the same as the destination cell. In this case, we return
success.

The depth-first search algorithm is implemented by the following function. The
function returns True (success) if the destination was reached by a path and False

(failure) if the destination could not be found.

BLOCKED = 0 # site is blocked
OPEN = 1 # site is open and not visited
VISITED = 2 # site is open and already visited

def dfs(grid, source, dest):
"""Perform a depth-first search on a grid to determine if there

is a path between a source and destination.

Parameters:
grid: a two-dimensional grid (list of lists)
source: a (row, column) tuple to start from
dest: a (row, column) tuple to reach

Return value: Boolean indicating whether destination was reached
"""

(row, col) = source
rows = len(grid)
columns = len(grid[0])
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if (row < 0) or (row >= rows) or (col < 0) or (col >= columns) \
or (grid[row][col] == BLOCKED) or (grid[row][col] == VISITED):
return False # dead end (base case 1)

if source == dest: # dest found (base case 2)
return True

grid[row][col] = VISITED # visit this cell

if dfs(grid, (row, col + 1), dest): # search east
return True # and return if dest found

if dfs(grid, (row + 1, col), dest): # else search south
return True # and return if dest found

if dfs(grid, (row, col - 1), dest): # else search west
return True # and return if dest found

if dfs(grid, (row - 1, col), dest): # else search north
return True # and return if dest found

return False # destination was not found

The variable names BLOCKED, VISITED, and OPEN represent the possible status of
each cell. For example, the grid in Figure 9.16 is represented by

grid = [[BLOCKED, OPEN, BLOCKED, OPEN, OPEN],
[OPEN, OPEN, BLOCKED, OPEN, OPEN],
[BLOCKED, OPEN, OPEN, BLOCKED, OPEN],
[OPEN, OPEN, BLOCKED, OPEN, BLOCKED],
[OPEN, OPEN, OPEN, OPEN, BLOCKED]]

When a cell is visited, its value is changed from OPEN to VISITED by the dfs function.
There is a program available on the book website that includes additional turtle
graphics code to visualize how the cells are visited in this depth-first search. Download
this program and run it on several random grids.

Reflection 9.34 Our dfs function returns a Boolean value indicating whether the des-
tination was reached, but it does not actually give us the path (as marked in blue in
Figure 9.16). How can we modify the function to do this?

This modification is actually quite simple, although it may take some time to
understand how it works. The idea is to add another parameter, a list named path,
to which we append each cell after we mark it as visited. The values in this list
contain the sequence of cells visited in the recursive calls. However, we remove the
cell from path if we get to the end of the function where we return False because
getting this far means that this cell is not part of a successful path after all. In our
example in Figure 9.16, initially coloring a cell blue is analogous to appending that
cell to the path, while recoloring a cell light blue when backtracking is analogous to
removing the cell from the path. We leave an implementation of this change as an
exercise. Two projects at the end of this chapter demonstrate how depth-first search
can be used to solve other problems as well.
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Exercises
Write a recursive divide and conquer function for each of the following problems. Each of
your functions should contain at least two recursive calls.

9.5.1* Write a recursive divide and conquer function

power(a, n)

that returns the value of an, utilizing the fact that an = (an/2)2 when n is even
and an = (a(n−1)/2)2 ⋅ a when n is odd. Assume that n is a non-negative integer.

9.5.2. The Fibonacci sequence is a sequence of integers in which each number is the sum
of the previous two. The first two Fibonacci numbers are 1,1, so the sequence
begins 1,1,2,3,5,8,13, . . .. Write a function

fibonacci(n)

that returns the nth Fibonacci number.

9.5.3. In the profit function, we defined the left half as ending at index midIndex - 1

and the right half starting at index midIndex. Would it also work to have the
left half end at index midIndex and the right half start at index midIndex + 1?
Why or why not?

9.5.4* The profit function in the text takes a single list as the parameter and calls
the function recursively with slices of this list. In this exercise, you will write a
more efficient version of this function

profit(prices, first, last)

that does not use slicing in the arguments to the recursive calls. Instead, the
function will pass in the entire list in each recursive call, with the two additional
parameters assigned the first and last indices of the sublist that we want to
consider. In the divide step, the function will need to assign midIndex the index
that is midway between first and last (which is usually not last // 2). To
find the maximum profit achievable with a list of prices, the function must
initially be called with profit(prices, 0, len(prices) - 1).

9.5.5. Modify the version of the function that you wrote in Exercise 9.5.4 so that it
returns the most profitable buy and sell days instead of the maximum profit.

9.5.6. Write a divide and conquer version of the recursive linear search from Section 9.4
that checks if the middle item is equal to the target in each recursive call and
then recursively calls the function with the first half and second half of the list,
as needed. Your function should return the index in the list where the target
value was found, or −1 if it was not found. If there are multiple instances of the
target in the list, your function will not necessarily return the minimum index at
which the target can be found. (This function is quite similar to Exercise 9.5.4.)

9.5.7. Write a new version of the depth-first search function

dfs(grid, source, dest, path)

in which the parameter path contains the sequence of cell coordinates that
comprise a path from source to dest in the grid when the function returns.
The initial value of path will be an empty list. In other words, to find the path
in Figure 9.16, your function will be called like this:
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path = []
if dfs(grid, (1, 1), (3, 0), path):

print('A path was found: ' + str(path))
else:

print('A path was not found.')

In this example, the final value of path should be

[(1, 1), (2, 1), (3, 1), (4, 1), (4, 0)]

9.5.8* Write a recursive function

numPaths(n, row, column)

that returns the number of distinct paths in an empty n × n
grid from the cell in the given row and column to the cell in
position (n−1, n−1). For example, if n = 3, then the number
of paths from (0, 0) to (2,2) is six, as illustrated to the right.

9.5.9. In Section 9.2, we developed a recursive function named bitStrings that
returned a list of all binary strings with a given length. We can design an
alternative divide and conquer algorithm for the same problem by using the
following insight. The list of n-bit binary strings with the common prefix p

(with length less than n) is the concatenation of

(a) the list of n-bit binary strings with the common prefix p + '0' and

(b) the list of n-bit binary strings with the common prefix p + '1'.

For example, the list of all 4-bit binary strings with the common prefix 01 is
the list of 4-bit binary strings with the common prefix 010 (namely, 0100 and
0101) plus the list of 4-bit binary strings with the common prefix 011 (namely,
0110 and 0111).

Write a recursive divide and conquer function

binary(prefix, n)

that uses this insight to return a list of all n-bit binary strings with the given
prefix. To compute the list of 4-bit binary strings, you would call the function
initially with binary('', 4).

*9.6 LINDENMAYER SYSTEMS
This section is available on the book website.

9.7 SUMMARY AND FURTHER DISCOVERY
Some problems, like many natural objects, “naturally” exhibit self-similarity. In
other words, a problem solution is simply stated in terms of solutions to smaller
versions of itself. It is often easier to see how to solve such problems recursively than
it is iteratively. An algorithm that utilizes this technique is called recursive.
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We suggested answering five questions to solve a problem recursively:

1. What does a subproblem look like?

2. Which subproblem solution would be the most useful for solving the original
problem?

3. How do we find the solution to the original problem using this subproblem
solution? Implement this as the recursive step of our recursive function.

4. What are the simplest subproblems that we can solve non-recursively, and what
are their solutions? Implement your answer as the base case of the recursive
function.

5. For any possible parameter value, will the recursive calls eventually reach the
base case?

We designed recursive algorithms for about a dozen different problems in this chapter
to illustrate how widely recursion can be applied. But learning how to solve problems
recursively definitely takes time and practice. The more problems you solve, the
more comfortable you will become!

Notes for further discovery
The first epigraph at the beginning of this chapter is from the first page of Benôıt
Mandelbrot’s The Fractal Geometry of Nature [38]. The second is from Shakespeare’s
Hamlet, Act II, Scene II.

Aristid Lindenmayer’s work was described in a now freely available book titled, The
Algorithmic Beauty of Plants [52], published in 1990.

*9.8 PROJECTS
This section is available on the book website.
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Organizing Data

Search is an unsolved problem. We have a good 90 to 95% of the solution, but there is a lot
to go in the remaining 10%.

Marissa Mayer, President and CEO of Yahoo!
Los Angeles Times interview (2008)

In this age of “big data,” we take search algorithms for granted. Without web
search algorithms that sift through billions of pages in a fraction of a second, the

web would be practically useless. Similarly, large data repositories, such as those
maintained by the U.S. Geological Survey (USGS) and the National Institutes of
Health (NIH), would be useless without the ability to search for specific information.
Even the operating systems on our personal computers now supply integrated search
capabilities to help us navigate our increasingly large collections of files.

To enable fast access to these data, they must be organized in an efficient data
structure . Hidden data structures in the implementations of the list and dictionary
abstract data types enable their methods to access and modify their contents quickly.
(The data structure behind a dictionary was briefly explained in Tangent 7.2.) In
this chapter, we will explore one of the simplest ways to organize data—maintaining
it in a sorted list—and the benefits this can provide. We will begin by developing a
significantly faster search algorithm that can take advantage of knowing that the
data is sorted. Then we will design three algorithms to sort data in a list, effectively
creating a sorted list data structure. If you continue to study computer science, you
can look forward to seeing many more sophisticated data structures in the future
that enable a wide variety of efficient algorithms.

407
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10.1 BINARY SEARCH
The spelling checkers that are built into most word processing programs work by
searching through a list of English words, seeking a match. If the word is found, it
is considered to be spelled correctly. Otherwise, it is assumed to be a misspelling.
These word lists usually contain about a quarter million entries. If the words in
the list are in no particular order, then we have no choice but to search through it
one item at a time from the beginning, until either we happen to find the word we
seek or we reach the end. We previously encountered this algorithm, called a linear
search (or sequential search) because it searches in a linear fashion from beginning
to end, and has linear time complexity.

Now let’s consider the improvements we can make if the word list has been sorted in
alphabetical order, as they always are. If we use a linear search on a sorted list, we
know that we can abandon the search if we reach a word that is alphabetically after
the word we seek. But we can do even better. Think about how we would search a
physical, bound dictionary for the word “espresso.” Since “E” is in the first half of
the alphabet, we might begin by opening the book to a point about 1/4 of the way
through. Suppose that, upon doing so, we find ourselves on a page containing words
beginning with the letter “G.” We would then flip backwards several pages, perhaps
finding ourselves on a page on which the last word is ”eagle.” Next, we would flip a
few pages forward, and so on, continuing to hone in on “espresso” until we find it.

Reflection 10.1 How can we apply this idea to searching a sorted list?

We can search a sorted list in a similar way, except that we usually do not know
much about the distribution of the list’s contents, so it is hard to make that first
guess about where to start. In this case, the best strategy is to start in the middle.
After comparing the target item to the middle item, we continue searching in the
half of the list that must contain the target alphabetically. Because we are effectively
dividing the list into two halves in each step, this algorithm is called binary search.

For example, suppose we wanted to search for the number 70 in the following sorted
list of numbers. (We will use numbers instead of words in our example to save space.)

data[index]:

index: 0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

left rightmid

As we hone in on our target, we will update two variables named left and right

to keep track of the first and last indices of the sublist that we are still considering.
In addition, we will maintain a variable named mid that is assigned to the index of
the middle value of this sublist. (When there are two middle values, we choose the
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Tangent 10.1: Databases

A database is a structured file (or set of files) that contains a large amount of searchable
data. The most common type of database, called a relational database, stores its
data in tables. Each row in a table has a unique key that can be used to search for that
row. For example, the tables below represent a small portion of the earthquake data
that we worked with in Section 7.4. The key in each table is underlined.

Earthquakes Networks

QuakeID Latitude Longitude Mag NetID NetID NetName

nc72076126 40.1333 -123.863 1.8 NC AK Alaska Regional

ak10812068 59.8905 -151.2392 2.5 AK CI Southern California

nc72076101 37.3242 -122.1015 1.8 NC NC Northern California

ci11369570 34.3278 -116.4663 1.2 CI US US National

ci11369562 35.0418 -118.3227 1.4 CI UW Pacific Northwest

ci11369546 32.0487 -115.0075 3.2 CI

The table on the left contains information about individual earthquakes, each of which
is identified with a QuakeID. The last column in the left table contains a two-letter
NetID that identifies the preferred source of information about that earthquake. The
table on the right contains the names associated with each NetID.

Relational databases are queried using a programming language called SQL. A simple
SQL query looks like this:

select Mag from Earthquakes where QuakeID = 'nc72076101'

This query is asking for the magnitude (Mag), from the Earthquakes table, of the
earthquake with QuakeID nc72076101. The response to this query would be the value
1.8. Searching a table quickly for a particular key is facilitated by an index. An index
is data structure that maps keys to rows in a table (similar to a Python dictionary).
The keys in the index can be maintained in sorted order so that any key, and hence
any row, can be found quickly using a binary search. (But database indices are more
commonly maintained in a hash table or a specialized data structure called a B-tree.)

leftmost one.) In each step, we will compare the target item to the item at index mid.
If the target is equal to this middle item, we return mid. Otherwise, we either set
right to be mid - 1 (to hone in on the left sublist) or we set left to be mid + 1

(to hone in on the right sublist).

In the list above, we start by comparing the item at index mid (60) to our target
item (70). Then, because 70 > 60, we decide to narrow our search to the second half
of the list. To do this, we assign left to mid + 1, which is the index of the item
immediately after the middle item. In this case, we assign left to 5 + 1 = 6, as
shown below.
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0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

left rightmid

Then we update mid to be the index of the middle item in this sublist between left

and right, in this case, 8. Next, since 70 is less than the new middle value, 90, we
discard the second half of the sublist by assigning right to mid - 1, in this case,
8 - 1 = 7, as shown below.

0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

left right
mid

Then we update mid to be 6, the index of the “middle” item in this short sublist.
Finally, since the item at index mid is the one we seek, we return the value of mid.

Reflection 10.2 What would have happened if we were looking for a non-existent number
like 72 instead?

If we were looking for 72 instead of 70, all of the steps up to this point would have
been the same, except that when we looked at the middle item in the last step, it
would not have been equal to our target. Therefore, picking up from where we left
off, we would notice that 72 is greater than our middle item 70, so we update left

to be the index after mid, as shown below.

left right
mid

0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

Now, since left and right are both equal to 7, mid must be assigned to 7 as well.
Then, since 72 is less than the middle item, 80, we continue to blindly follow the
algorithm by assigning right to be one less than mid.
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leftright

0 1 2 3 4 5 6

20 6030 7010 40 50

7 8 9 10 11

11080 12090 100

At this point, since right is to the left of left (i.e., left > right), the sublist
framed by left and right is empty! Therefore, 72 must not be in the list, and we
return −1.

This description of the binary search algorithm can be translated into a Python
function in a very straightforward way:

def binarySearch(keys, target):
"""Find the index of target in a sorted list of keys.

Parameters:
keys: a sorted list of keys
target: a key for which to search

Return value: an index of target in keys or -1 if not found
"""

left = 0
right = len(keys) - 1
while left <= right:

mid = (left + right) // 2
if target < keys[mid]:

right = mid - 1
elif target > keys[mid]:

left = mid + 1
else:

return mid
return -1

Notice that we have named our list parameter keys (instead of the usual data)
because, in real databases (see Tangent 10.1), we typically try to match a unique key
associated with the item we are seeking. For example, if we search for “Cumberbatch”
in a phone directory, we are looking for a directory entry in which the last name
(the key) matches “Cumberbatch;” we are not expecting the entire directory entry
to match “Cumberbatch.” When the search term is found, we return the entire
directory entry that corresponds to this key. In our function, we return the index
at which the key was found which, if we had data associated with the key, might
provide us with enough information to find it in an associated data structure. We
will look at an example of this in Section 10.2.
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Worst case
List length comparisons

n c

1 1
2 2
4 3
8 4
16 5
⋮ ⋮

210 = 1,024 11
⋮ ⋮

220 ≈ 1 million 21
⋮ ⋮

230 ≈ 1 billion 31

Table 10.1 The worst case number of comparisons in a binary search.

Reflection 10.3 Write a main function that calls binarySearch with the list that we
used in our example. Search for 70 and 72.

Reflection 10.4 Insert a statement in the binarySearch function, after mid is assigned
its value, that prints the values of left, right, and mid. Then search for more target
values. Do you see why mid is assigned to the printed values?

Efficiency of iterative binary search
How much better is binary search than linear search? When we analyzed the linear
search in Section 6.7, we counted the worst case number of comparisons between the
target and a list item, so let’s perform the same analysis for binary search. Since the
binary search contains a while loop, we will need to think more carefully this time
about when the worst case happens.

Reflection 10.5 Under what circumstances will the binary search algorithm perform the
most comparisons between the target and a list item?

In the worst case, the while loop will never execute return mid, instead iterating
until left > right, rendering the while loop condition False. This happens when
target is not found in the list.

Suppose we have a very short list with length n = 4. In the worst case, we first look
at the item in the middle of this list, and then are faced with searching a sublist
with length 2. Next, we look at the middle item of this sublist and, upon not finding
the item, search a sublist of length 1. After one final comparison to this single item,
the algorithm will return -1. So we needed a total of 3 comparisons for a list of
length 4.

Reflection 10.6 Now what happens if we double the size of the list to n = 8?

After we compare the middle item in a list with length n = 8 to our target, we
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Figure 10.1 Execution times of linear search and binary search on small sorted lists.

are left with a sublist with length 4. We already know that a list with length 4
requires 3 comparisons in the worst case, so a list with length 8 must require 3+1 = 4
comparisons in the worst case. Similarly, a list with length 16 must require only one
more comparison than a list with length 8, for a total of 5. And so on. This pattern
is summarized in Table 10.1. Notice that a list with over a billion items requires at
most 31 comparisons!

Reflection 10.7 In general, for list of length n, how many comparisons are necessary in
the worst case?

In each row of the table, the length of the list (n) is 2 raised to the power of 1 less
than the number of comparisons (c), or

n = 2c−1.

Therefore, for a list of size n, the binary search requires

c = log2 n + 1

comparisons in the worst case. So binary search is a logarithmic-time algorithm
or, equivalently, an algorithm with O(logn) time complexity. Since the time com-
plexity of linear search is O(n), this means that linear search is exponentially slower
than binary search.

This is a degree of speed-up that is only possible through algorithmic refinement;
a faster computer simply cannot have this kind of impact. Figure 10.1 shows a
comparison of actual running times of both search algorithms on some small lists.
The time required by binary search is barely discernible as the red line parallel to
the x-axis. But the real power of binary search becomes evident on very long lists.
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As suggested by Table 10.1, a binary search takes almost no time at all, even on
huge lists, whereas a linear search, which must potentially examine every item, can
take a very long time.

A spelling checker
Now let’s apply our binary search to the spelling checker problem. We will write a
program that reads an alphabetized word list, and then allows someone to repeatedly
enter a word to see if it is spelled correctly.

A list of English words can be found on computers running Mac OS X or Linux in
the file /usr/share/dict/words, or one can be downloaded from the book website.
This list is already sorted if you consider an uppercase letter to be equivalent to its
lowercase counterpart. (For example, “academy” usually directly precedes “Acadia”
in this file.) However, as we saw in Chapter 6, Python considers uppercase letters
to come before lowercase letters, so we actually still need to sort the list to have it
match Python’s definition of “sorted.” For now, we can use the sort method; in the
coming sections, we will develop our own sorting algorithms.

The following function implements our spelling checker, using the binarySearch

function (highlighted).

def spellcheck():
"""Repeatedly ask for a word to spell-check and print the result.

Parameters: none

Return value: None
"""

dictFile = open('/usr/share/dict/words', 'r', encoding = 'utf-8')
dictionaryWords = [ ]
for word in dictFile:

dictionaryWords.append(word[:-1]) # remove newline before append
dictFile.close()
dictionaryWords.sort()

word = input('Enter a word to spell-check (q to quit): ')
while word != 'q':

index = binarySearch(dictionaryWords, word) # search for word
if index != -1: # word was found

print(word, 'is spelled correctly.')
else: # word was not found

print(word, 'is not spelled correctly.')
print()

word = input('Enter a word to spell-check (q to quit): ')

The function begins by opening the word list file and reading each word (one word
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per line) into a list. After all of the words have been read, we sort the list. Then a
while loop repeatedly prompts for a word until the letter q is entered. Notice that
we ask for a word before the while loop to initialize the value of word, and then
again at the bottom of the loop to set up for the next iteration. In each iteration,
we call the binary search function to check if the word is contained in the list. If the
word is found (index != -1), we assume it is spelled correctly.

Reflection 10.8 Combine the spellcheck function with the binarySearch function in
a program. Run the program to try it out.

Recursive binary search
You may have noticed that the binary search algorithm displays a high degree of
self-similarity. In each step, the problem is reduced to solving a subproblem involving
half of the original list. In particular, the problem of searching for a key between
indices left and right is reduced to the subproblem of searching between left and
mid - 1, or the subproblem of searching between mid + 1 and right. Therefore,
binary search is a natural candidate for a recursive algorithm. In the following
function, we add left and right as parameters because they define the subproblem
that is being solved.

def binarySearch(keys, target, left, right):
"""Recursively find the index of target in a sorted list of keys.

Parameters:
keys: a sorted list of keys
target: a value for which to search

Return value: an index of target in keys or -1 if not found
"""

if left > right: # base case 1: not found
return -1

mid = (left + right) // 2
if target == keys[mid]: # base case 2: found

return mid

if target < keys[mid]: # recursive cases
return binarySearch(keys, target, left, mid - 1) # left half

else:
return binarySearch(keys, target, mid + 1, right) # right half

Like the recursive linear search from Section 9.4, this function needs two base cases.
In the first base case, when the list is empty (left > right), we return -1. In the
second base case, if target == keys[mid], we return mid. If neither of these cases
holds, we solve one of the two subproblems recursively. If the target is less than the
middle item, we recursively call the binary search with right set to mid - 1. Or, if
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the target is greater than the middle item, we recursively call the binary search
with left set to mid + 1.

Reflection 10.9 Repeat Reflections 10.3 and 10.4 with the recursive binary search function.
Does the recursive version “look at” the same values of mid?

*Efficiency of recursive binary search
Like the iterative binary search, this algorithm has logarithmic, or O(logn), time
complexity. But, as with the recursive linear search, we have to derive this result
differently using a recurrence relation. Let T (n) denote the worst case number of
comparisons between the target and a list item in a binary search when the length of
the list is n. In the recursive binarySearch function, there are two such comparisons
before reaching a recursive function call. As we did in Section 9.4, we will simply
represent the number of comparisons before each recursive call with the constant c.
When n = 0, we reach a base case with no recursive calls, so T (0) = c.

Reflection 10.10 How many more comparisons are there in a recursive call to
binarySearch?

Since each recursive call divides the size of the list under consideration by (about)
half, the size of the list we are passing into each recursive call is (about) n/2.
Therefore, the number of comparisons in each recursive call must be T (n/2). The
total number of comparisons is then

T (n) = T (n/2) + c.

Now we can use the same substitution method that we used with recursive linear
search to arrive at a closed form expression in terms of n. First, since T (n) =
T (n/2) + c, we can substitute T (n) with T (n/2) + c:

T(n/2) c+

T(n)

Now we need to replace T (n/2) with something. Notice that T (n/2) is just T (n)
with n/2 substituted for n. Therefore, using the definition of T (n) above,

T (n/2) = T (n/2/2) + c = T (n/4) + c.

Similarly,
T (n/4) = T (n/4/2) + c = T (n/8) + c

and
T (n/8) = T (n/8/2) + c = T (n/16) + c.

This sequence of substitutions is illustrated in Figure 10.2. Notice that the denomi-
nator under the n at each step is a power of 2 whose exponent is the multiplier in
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T(n/2) c+

T(n/4) c+

T(n/8) c+

T(n)

T(1)

⋰

c+

c

c

2c

3c

(log2 n)c

(log2 n + 1)c

⋮

T(n/2i) c+ ic

⋰ ⋮

T(0) c+

(log2 n + 2)c

Figure 10.2 An illustration of how to derive a closed form for the recurrence relation

T (n) = T (n/2) + c.

front of the accumulated c’s at that step. In other words, for each denominator 2i,
the accumulated value on the right is i ⋅ c. When we finally reach T (1) = T (n/n),
the denominator has become n = 2log2 n, so i = log2 n and the total on the right must
be (log2 n)c. Finally, we know that T (0) = c, so the total number of comparisons is

T (n) = (log2 n + 2) c.

Therefore, as expected, the recursive binary search is a O(logn) algorithm.

Exercises
10.1.1* Modify both of the binary search functions so that, when the target is not found,

the functions also print the values in keys that would have been on either side
of the target if it were in the list.
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10.1.2* When the value of target is less than keys[mid] in the binary search algorithms,
they next search the sublist between indices left and mid - 1. Would the
algorithms still work if they searched between left and mid instead? Why or
why not?

10.1.3. Similar to the previous exercise, suppose the binary search algorithms next
searched the sublist between mid and right (instead of between mid + 1 and
right) when the target is greater than keys[mid]. Would the algorithms still
work? Why or why not?

10.1.4. Write a function that takes the name of a text file as a parameter and returns
the number of misspelled words in the file. Use the wordTokens function from
Section 6.1 to get the list of words in the text file.

10.1.5. Write a function that takes three parameters—minLength, maxLength, and
step—and produces a plot like Figure 10.1 comparing the worst case run-
ning times of binary search and linear search on lists with length minLength,
minLength + step, minLength + 2 * step, . . . , maxLength. Use a slice of the
list derived from list(range(maxLength)) as the sorted list for each length.
To produce the worst case behavior of each algorithm, search for an item that
is not in the list (e.g., −1).

10.1.6. The function below plays a guessing game against the pseudorandom number
generator. What is the worst case number of guesses necessary for the function
to win the game for any value of n, where n is a power of 2? Explain your
answer.

import random
def guessingGame(n):

secret = random.randrange(1, n + 1)
left = 1
right = n
guessCount = 1
guess = (left + right) // 2
while guess != secret:

if guess > secret:
right = guess - 1

else:
left = guess + 1

guessCount = guessCount + 1
guess = (left + right) // 2

return guessCount

10.2 SELECTION SORT
Sorting is a well-studied problem, and a wide variety of sorting algorithms have
been designed, including the one used by the familiar sort method of the list class.
In this section and the two that follow, we will develop and compare three other
common algorithms, named selection sort, insertion sort, and merge sort.
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Reflection 10.11 Before you read further, think about how you would sort a list of items
(names, numbers, books, socks, etc.) in some desired order. Write down your algorithm in
pseudocode.

The selection sort algorithm is so called because, in each step, it selects the next
smallest value in the list and places it in its proper sorted position by swapping
it with whatever is currently there. For example, consider the list of numbers
[50, 30, 40, 20, 10, 70, 60]. To sort this list in ascending order, the selection
sort algorithm first finds the smallest number, 10. We want to place 10 in the first
position in the list, so we swap it with the number that is currently in that position,
50, resulting in the modified list

[10, 30, 40, 20, 50, 70, 60]

Next, we find the second smallest number, 20, and swap it with the number in the
second position, 30:

[10, 20, 40, 30, 50, 70, 60]

Then we find the third smallest number, 30, and swap it with the number in the
third position, 40:

[10, 20, 30, 40, 50, 70, 60]

Next, we find the fourth smallest number, 40. But since 40 is already in the fourth
position, no swap is necessary. This process continues until we reach the end of the
list.

Reflection 10.12 Work through the remaining steps in the selection sort algorithm. What
numbers are swapped in each step?

Implementing selection sort
Let’s look at how we can implement this algorithm, using a more detailed represen-
tation of this list which, as before, we will name keys:

index: 

keys[index]:

1 2 3 4 5 6

30 7040 6050 20 10

0

To begin, we want to search for the smallest value in the list, and swap it with the
value at index 0. We have actually already implemented both parts of this step. In
Exercise 7.2.5, you may have written a function

swap(data, i, j)

that swaps the two values with indices i and j in the list data. To use this function
to swap items, we will need the index of the smallest value. We already did this back
on page 289 in the minDay function:

minIndex = 0
for index in range(1, len(keys)):

if keys[index] < keys[minIndex]:
minIndex = index
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Once we have the index of the minimum value in minIndex, we can swap it with
the item at index 0 with:

if minIndex != 0:
swap(keys, 0, minIndex)

Reflection 10.13 Why do we check if minIndex != 0 before calling the swap function?

In our example, these steps will find the smallest value, 10, at index 4, and then call
swap(keys, 0, 4). We first check if minIndex != 0 so we do not needlessly swap
the value in position 0 with itself. This swap results in the following modified list:

30 7040 6010 20 50

1 2 3 4 5 6index: 

keys[index]:

0

In the next step, we need to do the same thing, but for the second smallest value.

Reflection 10.14 How we do we find the second smallest value in the list?

Notice that, now that the smallest value is “out of the way” at the front of the
list, the second smallest value in keys must be the smallest value in keys[1:].
Therefore, we can use exactly the same process as above, but on keys[1:] instead.
This requires only four small changes in the code, marked in red below.

minIndex = 1
for index in range(2, n):

if keys[index] < keys[minIndex]:
minIndex = index

if minIndex != 1:
swap(keys, 1, minIndex)

Instead of initializing minIndex to 0 and starting the for loop at 1, we initialize
minIndex to 1 and start the for loop at 2. Then we swap the smallest value into
position 1 instead of 0. In our example list, this will find the smallest value in
keys[1:], 20, at index 3. Then it will call swap(keys, 1, 3), resulting in:

1 2 3 4 5 6

20 7040 6010 30 50

0index: 

keys[index]:

Similarly, the next step is to find the index of the smallest value starting at index 2,
and then swap it with the value in index 2:

minIndex = 2
for index in range(3, n):

if keys[index] < keys[minIndex]:
minIndex = index

if minIndex != 2:
swap(keys, 2, minIndex)
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In our example list, this will find the smallest value in keys[2:], 30, at index 3.
Then it will call swap(keys, 2, 3), resulting in:

1 2 3 4 5 6

20 7030 6010 40 50

index: 

keys[index]:

0

We continue by repeating this sequence of steps, with increasing values of the numbers
in red, until we reach the end of the list.

To implement this algorithm, we need to situate the loop above in another loop that
iterates over the increasing values in red. We can do this by replacing the initial
value assigned to minIndex in red with a variable named start:

minIndex = start
for index in range(start + 1, n):

if keys[index] < keys[minIndex]:
minIndex = index

if minIndex != start:
swap(keys, start, minIndex)

Then we place these steps inside a for loop that has start take on all of the integers
from 0 to len(keys) - 2:

1 def selectionSort(keys):
2 """Sort a list in ascending order using the selection sort algorithm.

3 Parameter:
4 keys: a list of keys

5 Return value: None
6 """

7 n = len(keys)
8 for start in range(n - 1):
9 minIndex = start

10 for index in range(start + 1, n):
11 if keys[index] < keys[minIndex]:
12 minIndex = index
13 if minIndex != start:
14 swap(keys, start, minIndex)

Reflection 10.15 In the outer for loop of the selectionSort function, why is the last
value of start equal to n - 2 instead of n - 1? Think about what steps would be
executed if start were assigned the value n - 1 in the last iteration of the loop.

Reflection 10.16 What would happen if we called selectionSort with the list
['dog', 'cat', 'Monkey', 'Zebra', 'platypus', 'armadillo']? Would it work? If
so, in what order would the words be sorted?
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Figure 10.3 Execution times of selection sort and the list sort method on small

randomly shuffled lists.

Because the comparison operators are defined for both numbers and strings, we
can use our selectionSort function to sort either kind of data. For example, call
selectionSort on each of the following lists, and then print the results. (Remember
to incorporate the swap function from Exercise 7.2.5.)

numbers = [50, 30, 40, 20, 10, 70, 60]
animals = ['dog', 'cat', 'Monkey', 'Zebra', 'platypus', 'armadillo']
heights = [7.80, 6.42, 8.64, 7.83, 7.75, 8.99, 9.25, 8.95]

Efficiency of selection sort
Next, let’s look at the time complexity of the selection sort algorithm. We can
derive the asymptotic time complexity by counting the number of times the most
frequently executed elementary step executes. In the selectionSort function, this
is the comparison in the if statement on line 11. Since line 11 is in the body of the
inner for loop that starts on line 10, it will be executed in every iteration of that
loop. When start is 0, the inner for loop on line 10 runs from 1 to n− 1, for a total
of n− 1 iterations. So line 11 is also executed n− 1 times. Next, when start is 1, the
inner for loop runs from 2 to n − 1, a total of n − 2 iterations, so line 11 is executed
n − 2 times. With each new value of start, there is one less iteration of the inner
for loop. Therefore, the total number of times that line 11 is executed is

(n − 1) + (n − 2) + (n − 3) +⋯
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Where does this sum stop? To find out, we look at the last iteration of the outer
for loop, when start is n - 2. In this case, the inner for loop runs from n - 1 to
n - 1, for only one iteration. So the total number of steps is

(n − 1) + (n − 2) + (n − 3) +⋯ + 3 + 2 + 1.

We have encountered this sum a few times before (see Tangent 4.1):

(n − 1) + (n − 2) + (n − 3) +⋯ + 3 + 2 + 1 = n(n − 1)
2

= 1

2
n2 − 1

2
n.

Ignoring the 1/2 in front of n2 and the low order term (1/2)n, we find that this
expression is asymptotically O(n2). So selection sort has quadratic time complexity.

Figure 10.3 shows the results of an experiment comparing the running time of
selection sort to the sort method of the list class. (Exercise 10.3.3 asks you to
replicate this experiment.) The parabolic blue curve in Figure 10.3 represents the
quadratic time complexity of the selection sort algorithm. The red curve at the
bottom of Figure 10.3 represents the running time of the sort method. Although
this plot compares the algorithms with very small lists, on which both algorithms
are very fast, we see a marked difference in the growth rates of the execution times.
We will see why the sort method is so much faster in Section 10.4.

Querying data
Suppose we want to write a program that allows someone to query the USGS
earthquake data that we worked with in Section 7.4. Although we did not use them
then, each earthquake was identified by a unique key such as ak10811825. The first
two characters identify the monitoring network (ak represents the Alaska Regional
Network) and the last eight digits are a unique ID assigned by the network. Our
program will search for a given key, and return the associated latitude, longitude,
magnitude, and depth. This associated data is sometimes called satellite data
because it revolves around the key.

To use the efficient binary search algorithm in our program, we need to first sort
the data by its keys. When we read this data into memory, we can either read it
into parallel lists, as we did in Section 7.4, or we can read it into a table (i.e., a list
of lists), as we did in Section 8.1. In this section, we will modify our selection sort
algorithm to handle the first option. We will leave the second option as an exercise.

We will read the data into two lists named ids and data, which are a list of keys and
a list of tuples, respectively. Each tuple in the second list will contain the satellite
data for one earthquake. By design, these two lists will be parallel in the sense
that the satellite data in data[index] belongs to the earthquake with the key in
ids[index]. When we sort the earthquakes’ keys, we will need to make sure that
their associations with the satellite data are maintained. In other words, if, during
the sort of the list ids, we swap the values in ids[9] and ids[4], we also need to
swap data[9] and data[4].
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Modifying our selection sort algorithm in this way is actually quite simple. First, we
will add a second parameter named data that contains the satellite data correspond-
ing to keys. The function will still make all of its sorting decisions based on the
list of keys. But when we swap two values in keys, we also swap the corresponding
values in data. The modified function looks like this (with changes in red):

def selectionSort2(keys, data):
"""Sort parallel lists of keys and data values in ascending

order using the selection sort algorithm.

Parameters:
keys: a list of keys
data: a list of data values corresponding to the keys

Return value: None
"""

n = len(keys)
for start in range(n - 1):

minIndex = start
for index in range(start + 1, n):

if keys[index] < keys[minIndex]:
minIndex = index

swap(keys, start, minIndex)
swap(data, start, minIndex)

Once we have the sorted parallel lists ids and data, we can use binary search to
retrieve the index of a particular ID in the list ids, and then use that index to
retrieve the corresponding satellite data from the list data. The following function
implements this idea by repeatedly prompting for an earthquake ID.

def queryQuakes(ids, data):
""" (docstring omitted) """

key = input('Earthquake ID (q to quit): ')
while key != 'q':

index = binarySearch(ids, key, 0, len(ids) - 1)
if index >= 0:

print('Location: ' + str(data[index][:2]) + '\n' +
'Magnitude: ' + str(data[index][3]) + '\n' +
'Depth: ' + str(data[index][2]) + '\n')

else:
print('An earthquake with that ID was not found.')

key = input('Earthquake ID (q to quit): ')

The main function below reads the earthquakes from the file (left as an exercise),
sorts the data with our selection sort algorithm for parallel lists, and then calls
queryQuakes.
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def main():
ids, data = readQuakes() # left as an exercise
selectionSort2(ids, data)
queryQuakes(ids, data)

Exercises
10.2.1. Can you find a list of length 5 that requires more comparisons in selectionSort

(on line 11) than another list of length 5? In general, with lists of length n, is
there a worst case list and a best case list with respect to comparisons? How
many comparisons do the best case and worst case lists require?

10.2.2. Now consider the number of swaps. Can you find a list of length 5 that requires
more swaps (on line 14) than another list of length 5? In general, with lists of
length n, is there a worst case list and a best case list with respect to swaps?
How many swaps do the best case and worst case lists require?

10.2.3* The inner for loop of the selection sort function can be eliminated by using two
built-in Python functions instead, as shown in the following alternative selection
sort implementation.

def selectionSortAlt(keys):
n = len(keys)
for start in range(n - 1):

minimum = min(keys[start:])
minIndex = start + keys[start:].index(minimum)
if minIndex != start:

swap(keys, start, minIndex)

Is this function more or less efficient than the selectionSort function we
developed? Explain.

10.2.4. Suppose we already have a list that is sorted in ascending order, and want to
insert new values into it. Write a function that inserts an item into a sorted list,
maintaining the sorted order, without re-sorting the list.

10.2.5* Write the function

readQuakes()

that is needed by the program at the end of this section. The function should read
earthquake IDs and earthquake satellite data, consisting of latitude, longitude,
depth and magnitude, from the data file on the web at

http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.csv

and return two parallel lists, as described on page 423. The satellite data for
each earthquake should be stored as a tuple of floating point values. For example,
the satellite data for a earthquake that occurred at 19.5223 degrees latitude and
-155.5753 degrees longitude with magnitude 1.1 and depth 13.6 km should be
stored in the tuple (19.5223, -155.5753, 1.1, 13.6).

Use this function to complete a working version of the program on page 425.
(Remember to incorporate the recursive binary search and the swap function
from Exercise 7.2.5.) Look at the above URL in a web browser to find some
earthquake IDs for which to search, or do the next exercise to have your program
print a list.
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10.2.6. Add to the queryQuakes function on page 424 the option to print an alphabetical
list of all earthquakes, in response to typing list for the earthquake ID. The
output should look something like this:

Earthquake ID (q to quit): ci37281696

Location: (33.4436667, -116.6743333)

Magnitude: 0.54

Depth: 13.69

Earthquake ID (q to quit): list

ID Location Magnitude Depth

---------- ---------------------- --------- -----

ak11406701 (63.2397, -151.4564) 5.5 1.3

ak11406705 (58.9801, -152.9252) 69.2 2.3

ak11406708 (59.7555, -152.6543) 80.0 1.9

...

uw60913561 (41.8655, -119.6957) 0.2 2.4

uw60913616 (44.2917, -122.6705) 0.0 1.3

10.2.7. An alternative to storing the earthquake data in two parallel lists is to store it
in one table (a list of lists). For example, the beginning of a table containing
the earthquakes shown in the previous exercise would look like this:

[['ak11406701', 63.2397, -151.4564, 5.5, 1.3],
['ak11406705', 58.9801, -152.9252, 69.2, 2.3],
...

]

Rewrite the readQuakes, selectionSort, binarySearch, and queryQuakes

functions so that they work with the earthquake data stored in this way instead.
Your functions should assume that the key for each earthquake is in column
0. Combine your functions into a working program that is driven by a main

function like the one on page 425.

10.2.8. The Sieve of Eratosthenes is a simple algorithm for generating prime numbers
that has a structure that is similar to the nested loops in selection sort. The
algorithm begins by initializing a list of n Boolean values named prime as
follows. (In this case, n = 12.)

prime: F F T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11

At the end of the algorithm, we want prime[index] to be False if index is
not prime and True if index is prime. The algorithm continues by initializing a
loop index variable to 2 (indicated by the arrow below) and then setting the
list value of every multiple of 2 to be False.

F F T T F T F T F T F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
Next, the loop index variable is incremented to 3 and, since prime[3] is True,
the list value of every multiple of 3 is set to be False.
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F F T T F T F T F F F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
Next, the loop index variable is incremented to 4. Since prime[4] is False, we
do not need to set any of its multiples to False, so we do not do anything.

F F T T F T F T F F F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
This process continues with the loop index variable set to 5:

F F T T F T F T F F F T

0 1 2 3 4 5 6 7 8 9 10 11

↑
And so on. How long must the algorithm continue to increment index before
it has marked all non-prime numbers? Once it is done filling in the list, the
algorithm iterates over it one more time to build the list of prime numbers, in
this case, [2, 3, 5, 7, 11]. Write a function that implements this algorithm
to return a list of all prime numbers less than or equal to a parameter n.

10.3 INSERTION SORT
Our second sorting algorithm, named insertion sort , is familiar to anyone who has
sorted a hand of playing cards. Working left to right through our hand, the insertion
sort algorithm inserts each card into its proper place with respect to the previously
arranged cards. For example, consider our previous list, arranged as a hand of cards:

50
30

40 20 10
70

60

We start with the second card from the left, 30, and decide whether it should stay
where it is or be inserted to the left of the first card. In this case, it should be
inserted to the left of 50, resulting in the following slightly modified ordering:
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30
50

40 20 10
70

60

Then we consider the third card from the left, 40. We see that 40 should be inserted
between 30 and 50, resulting in the following order.

30
40

50 20 10
70

60

Next, we consider 20, and see that it should be inserted all the way to the left, before
30.

20
30

40 50 10
70

60

This process continues with 10, 70, and 60, at which time the hand will be sorted.

Implementing insertion sort
To implement this algorithm, we need to repeatedly find the correct location to
insert an item among the items to the left, assuming that the items to the left are
already sorted. Let’s name the index of the item that we wish to insert insertIndex
and the item itself itemToInsert. In other words, we assign

itemToInsert = keys[insertIndex]

To illustrate, suppose that insertIndex is 4 (and itemToInsert is 10), as shown
below:
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1 2 3 4 5 6

30 7040 6020 50 10

insertIndex

itemToInsert

index: 

keys[index]:

0

We need to compare itemToInsert to each of the items to the left, first at index
insertIndex - 1, then at insertIndex - 2, insertIndex - 3, etc. When we
come to an item that is less than or equal to itemToInsert or we reach the beginning
of the list, we know that we have found the proper location for the item. This process
can be expressed with a while loop:

index = insertIndex - 1
while index >= 0 and keys[index] > itemToInsert:

index = index - 1

The variable index tracks which item we are currently comparing to itemToInsert.
The value of index is decremented while it is still at least zero and the item at
position index is still greater than itemToInsert. When the while loop ends, it is
because either index has reached -1 or keys[index] <= itemToInsert. In either
case, we want to insert itemToInsert into position index + 1. In the example
above, we would reach the beginning of the list, so we want to insert itemToInsert
into position index + 1 = 0.

To actually insert itemToInsert in its correct position, we need to delete
itemToInsert from its current position, and insert it into position index + 1.
One option is to use pop and insert:

keys.pop(insertIndex)
keys.insert(index + 1, itemToInsert)

In the insertion sort algorithm, we want to repeat this process for each value of
insertIndex, starting at 1, so we enclose these steps in a for loop:

def insertionSort_Draft(keys):
""" (docstring omitted) """

n = len(keys)
for insertIndex in range(1, n):

itemToInsert = keys[insertIndex]
index = insertIndex - 1
while index >= 0 and keys[index] > itemToInsert:

index = index - 1
keys.pop(insertIndex)
keys.insert(index + 1, itemToInsert)
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Although this function is correct, it performs more work than necessary. To see
why, think about how the pop and insert methods must work, based on the
picture of the list on page 429. First, to delete (pop) itemToInsert, which is at
position insertIndex, all of the items to the right, from position insertIndex

+ 1 to position n - 1, must be shifted one position to the left. Then, to insert
itemToInsert into position index + 1, all of the items to the right, from position
index + 2 to n - 1, must be shifted one position to the right. So the items from
position insertIndex + 1 to position n - 1 are shifted twice, only to end up back
where they started.

A more efficient algorithm only shifts those items that need to be shifted, and does
so while we are already iterating over them. The following modified algorithm does
just that.

1 def insertionSort(keys):
2 """ Sort a list in ascending order using the insertion sort algorithm.

3 Parameter:
4 keys: a list of keys to sort

5 Return value: None
6 """

7 n = len(keys)
8 for insertIndex in range(1, n):
9 itemToInsert = keys[insertIndex]

10 index = insertIndex - 1
11 while index >= 0 and keys[index] > itemToInsert:
12 keys[index + 1] = keys[index]
13 index = index - 1
14 keys[index + 1] = itemToInsert

The highlighted assignment statement on line 8 copies each item at position index

one position to the right. Therefore, when we get to the end of the loop, position
index + 1 is available to store itemToInsert.

Reflection 10.17 To get a better sense of how this works, carefully work through the
steps with the three remaining items to be inserted in the illustration on page 429.

Reflection 10.18 Write a main function that calls the insertionSort function to sort
the list from the beginning of this section: [50, 30, 40, 20, 10, 70, 60].

Efficiency of insertion sort
Is the insertion sort algorithm any more efficient than selection sort? To discover its
time complexity, we first need to identify the most frequently executed elementary
step(s). In this case, these appear to be the two assignment statements on lines
8–9 in the body of the while loop. However, the most frequently executed step is
actually the test of the while loop condition on line 7 because the condition of a
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Figure 10.4 Execution times of selection sort, insertion sort, and the sort method on

small randomly shuffled lists.

while loop is always tested when the loop is first reached, and again after each
iteration. Therefore, a while loop condition is always tested once more than the
body of the loop.

Reflection 10.19 What are the minimum and maximum numbers of times the while

loop condition is tested, for any particular value of insertIndex in the outer for loop?

In the best case, it is possible that the condition is only tested once. This will
happen if the item immediately to the left of itemToInsert is less than or equal
to itemToInsert. Since there are n − 1 iterations of the outer for loop, this means
that the while loop condition could be tested only n − 1 times in total for the
entire algorithm. So, in the best case, insertion sort has linear-time, or O(n), time
complexity.

In the worst case, the while loop will always iterate until index >= 0 is False,
i.e., until index == -1. This will happen if keys is initially in reverse order, mean-
ing that itemToInsert is always less than every item to its left. Since index

starts at insertIndex - 1, this will cause the while loop condition to be tested
insertIndex + 1 times. So in the first iteration of the outer for loop, when
insertIndex is 1, the while loop condition is tested insertIndex + 1 = 2 times.
When insertIndex is 2, it is tested 3 times. This continues until insertIndex is n
- 1, at which time, the while loop condition is tested n times. So the total number
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of iterations of the while loop is 2 + 3 + 4 +⋯ + n, which is the same as

(1 + 2 + 3 +⋯ + n) − 1 = n(n + 1)
2

− 1 = 1

2
n2 + 1

2
n − 1.

Ignoring the constants and slower growing terms, this means that insertion sort is
also a quadratic-time, or O(n2), algorithm in the worst case.

Figure 10.4 shows the actual running times of the sorting algorithms we have studied
so far on very small, randomly shuffled lists. We can see that the running time of
insertion sort is almost identical to that of selection sort in practice. Both algorithms
are still significantly slower than the built-in sort method. We will see why in the
next section.

Exercises
10.3.1. Give examples of 10-element lists that require the best case and worst case num-

bers of comparisons in an insertion sort. How many comparisons are necessary
to sort each of these lists?

10.3.2* Write a function that compares the time required to sort a long list of English
words using insertion sort to the time required by the sort method of the list
class. You can use the function time.time() function, which returns the number
of seconds that have elapsed since January 1, 1970, to record the time required
to execute each function. A list of English words can be found on computers
running Mac OS X or Linux in the file /usr/share/dict/words, or one can be
downloaded from the book website. This list is already sorted if you consider an
uppercase letter to be equivalent to its lowercase counterpart. However, since
Python considers uppercase letters to come before lowercase letters, the list is
not really sorted for our purposes. But it is “almost” sorted, which means that
insertion sort should perform relatively well. Be sure to make a separate copy
of the original list for each sorting algorithm.

How many seconds did each sort require? (Be patient; insertion sort could take
several minutes!) If you can be really patient, try timing selection sort as well.

10.3.3. Write a function

sortPlot(minLength, maxLength, step)

that produces a plot like Figure 10.4 comparing the running times of inser-
tion sort, selection sort, and the sort method of the list class on shuffled
lists with length minLength, minLength + step, minLength + 2 * step, . . . ,
maxLength. At the beginning of your function, produce a shuffled list with
length maxLength with

data = list(range(maxLength))
random.shuffle(data)

Then time each function for each list length using a new, unsorted slice of this
list.

10.3.4* A sorting algorithm is called stable if two items with the same value always
appear in the sorted list in the same order as they appeared in the original list.
Are selection sort and insertion sort stable sorts? Explain your answer in each
case.
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10.3.5. A third simple quadratic-time sorting algorithm is called bubble sort because it
repeatedly “bubbles” large items toward the end of the list by swapping each
item repeatedly with its neighbor to the right if it is larger than this neighbor.

For example, consider the short list [3, 2, 4, 1]. In the first pass over the
list, bubble sort compares pairs of items, starting from the left, and swaps them
if they are out of order. The illustration below depicts in red the items that
are compared in the first pass, and the arrows depict which of those pairs are
swapped because they are out of order.

3  2  4  1 2  3  4  1 2  3  4  1 2  3  1  4

At the end of the first pass, the largest item (in blue) is in its correct location.
We repeat the process, but stop before the last item.

2  3  1  4 2  1  3  42  3  1  4

After the second pass, we know that the two largest items (in blue) are in their
correct locations. On this short list, we make just one more pass.

1  2  3  42  1  3  4 1  2  3  4

After n−1 passes, we know that the last n−1 items are in their correct locations.
Therefore, the first item must be also, and we are done. Write a function that
implements this algorithm.

10.3.6. In the bubble sort algorithm, if no items are swapped during a pass over the
list, the list must be in sorted order. The bubble sort algorithm can be made
somewhat more efficient by detecting when this happens, and returning early if
it does. Write a function that implements this modified bubble sort algorithm.
(Hint: replace the outer for loop with a while loop and introduce a Boolean
variable that controls the while loop.)

10.3.7. Write a modified version of the insertion sort function that sorts two parallel
lists named keys and data, based on the values in keys, like the parallel list
version of selection sort on page 424.

10.4 EFFICIENT SORTING
In the preceding sections, we developed two sorting algorithms, but discovered that
they were both significantly less efficient than the built-in sort method. The sort

method is based on a recursive sorting algorithm called merge sort .1

Merge sort
As illustrated in Figure 10.5(a), merge sort is a divide and conquer algorithm, like
those from Section 9.5. Divide and conquer algorithms generally consist of three
steps:

1The Python sorting algorithm, called Timsort , has elements of both merge sort and insertion
sort. If you would like to learn more, visit http://bugs.python.org/file4451/timsort.txt.

http://bugs.python.org/file4451/timsort.txt
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keys[mid:]keys[:mid]

keys

keys

keys[:mid] keys[mid:]

sort sort

merge

(a)

[10, 20, 30, 40, 50, 60, 70]

[10, 20, 40, 70][30, 50, 60]

[60, 30, 50, 20, 10, 70, 40]

[60, 30, 50] [20, 10, 70, 40]

sort sort

merge

(b)

Figure 10.5 Illustrations of merge sort (a) in general and (b) on an example.

1. Divide the problem into two or more subproblems.

2. Conquer each subproblem recursively.

3. Combine the solutions to the subproblems into a solution for the original
problem.

Reflection 10.20 Based on Figure 10.5(a), what are the divide, conquer, and combine
steps in the merge sort algorithm?

The divide step of merge sort is very simple: just divide the list in half. The conquer
step recursively calls the merge sort algorithm on the two halves. The combine step
merges the two sorted halves into the final sorted list. This elegant algorithm is
implemented by the following function:

def mergeSort(keys):
"""Sort a list in ascending order using the merge sort algorithm.

Parameter:
keys: a list of keys to sort

Return value: None
"""

n = len(keys)
if n > 1:

mid = n // 2 # divide list in half
left = keys[:mid]
right = keys[mid:]

mergeSort(left) # recursively sort the left half
mergeSort(right) # recursively sort the right half
merge(left, right, keys) # merge sorted halves into keys
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[][10, 20, 40, 70][30, 50, 60](a)

[10, 20, 40, 70][30, 50, 60](b) [10]

[10, 20, 40, 70][30, 50, 60](c) [10, 20]

[10, 20, 40, 70][30, 50, 60](d) [10, 20, 30]

[10, 20, 40, 70][30, 50, 60](e) [10, 20, 30, 40]

[10, 20, 40, 70][30, 50, 60](f) [10, 20, 30, 40, 50]

[10, 20, 40, 70][30, 50, 60](g) [10, 20, 30, 40, 50, 60]

[10, 20, 30, 40, 50, 60, 70][10, 20, 40, 70][30, 50, 60](h)

left right merged

Figure 10.6 An illustration of the merge algorithm with example sublists.

Reflection 10.21 Where is the base case in this function?

The base case in this function is implicit; when n <= 1, the function just returns
because a list containing zero or one values is, of course, already sorted.

To flesh out mergeSort, we need to implement the merge function. Suppose we want
to sort the list [60, 30, 50, 20, 10, 70, 40]. As illustrated in Figure 10.5(b), the
merge sort algorithm first divides this list into the two sublists left = [60, 30, 50]

and right = [20, 10, 70, 40]. After recursively sorting each of these lists, we
have left = [30, 50, 60] and right = [10, 20, 40, 70]. Now we want to
efficiently merge these two sorted lists into one final sorted list. We could, of course,
concatenate the two lists and then call merge sort with them. But that would be far
too much work; we can do much better!

Because left and right are sorted, the first item in the merged list must be the
minimum of the first item in left and the first item in right. So we place this
minimum item into the first position in the merged list, and remove it from left

or right. The next item in the merged list must again be at the front of left or
right. This process continues until we run out of items in one of the lists.

This algorithm is illustrated in Figure 10.6. Rather than delete items from left and
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right as we append them to the merged list, we will maintain an index for each list
to remember the next item to consider. The red arrows in Figure 10.6 represent these
indices which, as shown in step (a), start at the left side of each list. In steps (a)–(b),
we compare the two front items in left and right, append the minimum (10 from
right) to the merged list, and advance the right index. In steps (b)–(c), we compare
the first item in left to the second item in right, again append the minimum (20
from right) to the merged list, and advance the right index. In steps (c)–(d), we
compare the first item in left to the third item in right, append the minimum
(this time, 30 from left), and advance the left index. This process continues until
one of the indices exceeds the length of its list. In the example, this happens after
step (g) when the left index is incremented past the end of left. At this point, we
extend the merged list with whatever is left over in right, as shown in step (h).

Reflection 10.22 Work through steps (a) through (h) on your own to make sure you
understand how the merge algorithm works.

This merge algorithm is implemented by the following function.

1 def merge(left, right, merged):
2 """Merge two sorted lists, left and right, into one sorted list
3 named merged.

4 Parameters:
5 left: a sorted list
6 right: another sorted list
7 merged: the merged sorted list

8 Return value: None
9 """

10 merged.clear() # clear contents of merged
11 leftIndex = 0 # index in left
12 rightIndex = 0 # index in right

13 while leftIndex < len(left) and rightIndex < len(right):
14 if left[leftIndex] <= right[rightIndex]: # left value is smaller
15 merged.append(left[leftIndex])
16 leftIndex = leftIndex + 1
17 else: # right value is smaller
18 merged.append(right[rightIndex])
19 rightIndex = rightIndex + 1

20 if leftIndex >= len(left): # remaining items are in right
21 merged.extend(right[rightIndex:])
22 else: # remaining items are in left
23 merged.extend(left[leftIndex:])

The merge function begins by clearing out the contents of the merged list and
initializing the indices for the left and right lists to zero. The while loop starting
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on line 13 constitutes the main part of the algorithm. The loop iterates while both
leftIndex and rightIndex are valid indices in their respective lists. In lines 14–19,
the algorithm compares the items at the two indices and appends the smallest to
merged. When the loop finishes, we know that either leftIndex >= len(left) or
rightIndex >= len(right). In the first case (lines 20–21), there are still items
remaining in right to append to merged. In the second case (lines 22–23), there are
still items remaining in left to append to merged.

Reflection 10.23 Write a program that uses the merge sort algorithm to sort the list in
Figure 10.5(b).

Internal vs. external sorting
We have been assuming all along that the data that we want to sort is small enough
to fit in a list in a computer’s memory. The selection and insertion sort algorithms
must have the entire list in memory at once because they potentially pass over the
entire list in each iteration of their outer loops. For this reason, they are called
internal sorting algorithms.

But what if the data is larger than the few gigabytes that can fit in memory all at
once? This is routinely the situation with real databases. In these cases, we need
an external sorting algorithm , one that can sort data in secondary storage by
bringing smaller pieces of it into memory at a time.

The merge sort algorithm can be implemented as an external sorting algorithm. In
the merge function, each of the sorted halves could reside in a file on disk and the
algorithm could just bring the current front items into memory when it needs them.
The merged list can also reside in a file on disk; when a new item is added to end of
the merged result, it just needs to be written to the merged file after the previous
item. Exercise 10.4.7 asks you to write a version of the merge function that merges
two sorted files in this way.

Efficiency of merge sort
To formally derive the time complexity of merge sort, we would need to set up a
recurrence relation like the one for the recursive binary search. But doing so for merge
sort is a little more complicated, so let’s look at it in a different way. Figure 10.7
illustrates the work that is done through the recursive calls in the algorithm. These
recursive calls divide the list into smaller and smaller lists until they reach the base
case, as illustrated in the top half of the diagram. The number of elementary steps
performed when dividing each list through slicing is proportional to the length of
the list, since every element is copied. In each of these “divide” levels, all n items
are being copied once in a slicing operation. The number of slices gets larger as we
work down toward the base case, and each one is smaller, but the total number of
items remains constant at n. So there are O(n) elementary steps being done in each
“divide” level.
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Figure 10.7 An illustration of the work performed by the merge sort algorithm.

Reflection 10.24 How many “divide” levels are there until the base case is reached when
n = 8? When n = 16? For n in general?

When n = 8, as in the diagram, there are three “divide” levels. If n were doubled to
16, there would be just one more level needed. In general, because the lists are being
halved at each level, until each list contains just one item, there must be log2 n levels
until the base case is reached. Therefore, the total number of elementary steps in
the top half of the diagram is proportional to n ⋅ log2 n, or O(n logn).
Now let’s analyze the number of elementary steps in the bottom half of the diagram.
In the base case, each list contains at most one item, so they are sorted, as depicted
by the red arrows. Then those short lists are merged into lists that are about twice as
long. This merging continues until all of the original items are merged into the final
sorted list. The number of “merge” levels in the diagram is the same as the number
of “divide” levels because the same process is performed in reverse order. So the
total number of elementary steps in the bottom half of the diagram is proportional
to log2 n times the number of elementary steps performed in each “merge” level.

Reflection 10.25 About how many elementary steps does the merge function contain
when merged contains 8 items? 16 items? n items?

Since all of the items in the left and right lists are copied to the merged list
exactly once, the total number of elementary steps in merge is proportional to the
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Figure 10.8 A comparison of the execution times of selection sort and merge sort on

small randomly shuffled lists.

length of the merged list. In each “merge” level of the diagram, since all n items are
involved in one merge operation, the combined lengths of the merged lists is n. So
the total number of elementary steps in each “merge” level must be proportional to
n. Therefore, the total number of elementary steps in the bottom half of the diagram
is also proportional to n ⋅ log2 n, or O(n logn).
Adding the O(n logn) from the top half of the diagram to the O(n logn) from
the bottom half gives us O(n logn) elementary steps in total because the “big-oh”
notation hides the constant coefficient that comes from this addition. So the time
complexity of merge sort is O(n logn).
How much faster is this than the quadratic-time selection and insertion sorts?
Figure 10.8 illustrates the difference by comparing the merge sort and selection sort
functions on small randomly shuffled lists. The merge sort algorithm is much faster.
Recall that the algorithm behind the built-in sort method is based on merge sort,
which explains why it was so much faster than our previous sorts. Exercise 10.4.1
asks you to compare the algorithms on much longer lists as well.

Exercises
10.4.1. Suppose the selection sort algorithm requires exactly n2 steps and the merge

sort algorithm requires exactly n log2 n steps. About how many times slower is
selection sort than merge sort when n = 100? n = 1000? n = 1 million?
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10.4.2. Repeat Exercise 10.3.2 with the merge sort algorithm. How does the time
required by the merge sort algorithm compare to that of the insertion sort
algorithm and the built-in sort method?

10.4.3. Add merge sort to the running time plot in Exercise 10.3.3. How does its time
compare to the other sorts?

10.4.4. Our mergeSort function is a stable sort, meaning that two items with the same
value always appear in the sorted list in the same order as they appeared in
the original list. However, if we changed the <= operator in line 18 of the merge

function to a < operator, it would no longer be stable. Explain why.

10.4.5* We have seen that binary search is exponentially faster than linear search in the
worst case. But is it always worthwhile to use binary search over linear search?
The answer, as is commonly the case in the “real world,” is “it depends.” In
this exercise, you will investigate this question. Suppose we have an unordered
list of n items that we wish to search.

(a) If we use the linear search algorithm, what is the time complexity of
this search?

(b) If we use the binary search algorithm, what is the time complexity of
this search? (Think carefully about this.)

(c) If we perform n (where n is also the length of the list) individual searches
of the list, what is the time complexity of the n searches together if we
use the linear search algorithm?

(d) If we perform n individual searches with the binary search algorithm,
what is the time complexity of the n searches together?

(e) What can you conclude about when it is best to use binary search vs.
linear search?

10.4.6. Suppose we have a list of n keys that we anticipate needing to search k times.
We have two options: either we sort the keys once and then perform all of the
searches using a binary search algorithm or we forgo the sort and simply perform
all of the searches using a linear search algorithm. Suppose the sorting algorithm
requires exactly n2/2 steps, the binary search algorithm requires log2 n steps,
and the linear search requires n steps. Assume each step takes the same amount
of time.

(a) If the length of the list is n = 1024 and we perform k = 100 searches,
which alternative is better?

(b) If the length of the list is n = 1024 and we perform k = 500 searches,
which alternative is better?

(c) If the length of the list is n = 1024 and we perform k = 1000 searches,
which alternative is better?

10.4.7. Write a function that merges two sorted files into one sorted file. Your function
should take the names of the three files as parameters. Assume that all three
files contain one string value per line. Your function should not use any lists,
instead reading only one item at a time from each input file and writing one item
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at a time to the output file. In other words, at any particular time, there should
be at most one item from each file assigned to any variable in your function.
You will know when you have reached the end of one of the input files when
a call to readline returns an empty string. There are two files on the book
website named left.txt and right.txt that you can use to test your function.

*10.5 TRACTABLE AND INTRACTABLE ALGORITHMS
This section is available on the book website.

10.6 SUMMARY AND FURTHER DISCOVERY
Sorting and searching are perhaps the most fundamental problems in computer
science for good reason. We have seen how simply sorting a list can exponentially
decrease the time it takes to search it, using the binary search algorithm. Since
binary search is one of those algorithms that “naturally” exhibits self-similarity, we
designed both iterative and recursive algorithms that implement the same idea. We
also designed two basic sorting algorithms named selection sort and insertion sort.
Each of these algorithms can sort a short list relatively quickly, but they are both
very inefficient when it comes to larger lists. By comparison, the recursive merge
sort algorithm is very fast. Merge sort has the added advantage of being an external
sorting algorithm, meaning we can adapt it to sort very large data sets that cannot
be brought into a computer’s memory all at once.

Although the selection and insertion sort algorithms are quite inefficient compared
to merge sort, they are still tractable, meaning that they will finish in a “reasonable”
amount of time. In fact, all algorithms with time complexities that are polynomial
functions of their input sizes are considered to be tractable. On the other hand,
exponential-time algorithms are called intractable because even when their input
sizes are relatively small, they require eons to finish.

Notes for further discovery
This chapter’s epigraph is from an interview given by Marissa Mayer to the Los
Angeles Times in 2008 [21].

The subjects of this chapter are fundamental topics in second-semester computer
science courses, and there are many books available that cover them in more detail.
A higher-level overview of some of the tricks used to make searching fast can be
found in John MacCormick’s Nine Algorithms that Changed the Future [37].

*10.7 PROJECTS
This section is available on the book website.
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Networks

Fred Jones of Peoria, sitting in a sidewalk cafe in Tunis and needing a light for his cigarette,
asks the man at the next table for a match. They fall into conversation; the stranger is an
Englishman who, it turns out, spent several months in Detroit studying the operation of
an interchangeable-bottlecap factory. “I know it’s a foolish question,” says Jones, “but did
you ever by any chance run into a fellow named Ben Arkadian? He’s an old friend of mine,
manages a chain of supermarkets in Detroit. . . ”
“Arkadian, Arkadian,” the Englishman mutters. “Why, upon my soul, I believe I do! Small
chap, very energetic, raised merry hell with the factory over a shipment of defective
bottlecaps.”
“No kidding!” Jones exclaims in amazement.
“Good lord, it’s a small world, isn’t it?”

Stanley Milgram
The Small-World Problem (1967)

W hat do Instagram, food webs, the banking system, and our brains all have
in common? They are all networks: systems of interconnected units that

exchange information over the links between them. There are networks all around us:
social networks, road networks, protein interaction networks, electrical transmission
networks, the Internet, networks of seismic faults, terrorist networks, networks of
political influence, transportation networks, and semantic networks, to name a few.

The continuous and dynamic local interactions in large networks such as these
make them extraordinarily complex and hard to predict. Learning more about
networks can help us combat disease, terrorism, and power outages. Realizations
that some networks are emergent systems that develop global behaviors based on local
interactions have improved our understanding of insect colonies, urban planning,
and even our brains. Too little understanding of networks has had unfortunate

443
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Figure 11.1 Three representations of the same graph.

consequences, such as when invasive species have been introduced into poorly
understood ecological networks.

As with the other types of “big data,” we need computer algorithms to understand
large and complex networks. In this chapter, we will begin by discussing how we can
represent networks in algorithms so that we can analyze them. Then we will develop
an algorithm to find the distance between any two nodes in a network. Recent
discoveries have shown that many real networks exhibit a “small-world property,”
meaning that the average distance between nodes is relatively small. In later sections,
we will investigate the characteristics of small-world networks and their ramifications
for solving real problems.

11.1 MODELING WITH GRAPHS
Networks are modeled with a mathematical structure called a graph. A graph consists
of a set of nodes (or vertices) and a set of links (or edges) that connect pairs of
nodes. If two nodes are connected by a link, we say they are adjacent. Nodes are
usually drawn as circles (or another shape) and links are drawn as lines between
them, but the placement of the nodes and links on the page is arbitrary. For example,
all three of the graphs in Figure 11.1 are equivalent.

A social network (like Facebook or LinkedIn) can be represented by a graph in which
the nodes are people and the links represent relationships (e.g., friends, connections,
circles, followers). For example, in the social network in Figure 11.2, Caroline has
three friends: Amelia, Lillian, and Nick. In a neural network, the nodes represent
neurons and the links represent axons that transmit nerve impulses between the
neurons. Figure 11.3 represents the interconnections between neurons in one of the
simple neural networks that control digestion in the guts of arthropods. In a graph
representing a power grid, like that in Figure 11.4, the nodes represent power stations
and the links represent high-voltage transmission lines connecting them.

In an algorithm, a graph is usually represented in one of two ways. The first is called
an adjacency matrix . An adjacency matrix contains a row and a column for every
node in the network. A one in a matrix entry represents a link between the nodes in
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the corresponding row and column. A zero means that there is no link. The following
table represents an adjacency matrix for the network in Figure 11.2.

Amelia Beth Caroline Cathy Dave Lillian Nick
Amelia 0 1 1 0 0 1 1

Beth 1 0 0 1 1 0 1
Caroline 1 0 0 0 0 1 1

Cathy 0 1 0 0 1 0 0
Dave 0 1 0 1 0 0 0

Lillian 1 0 1 0 0 0 1
Nick 1 1 1 0 0 1 0

The first row indicates that Amelia is connected to Beth, Caroline, Lillian, and Nick.
The second row shows that Beth is connected to Amelia, Cathy, Dave, and Nick. In
Python, we would represent this matrix with the following nested list.

graph = [[0, 1, 1, 0, 0, 1, 1],
[1, 0, 0, 1, 1, 0, 1],
[1, 0, 0, 0, 0, 1, 1],
[0, 1, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 1, 0]]

Although the nodes’ labels are not stored in the adjacency matrix itself, they could
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Figure 11.5 An expanded social network. The nodes and links in red are additions to

the graph in Figure 11.2.

be stored separately as strings in a list. The index of each string in the list should
equal the row/column of the corresponding node in the adjacency matrix.

Reflection 11.1 Create an adjacency matrix for the graph in Figure 11.1. (Remember
that all three pictures depict the same graph.)

The alternative representation, which we will use in this chapter, is an adjacency
list . An adjacency list, which is actually a collection of lists, contains, for each node,
a list of nodes to which it is connected. In Python, an adjacency list can be stored
as a dictionary. The following dictionary represents the network in Figure 11.2.

graph = { 'Amelia': ['Beth', 'Caroline', 'Lillian', 'Nick'],
'Beth': ['Amelia', 'Cathy', 'Dave', 'Nick'],
'Caroline': ['Amelia', 'Lillian', 'Nick'],
'Cathy': ['Beth', 'Dave'],
'Dave': ['Beth', 'Cathy'],
'Lillian': ['Amelia', 'Caroline', 'Nick'],
'Nick': ['Amelia', 'Beth', 'Caroline', 'Lillian'] }

Each key in this dictionary, a string, represents a node, and each corresponding
value is a list of strings representing the nodes to which the key node is connected.
Notice that, if two nodes are connected, that information is stored in both nodes’
lists. For example, there is a link connecting Amelia and Beth, so Beth is in Amelia’s
list and Amelia is in Beth’s list.

Reflection 11.2 Create an adjacency list for the graph in Figure 11.1.

Making friends
Social networking sites often have an eerie ability to make good suggestions about
who you should add to your list of “connections” or “friends.” One way they do this
is by examining the connections of your connections (or “friends-of-friends”). For
example, consider the expanded social network graph in Figure 11.5. Dave currently
has only three friends. But his friends have an additional seven friends that an
algorithm could suggest to Dave.
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Reflection 11.3 Who are the seven friends-of-friends of Dave in Figure 11.5?

In graph terminology, the connections of a node are called the node’s neighborhood ,
and the size of a node’s neighborhood is called its degree. In the graph in Figure 11.5,
Dave’s neighborhood contains Beth, Cathy and Christina, and therefore his degree
is three.

Reflection 11.4 How can you compute the degree of a node from the graph’s adjacency
matrix? What about from the graph’s adjacency list?

Once we have a network in an adjacency list, writing an algorithm to collect new
friend suggestions is relatively easy. The function below iterates over the neighbors
of the node for which we would like suggestions and then, for each of these neighbors,
iterates over the neighbors’ neighbors.

1 def friendsOfFriends(network, node):
2 """Find new neighbors-of-neighbors of a node in a network.

3 Parameters:
4 network: a graph represented by a dictionary
5 node: a node in the network

6 Return value: a list of new neighbors-of-neighbors of node
7 """

8 suggestions = [ ]
9 neighbors = network[node]

10 for neighbor in neighbors: # neighbors of node
11 for neighbor2 in network[neighbor]: # neighbors of neighbors
12 if neighbor2 != node and \
13 neighbor2 not in neighbors and \
14 neighbor2 not in suggestions:
15 suggestions.append(neighbor2)
16 return suggestions

On line 9, network[node] is the list of nodes to which node is connected in the
adjacency list named network. We assign this list to neighbors, and then iterate
over it on line 10. On line 11, in the inner for loop, we then iterate over the list
of each neighbors’ neighbors. In the if statement, we choose suggestions to be a
list of unique neighbors-of-neighbors that are not the node itself or neighbors of the
node.

Reflection 11.5 Look carefully at the three-part if statement in the function above.
How does each part contribute to the desired characteristics of suggestions listed above?

Reflection 11.6 Insert the additional nodes and links from Figure 11.5 (in red) into the
dictionary on page 446. Then call the friendsOfFriends function with this graph to find
new friend suggestions for Dave.

In the next section, we will design an algorithm to find paths to nodes that are
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farther away. The ability to compute the distance between nodes will also allow us
to better characterize and understand large networks.

Exercises
11.1.1. Besides those presented in this section, describe three more examples of networks.

11.1.2. Draw the networks represented by the following adjacency matrices.

(a)* A B C D E
A 0 1 0 1 0
B 1 0 1 1 1
C 0 1 0 1 0
D 1 1 1 0 1
E 0 1 0 1 0

(b) A B C D E
A 0 1 1 0 0
B 1 0 0 1 1
C 1 0 0 0 1
D 0 1 0 0 1
E 0 1 1 1 0

11.1.3. Draw the networks represented by each of the following adjacency lists.

(a)* graph = {'A': ['C', 'D', 'F'],
'B': ['C', 'E'],
'C': ['A', 'B', 'D'],
'D': ['A', 'C'],
'E': ['B', 'F'],
'F': ['A', 'E']}

(b) graph = {'A': ['C', 'D'],
'B': ['C', 'D'],
'C': ['A', 'B', 'D'],
'D': ['A', 'B'],
'E': ['F'],
'F': ['E']}

11.1.4* Consider the following network.

2

8

4 5

3

76

1

(a) Show how to represent this network in Python as an adjacency matrix.
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(b) Show how to represent this network in Python as an adjacency list.

(c) What is the neighborhood of each of the nodes in the network?

(d) What is the degree of each node? Which node(s) have the maximum
degree?

11.1.5. Consider the following network.

2

8

4 5

3

76

1

(a) Show how to represent this network in Python as an adjacency matrix.

(b) Show how to represent this network in Python as an adjacency list.

(c) What is the neighborhood of each of the nodes in the network?

(d) What is the degree of each node? Which node(s) have the maximum
degree?

11.1.6. Are the networks in each of the following pairs the same or different? Why?

(a)*

(b)

(c)

11.1.7* A graph can be represented in a file by listing one link per line, with each link
represented by a pair of nodes. For example, the graph below is represented
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by the file on the right. Write a function that reads such a file and returns an
adjacency list (as a dictionary) for the graph. Notice that, for each line A B in
the file, your function will need to insert node B into the list of neighbors of A
and insert node A into the list of neighbors of B.

A

C

B

ED

graph.txt

A B

A C

A D

B E

C D

C E

11.1.8. In this chapter, we assumed that all graphs are undirected, meaning that each
link represents a mutual relationship between two nodes. For example, if there
is a link between nodes A and B, then this means that A is friends with B and
B is friends with A, or that one can travel from city A to city B and from city
B to city A. However, the relationships between nodes in some networks are not
mutual or do not exist in both directions. Such a network is more accurately
represented by a directed graph (or digraph), in which links are directed from one
node to another. In a picture, the directions are indicated arrows. For example,
in the directed graph below, one can go directly from node A to node B, but
not vice versa. However, one can go in both directions between nodes B and E.
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ED

digraph.txt

A B

A D

B E

C A

D C

E B

E C

(a) Give three examples of networks that are better represented by a directed
graph.

(b) How would an adjacency list representation of a directed graph differ
from that of an undirected graph?

(c) Write a function that reads a file representing a directed graph (see
the example above), and returns an adjacency list (as a dictionary)
representing that directed graph.

11.1.9. Write a function that returns the maximum degree in a network represented by
an adjacency list (dictionary).

11.1.10. Write a function that returns the average degree in a network represented by
an adjacency list (dictionary).
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11.2 SHORTEST PATHS
A sequence of links (or equivalently, linked nodes) between two nodes is called a path.
A path with the minimum number of links is called a shortest path. For example, in
Figure 11.5, a shortest path from Dave to Lillian starts with Dave, then visits Beth,
then Nick, then Lillian. The distance between two nodes is the number of links on
a shortest path between them. Because three links were crossed along the shortest
path from Dave to Lillian, the distance between them is 3.

Dave
1Ð→ Beth

2Ð→ Nick
3Ð→ Lillian

Computing the distance between two nodes is a fundamental problem in network
analysis. In a transportation network, the distance between a source and destination
gives the number of stops along the route. In an ecological network, the distance
between two organisms may be a measure of how directly dependent one organism is
upon the other. In a social network, the distance between two people is the number
of introductions by friends that would be necessary for one person to meet the other.

Reflection 11.7 Are shortest paths always unique? Is there another shortest path between
Dave and Lillian?

Yes, there is:

Dave
1Ð→ Beth

2Ð→ Amelia
3Ð→ Lillian

There may be many shortest paths between two nodes in a network, but in most
applications we are concerned with just finding one.

Breadth-first search
Shortest paths can be computed using an algorithm called breadth-first search
(BFS). A breadth-first search explores outward from a source node, first visiting
all nodes with distance one from the source, then all nodes with distance two, etc.,
until it has visited every reachable node in the network. In other words, the BFS
algorithm incrementally pushes its “frontier” of visited nodes outward from the
source. When the algorithm finishes, it has computed the distances between the
source node and every other node.

For example, suppose we wanted to discover the distance from Beth to every other
person in the social network in Figure 11.5, reproduced below.
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As indicated above, we begin by labeling Beth’s node with distance 0, signifying
that there are zero links between the node and itself. Then, in the first round of the
algorithm, we explore all neighbors of Beth, colored red below.
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Since these nodes are one hop away from the source, we label them with distance 1.
These nodes now comprise the “frontier” being explored by the algorithm. In the
next round, we explore all unvisited neighbors of the nodes on this frontier, as shown
below.
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As indicated by the red links, Christina is visited from Dave, Ted is visited from
Cathy, and both Caroline and Lillian are visited from Amelia. Notice that Caroline
and Lillian could have been visited from Nick as well. The decision is arbitrary,
depending, as we will see, on the order in which nodes are considered by the algorithm.
Since all four of these nodes are neighbors of a node with distance 1, we label them
with distance 2. Finally, in the third round, we visit all unvisited neighbors of the
new frontier of nodes, as shown below.
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Since these newly visited nodes are all neighbors of a node labeled with distance 2,
we label all of them with distance 3. At this point, all of the nodes have been visited,
and the final label of each node gives its distance from the source.

Reflection 11.8 If you also studied the depth-first search algorithm in Section 9.5, compare
and contrast that approach with breadth-first search.

In an algorithm, keeping track of the nodes on the current frontier could get
complicated. The trick is to use a queue . A queue is a list in which items are always
inserted at the end and deleted from the front. The insertion operation is called
enqueue and the deletion operation is called dequeue.

enqueuedequeue
0 1 2 3 4 5 6

Reflection 11.9 In Python, if we use a list named queue to implement a queue, how do
we perform the enqueue and dequeue operations?

An enqueue operation is simply an append:

queue.append(item) # enqueue an item

And then a dequeue can be implemented by “popping” the front item from the list:

item = queue.pop(0) # dequeue an item

In the breadth-first search algorithm, we use a queue to remember those nodes on
the “frontier” that have been visited, but from which the algorithm has not yet
visited new nodes. When we are ready to visit the unvisited neighbors of a node on
the frontier, we dequeue that node, and then enqueue the newly visited neighbors so
that we can remember to explore outward from them later.

Reflection 11.10 Why can we not explore outward from these newly visited neighbors
right away? Why do they need to be stored in the queue for later?

We need to wait because there may be nodes further ahead in the queue that have
smaller distances from the source. For the algorithm to work correctly, we have to
explore outward from these nodes first.

The Python function implements the breadth-first search algorithm.
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1 import math

2 def bfs(network, source):
3 """Perform a breadth-first search on network, starting from source.

4 Parameters:
5 network: a graph represented by a dictionary
6 source: the node in network from which to start the BFS

7 Return value: a dictionary with distances from source to all nodes
8 """

9 visited = { } # initialize all nodes
10 distance = { } # to be unvisited
11 for node in network:
12 visited[node] = False
13 distance[node] = math.inf
14 visited[source] = True # mark source visited
15 distance[source] = 0

16 queue = [source] # start with the source
17 while queue != [ ]:
18 front = queue.pop(0) # dequeue front node
19 for neighbor in network[front]: # visit every neighbor
20 if not visited[neighbor]:
21 visited[neighbor] = True
22 distance[neighbor] = distance[front] + 1
23 queue.append(neighbor) # enqueue visited node

24 return distance

The function maintains two dictionaries: visited keeps track of whether each node
has been visited and distance keeps track of the distance from the source to each
node. Lines 8–14 initialize the dictionaries. Every node, except the source, is marked
as unvisited and assigned an initial distance of infinity (∞), represented by math.inf,
because we do not yet know which nodes can be reached from the source. The source
is marked as visited and assigned distance zero. On line 16, the queue is initialized
to contain just the source node. Then, while the queue is not empty, the algorithm
repeatedly dequeues the front node (line 18), and explores all neighbors of this node
(lines 19–23). If a neighbor has not yet been visited (line 20), it is marked as visited
(line 21), assigned a distance that is one greater than the node from which it is being
visited (line 22), and then enqueued (line 23). Once the queue is empty, we know
that all reachable nodes have been visited, so we return the distance dictionary,
which now contains the distance to each node.

Reflection 11.11 Call the bfs function with the graph that you created in the previous
section to find the distances from Beth to all other nodes.
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Reflection 11.12 What does it mean if the bfs function returns a distance of ∞ for a
node?

If the final distance is ∞, then the node must not have been visited by the algorithm,
which means that there is no path to it from the source.

Reflection 11.13 If you just want the distance between two particular nodes, named
source and dest, how can you use the bfs function to find it?

The bfs function finds the distance from a source node to every node, so you just
need to call bfs and then pick out the particular distance you are interested in:

allDistances = bfs(graph, source)
distance = allDistances[dest]

Finding the actual paths
In some applications, just finding the distance between two nodes is not enough; we
actually need a path between the nodes. For example, just knowing that you are
only three hops away from that potential employer in your social network is not
very helpful. You want to know who to ask to introduce you! And in a road network,
we want to know the actual directions, not just the distance.

Fortunately, the breadth-first search algorithm is already finding the shortest paths;
we just need make some modifications to remember them. Consider how the distance
from Beth to Tyler was computed in the previous example. As depicted below, from
Beth, we visited Dave; from Dave, we visited Christina; and from Christina, we
visited Tyler.
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This sequence of nodes is the shortest path on which we based the distance to Tyler.
Therefore, all we have to do is remember this order of nodes, as we visit them.

We implement this by adding another dictionary, named predecessor, to the bfs

function. The predecessor dictionary remembers the node that comes before each
node on the shortest path to it from the source. The dictionary needs to be initially
assigned a value of None for every node in the for loop on lines 11–13. In the while

loop, after line 22, when each neighbor is visited, we set predecessor[neighbor]
to be front.



456 � 11 Networks

Reflection 11.14 Modify the bfs function to incorporate the predecessor dictionary.
At the end of the function, return predecessor in addition to distance. Test the function
with your graph dictionary by calling it with:

distances, predecessors = bfs(graph, 'Beth')

What are the predecessors of 'Beth', 'Dave', 'Christina', and 'Tyler'?

Reflection 11.15 How can we use the final values in the predecessor dictionary to
construct a shortest path between the source node and another node?

To construct the path to any particular node, we need to follow the predecessors
backward from the destination. As we follow them, we will insert each one into the
front of a list so they are in the correct order when we are done. To find the shortest
path from Beth to Tyler, we start at Tyler.

path = ['Tyler']

Tyler’s predecessor was Christina, so we insert Christina into the front of the list:

path = ['Christina', 'Tyler']

Christina’s predecessor was Dave, so we next insert Dave into the front of the list:

path = ['Dave', 'Christina', 'Tyler']

Finally, Dave’s predecessor was Beth:

path = ['Beth', 'Dave', 'Christina', 'Tyler']

Since Beth was the source, we stop. The following function implements this algorithm.

def path(network, source, dest):
"""Find a shortest path in network from source to dest.

Parameters:
network: a graph represented by a dictionary
source: the source node in network
dest: the destination node in network

Return value: a list containing a path from source to dest
"""

allDistances, allPredecessors = bfs(network, source)

path = [ ]
current = dest
while current != source:

path.insert(0, current)
current = allPredecessors[current]

path.insert(0, source)

return path

Starting with current = dest, in each iteration, the while loop moves current
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one step closer to the source by assigning it to its predecessor. As this is happening,
each value of current is inserted into the front of path. When current reaches the
source, the loop ends and we insert the source as the first node in the path.

Reflection 11.16 Find the shortest path between Beth and Tyler with
print(path(graph, 'Beth', 'Tyler')).

In the next section, we will use information about shortest paths to investigate a
special kind of network called a small-world network.

Exercises
11.2.1* List the order in which nodes are visited by bfs when it is called to find the

distance from Ted to every node in the graph in Figure 11.5. (There is more
than one correct answer.)

11.2.2. List the order in which nodes are visited by bfs when it is called to find the
distance between Caroline and every node in the graph in Figure 11.5. (There
is more than one correct answer.)

11.2.3. By modifying one line, the visited dictionary can be completely removed from
the bfs function. Show how.

11.2.4. Write a function that uses bfs to return the distance in a graph between two
particular nodes. The function should take three parameters: the graph, the
source node, and the destination node.

11.2.5. We say that a graph is connected if there is a path between any pair of nodes.
Show how to modify bfs so that it returns a Boolean value indicating whether
a graph is connected.

11.2.6. A depth-first search algorithm (see Section 9.5) can also be used to determine
whether a graph is connected. Recall that a depth-first search recursively searches
as far from the source as it can, and then backtracks when it reaches a dead end.
Writing a depth-first search algorithm for a graph is actually much easier than
writing the one in Section 9.5 because there are fewer base cases to deal with.

(a)* Write a function

dfs(network, source, visited)

that performs a depth-first search on the given network, starting from
the given source node. The third parameter, visited, is a list of nodes
that have been visited by the depth-first search. The initial list argument
passed in for visited should be empty, but when the function returns,
visited should contain all of the visited nodes. In other words, you
should call the function initially like this:

visited = []

dfs(network, source, visited)

(b) Write another function

connected(network)

that calls your dfs function to determine whether network is connected.
(The source node can be any node in the network.)
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Figure 11.6 A very small small-world network.

11.3 IT’S A SMALL WORLD. . .
In a famous 1967 experiment, sociologist Stanley Milgram asked several individuals
in the midwestern United States to forward a postcard to a particular person in
Boston, Massachusetts. If they did not know this person on a first-name basis, they
were asked instead to forward it to someone they thought might have a better chance
of knowing the person. Each intermediate person was asked to follow the same
instructions. Of the postcards that made it to the destination (many were simply
not forwarded), the average number of hops was about six.

Small world networks
From this experiment later came the suggestion that there are only “six degrees
of separation” between any two people on Earth, and that the human race must
constitute a small-world network . In the late 1990s, using computers, researchers
began to discover that networks representing a wide range of unrelated phenomena,
from social networks to neural networks to the Internet, all exhibit the same small-
world property: for most nodes in the network, there is a very short path connecting
them. Put another way, in a small-world network, the average distance between any
two nodes is small.

Intuitively, it seems as though a small-world network must have a lot of links to
facilitate so many short paths. However, it has been shown that small-world networks
can actually be quite sparse , meaning that the number of links is quite small relative
to the number possible. The keys to a small-world network are a high degree of
clustering and a few long-range shortcuts that facilitate short paths between clusters.
A cluster is a set of nodes that are highly connected among themselves. In your
social network, you probably participate in several clusters: family, friends at school,
friends at home, co-workers, teammates, etc. Many of the members of each of these
clusters are probably also connected to one another, but members of different clusters
might be far apart if you did not act as a shortcut link between them.
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Figure 11.7 A grid network.

Although it is too small to really be called a small-world network, the network
in Figure 11.6 illustrates these ideas. The graph contains three clusters of nodes,
centered around nodes 5, 12 and 18, that are connected by a few shortcut links
(e.g., the links between nodes 5 and 18 and between nodes 14 and 23). These two
characteristics together give an average distance between nodes of about 2.42. On
the other hand, the highly structured grid network in Figure 11.7 has an average
node distance of about 3.33. Both of these graphs have 24 nodes and 38 links, so
they are both sparse relative to their (24 ⋅ 23)/2 = 276 maximum possible links.

Clustering coefficients
The extent to which the neighborhood of a node is clustered is measured by its local
clustering coefficient . The local clustering coefficient of a node is the number of links
between its neighbors, divided by the maximum number of possible links between
its neighbors. For example, consider the cluster on the left below surrounding the
blue node in the center.

The blue node has five neighbors, with six links between them (in red). Notice that
each of these links, together with two black links, forms a closed cycle, called a
triangle. So we can also think about the local clustering coefficient as counting these
triangles. As shown on the right, there are four dashed links between neighbors of
the blue node (i.e., four additional triangles) that are not present on the left, for a
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total of ten possible links altogether. So the local clustering coefficient of the blue
node is 6/10 = 0.6. (The clustering coefficient will always be between 0 and 1.)

Reflection 11.17 In general, if a node has k neighbors, how many possible links are there
between pairs of these neighbors?

Each of the k neighbors could be connected to k − 1 other neighbors, for a total of
k(k − 1) links. However, this counts each link twice, so the total number of unique
links is actually k(k − 1)/2. Therefore, the local clustering coefficient of a node
with k neighbors is the number of pairs of neighbors that are connected to each
other, divided by k(k − 1)/2. The clustering coefficient for a network is the average
local clustering coefficient of its nodes. The highly structured grid or mesh graph in
Figure 11.7 does not have any triangles at all, so its clustering coefficient is 0. On
the other hand, the graph in Figure 11.6 has a clustering coefficient of about 0.59.

Reflection 11.18 If you had a small local clustering coefficient in your social network
(i.e., if your friends are not friends with each other), what implications might this have?

It has been suggested that situations like this breed instability. Imagine that, instead
of a social network, we are talking about a network of nations and links represent
the existence of diplomatic relations. A nation with diplomatic relations with many
other nations that are enemies of each other is likely in a stressful situation. It might
be helpful to detect such situations in advance to curtail potential conflicts.

To compute the local clustering coefficient for a node, we iterate over each of the
node’s neighbors and count the number of links between it and the other neighbors
of the node. Then we divide this number by the maximum possible number of links
between the node’s neighbors. This is accomplished by the following function.

def clusteringCoefficient_Draft(network, node):
"""Compute the local clustering coefficient for a node.

Parameters:
network: a graph represented by a dictionary
node: a node in the network

Return value: the local clustering coefficient of node
"""

neighbors = network[node]
numNeighbors = len(neighbors)
if numNeighbors <= 1:

return 0
numLinks = 0
for neighbor1 in neighbors:

for neighbor2 in neighbors:
if neighbor1 != neighbor2 and neighbor1 in network[neighbor2]:

numLinks = numLinks + 1
return numLinks / (numNeighbors * (numNeighbors - 1))

This function is relatively straightforward. The nested for loops iterate over every
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possible pair of neighbors, and the if statement checks for a link between unique
neighbors. However, this process effectively counts every link twice, so at the end
we divide by numNeighbors * (numNeighbors - 1) (i.e., k(k − 1)), which is twice
what we discussed previously.

Reflection 11.19 Do you see why the function counts every link twice? How can we fix
this?

The function effectively counts every link twice because it checks whether each
neighbor is in every other neighbor’s list of adjacent nodes. Therefore, for any two
connected neighbors, call them A and B, we are counting the link once when we see
A in the list of adjacent nodes of B and again when we see B in the list of adjacent
nodes of A.

To count each link just once, we can use the following trick. In the list of neighbors,
we first check whether the node at index 0 is connected to nodes at indices 1, 2, . . . , k−1.
Then, to prevent counting a link twice, we never want to check whether any node is
connected to node 0 again. So we next check whether node 1 is connected to nodes
2, 3, . . . , k − 1. Now, to prevent double counting, we never want to check whether any
node is connected to nodes 0 or 1. So we next check whether node 2 is connected
to nodes 3,4, . . . , k − 1. Do you see the pattern? In general, we only want to check
whether node i is connected to nodes i + 1, i + 2, . . . , k − 1. (This is the same trick
you may have seen in Exercise 7.5.6.) This is implemented in the following improved
version of the function, with changes highlighted.

def clusteringCoefficient(network, node):
""" (docstring omitted) """

neighbors = network[node]
numNeighbors = len(neighbors)
if numNeighbors <= 1:

return 0
numLinks = 0
for index1 in range(len(neighbors) - 1):

for index2 in range(index1 + 1, len(neighbors)):
neighbor1 = neighbors[index1]
neighbor2 = neighbors[index2]
if neighbor1 != neighbor2 and neighbor1 in network[neighbor2]:

numLinks = numLinks + 1
return numLinks / (numNeighbors * (numNeighbors - 1) / 2)

Once we have this function, to compute the clustering coefficient for the network,
we just have to call it for every node, and compute the average. We leave this, and
writing a function to compute the average distance, as exercises.

Scale-free networks
In addition to having short paths and high clustering, researchers soon discovered
that most small-world networks also contain a few highly connected (i.e., high degree)
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Figure 11.8 The degree distribution of 875,713 nodes in the web network.

nodes called hubs that facilitate even shorter paths. In Figure 11.6, nodes 5, 12, and
18 are hubs because their degrees are large relative to the other nodes.

Reflection 11.20 How do connected hubs facilitate short paths?

The existence of hubs in a large network can be seen by plotting, for each degree
in the network, the fraction of the nodes that have that degree. This is called the
degree distribution of the network. The degree distribution for a network with a few
hubs will show the vast majority of nodes having relatively small degree and just a
few nodes having very large degrees. For example, Figure 11.8 shows such a plot for
a small portion of the (world wide) web. In the web graph, each node represents a
web page and a directed link from one node to another represents a hyperlink from
the first page to the second page.1 In this network, 99% of the nodes have degree
at most 25, while just a few have degrees that are much higher. (In fact, 98% of
the nodes have degrees at most 20 and 90% have degrees at most 15.) These few
hubs with high degree enable a small average distance and a clustering coefficient of
about 0.37.

Reflection 11.21 In the web network from Figure 11.8, the degree of a node is the number
of hyperlinks from that page. How do you think the degree distribution might change if we
instead counted the number of hyperlinks to each page?

Networks with this characteristic shape to their degree distributions are called
scale-free networks. The name comes from the observation that the fraction of nodes

1Web network data obtained from http://snap.stanford.edu/data/web-Google.html

http://snap.stanford.edu/data/web-Google.html
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Figure 11.9 The North American routes of Delta Airlines. [12]

with degree d is roughly (1/d)a, for some small value of a. Such functions are called
“scale-free” because their plots have the same shape regardless of the scale at which
you view them. A scale-free degree distribution is very different from the normal
distribution that seems to describe most natural phenomena, which is why this
discovery was so interesting.

Reflection 11.22 How could recognizing that a network is scale-free and then identifying
the hubs have practical importance?

The presence of hubs in a network is a double-edged sword. On the one hand, hubs
enable efficient communication and transportation. For this reason, the Internet
is structured in this way, as are airline networks (see Figure 11.9). Also, because
so many of the nodes in a scale-free network are relatively unimportant, scale-free
networks tend to be very robust when subjected to random attacks or damage.
Some have speculated that, because some natural networks are scale-free, they may
represent an evolutionary advantage. On the other hand, because the few hubs are
so important, a directed attack on a hub can cause the network to fail. (Have you
ever noticed the havoc that ensues when an airline hub is closed due to weather?) A
directed attack on a hub can also be advantageous if we want the network to fail.
For example, if we suspect that the network through which an epidemic is traveling
is scale-free, we may have a better chance of stopping it if we vaccinate the hubs.



464 � 11 Networks

Exercises
11.3.1* Write a function that returns the average local clustering coefficient for a network.

Test your function by calling it on some of the networks on the book website.
You will need the function assigned in Exercise 11.1.7 to read these files.

11.3.2. Write a function that returns the average distance between every pair of nodes
in a network. If two nodes are not connected by a path, assign their distance to
be the number of nodes in the network (since this is longer than any possible
path). Test your function by calling it on some of the networks on the book
website. You will need the function assigned in Exercise 11.1.7 to read these
files.

11.3.3* The closeness centrality of a node is the total distance between it and all other
nodes in the network. By this measure, the node with the smallest value is
the most central (and perhaps most influential) node in the network. Write a
function that computes the closeness centrality of a node. Your function should
take two parameters: the network and a node. Test your function by calling
it on some of the networks on the book website. You will need the function
assigned in Exercise 11.1.7 to read these files.

11.3.4. Using the function you wrote in the previous exercise, write a function that
returns the most central node (with minimum closeness centrality) in a network.

11.3.5. Write a function that plots the degree distribution of a network, producing a
plot like that in Figure 11.8. Test your function on a small network first. Then
call your function on the large Facebook network (with 4,039 nodes and 88,234
links) that is available on the book website. (You will need the function assigned
in Exercise 11.1.7 to read these files.) Is the network scale-free?

11.4 RANDOM GRAPHS
Since small-world and scale-free networks seem to be so common, it is natural to
ask whether such networks just happen randomly. To answer this question, we can
compare the characteristics of these networks to a class of randomly generated
graphs. In particular, we will look at the class of uniform random graphs , which are
created by adding each possible edge with some probability p.

Creating a uniform random graph is straightforward. We first create an adjacency
list with the desired number of nodes, then iterate over all possible pairs of nodes.
For each pair of nodes, we link them with probability p, as shown below.

import random

def randomGraph(n, p):
"""Return a uniform random graph with n vertices.

Parameters:
n: the number of nodes
p: the probability that two nodes are connected

Return value: a random graph
"""
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graph = { }
for node in range(n): # label nodes 0, 1, ..., n-1

graph[node] = [ ] # graph has n nodes, 0 links

for node1 in range(n - 1):
for node2 in range(node1 + 1, n):

if random.random() < p:
graph[node1].append(node2) # add edge between
graph[node2].append(node1) # node1 and node2

return graph

Because we will get a different random graph every time we call this function, any
characteristics that we want to measure will have to be averages over many random
graphs with the same values of n and p. To illustrate, let’s compute the average
distance, clustering coefficient, and degree distribution for uniform random graphs
with the same number of nodes and links as the graphs in Figures 11.6 and 11.7.
Recall that those graphs had 24 nodes and 38 links.

Reflection 11.23 What parameters should we use to create a uniform random graph
with 24 nodes and 38 links?

We cannot specify the number of links specifically in a uniform random graph, but we
can set the probability so that we are likely to get a particular number, on average,
over many trials. In particular, we want 38 out of a possible (24 ⋅ 23)/2 links, so we
set

p = 38

(24 ⋅ 23)/2
= 38

276
≈ 0.14.

Averaging over 20,000 uniform random graphs, each generated by calling
randomGraph(24, 0.14), we find that the average distance between nodes is about
4.32 and the average clustering coefficient is about 0.12. The table below compares
these results to what we computed previously for the other two graphs.

Graph Average distance Clustering coefficient

Figure 11.6 (clusters) 2.42 0.59
Figure 11.7 (grid) 3.33 0
Uniform random 4.32 0.12

The random graph with the same number of nodes and edges has a slightly longer
average distance and a markedly smaller clustering coefficient than the graph in
Figure 11.6 with the three clusters. Because these graphs are so small, these numbers
alone, while suggestive, are not very strong evidence that random graphs do not
have the small-world or scale-free properties. So let’s also look at the average degree
distribution of the random graphs, shown in Figure 11.10. The shape of the degree
distribution is quite different from that of a scale-free network, and is much closer to
a normal distribution. Because the probability of adding an edge was relatively low,
the average degree was only about 3 and there were a number of nodes with degree
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Figure 11.10 The degree distribution of ran-

dom graphs with n = 24 and p = 38/276.
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Figure 11.11 The degree distribution of

random graphs with n = 24 and p = 1/2.

0, causing the plot to “run into” the y-axis. If we perform the same experiment
with p = 0.5, as shown in Figure 11.11, we get a much clearer bell curve. These
distributions show that random graphs do not have hubs; instead, the nodes all
tend to have about the same degree. So there is definitely something non-random
happening to generate scale-free networks.

Reflection 11.24 What kind of process do you think might create a scale-free network
with a few high-degree nodes?

The presumed process at play has been dubbed preferential attachment or, collo-
quially the “rich get richer” phenomenon. The idea is relatively intuitive: popular
people, destinations, and web pages tend to get more popular over time as word of
them moves through the network.

Exercises
11.4.1* Show how to call randomGraph to create a uniform random graph with 30 nodes

and 50 links, on average.

11.4.2* Exercise 11.3.1 asked you to write a function that returns the clustering coefficient
for a graph. Use this function to write another function

avgCCRandom(n, p, trials)

that returns the average clustering coefficient, over the given number of trials,
of random graphs with the given values of n and p.

11.4.3. Exercise 11.3.2 asked you to write a function that returns the average distance
between any two nodes in a graph. Use this function to write another function

avgDistanceRandom(n, p, trials)

that returns the average of this value, over the given number of trials, for random
graphs with the given values of n and p.

11.4.4. Exercise 11.3.5 asked you to write a function to plot the degree distribution of
a graph and then call the function on the large Facebook network on the book
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website. This network has 4,039 nodes and 88,234 links. To compare the degree
distribution of this network to a random graph of the same size, write a function

degreeDistributionRandom(n, p, trials)

that plots the average degree distribution, over the given number of trials, of
random graphs with the given values of n and p. Then use this function to plot
the degree distribution of random graphs with 4,039 nodes and an average of
88,234 links. What do you notice?

11.4.5. We say that a graph is connected if there is a path between any pair of nodes.
Random graphs that are generated with a low probability p are unlikely to be
connected, while random graphs generated with a high probability p are very
likely to be connected. But for what value of p does this transition between
disconnected and connected graphs occur?

To determine whether a graph is connected, we can use either a breadth-first
search (as in Exercise 11.2.5) or a depth-first search (as in Exercise 11.2.6).
In either case, we start from any node in the network, and try to visit all of
the other nodes. If the search is successful, then the graph must be connected.
Otherwise, it must not be connected.

(a) Write a function

connectedRandom(n, minp, maxp, stepp, trials)

that plots the fraction of random graphs with n nodes that are connected
for values of p ranging from minp to maxp, in increments of stepp. To
compute the fraction that are connected for each value of p, generate
trials random graphs and count how many of those are connected using
your connected function from either Exercise 11.2.5 or Exercise 11.2.6.

(b) For n = 24, what do you find? For what value of p is there a 50% chance
that the graph will be connected? Does the transition from disconnected
graphs to connected graphs happen gradually or is change abrupt?

11.5 SUMMARY AND FURTHER DISCOVERY
In this chapter, we took a peek at one of the more exciting interdisciplinary areas
in which computer scientists have become engaged. Networks are all around us,
some obvious and some not so obvious. But they can all be described using the
language of graphs. The shortest path and distance between any two nodes in a
graph can be found with the breadth-first search algorithm. Graphs in which the
distance between any two nodes is relatively short and the clustering coefficient is
relatively high are called small-world networks. Networks that are also characterized
by a few high-degree hubs are called scale-free networks. Scientists have discovered
over the last two decades that virtually all large-scale natural and human-made
networks are scale-free. Knowing this about a network can give a lot of information
about how the network works and about its vulnerabilities.
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Notes for further discovery
This chapter’s epigraph is from a 1967 article by Stanley Milgram titled, The Small-
World Problem [40]. Dr. Milgram was an influential American social psychologist.
Besides his small world experiment, he is best known for experiments in which he
demonstrated that ordinary people are capable of disregarding their consciences
when instructed to do so by those in authority.

There are several excellent books for a general audience about the emerging field
of network science. Three of these are Six Degrees by Duncan Watts [66], Sync by
Steven Strogatz [63], and Linked by Albert-László Barabási [3]. Think Complexity
by Allen Downey [13] introduces slightly more advanced material on implementing
algorithms on graphs, small-world networks, and scale-free networks in Python.

*11.6 PROJECTS
This section is available on the book website.
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Object-oriented Design

What we desire from an abstraction is a mechanism which permits the expression of relevant
details and the suppression of irrelevant details. In the case of programming, the use which
may be made of an abstraction is relevant; the way in which the abstraction is implemented
is irrelevant.

Barbara Liskov
Programming with Abstract Data Types (1974)

Our problem solving strategy to this point has focused on the decomposition of a
problem into smaller subproblems, each viewed as a functional abstraction. We

design algorithms, and then write functions, for these subproblems, and combine
them to solve our overall problem.

An alternative design strategy, called object-oriented design, instead focuses on the
data, or objects, in a problem. To solve a problem, we identify the objects involved,
design abstract data types for them, and then implement them as classes.

Recall that an ADT is defined by the information it can store, called attributes,
and a set of operations that can access that information. We have used a variety
of ADTs, such as turtles, strings, lists, and dictionaries, each implemented as a
class in Python. A class serves as a blueprint for a category of data. An object is a
particular instance of a class. In Section 2.1, we described this difference by analogy
to a species and the organisms that belong to that species. The species description
is like a class; it describes a category of organisms but is not an organism itself. The
individual organisms belonging to a species are like objects from the same class.

The attributes of a class are assigned to a set of variables called instance variables .
The operations of a class are special functions called methods. Instance variables
remain hidden to a programmer using the class, and are only accessed or modified

469
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indirectly through methods. For example, the Turtle class contains several hidden
instance variables that store each Turtle object’s position, color, heading, and
whether its tail is up or down. The Turtle class also defines several familiar methods,
such as forward/backward, left/right, speed, and up/down that we can call to
indirectly interact with these instance variables. When we create the two new Turtle

objects named george and diego below, although they belong to the same class,
they maintain independent identities because each instance (object) has its own
copies of the Turtle instance variables.

george = turtle.Turtle()
diego = turtle.Turtle()

In this chapter, we will use object-oriented design to solve problems with new custom
classes that behave the same way the built-in classes do. We will start by designing
an object-oriented simulation of an epidemic virus. Then we will implement a more
utilitarian class to illustrate all of the ways in which a class can be made to behave
like the standard classes that you have been using all along. Then we will explore a
more advanced simulation of flocking birds and the design of two new ADTs.

12.1 SIMULATING AN EPIDEMIC
Simulations are widely used to facilitate planning for large-scale epidemics, or a
pandemic like COVID-19. These simulations can generally take one of two forms: a
population model or an agent-based model. A population model treats a population
as a group of identical individuals and is only concerned with the populations’ sizes.
The SIR model that you may have seen in Section 4.4 is the basis of most population
models for viral epidemics like COVID-19. In contrast, an agent-based simulation
contains a set of independent individuals (the agents) that interact with each other
in some way over time. Schelling’s model of racial segregation from Project 8.1 is a
simple example of an agent-based simulation.

In this section, we will write an agent-based simulation of a viral epidemic using an
object-oriented design. The main objects in the simulation are the agents (in our
case, people) and a two-dimensional “world” in which the agents move. The world
will also act as the glue that binds the agents together and drives the simulation by
repeating the following simple algorithm for some length of time:

Algorithm Epidemic simulation step

1 repeat for each person in the world:
2 move the person one step forward
3 if the person is infected, then:
4 probabilistically infect every non-infected person within some distance
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Object design
The first step in writing this simulation is to design the two objects as abstract
data types, analogous to how we start a functional design by writing algorithms in
pseudocode. When we design an ADT or write an algorithm, we are free to focus
on the problem at hand, unencumbered by the requirements of the programming
language. After this design phase, we will implement each of the ADTs as a class.

Reflection 12.1 Based on the simulation algorithm above, what attributes and operations
does a person object need?

You can probably think of many possible attributes for a person in this simulation,
but we will keep it simple at first. Every Person object will at least need a world to
live in, a position and heading as they move in the world, and a variable that tracks
whether they are infected with the virus.

Instance Variable Description

world the world inhabited by the person
position, heading the person’s current position and heading in the world
infected whether the person is currently infected (Boolean)

Based on the simulation algorithm, every person will need the ability to move around
(randomly) in the world and become infected if they come too close to an infected
person. We will also need to be able to access attributes of people, such as their
position, whether they are infected, and whether they are too close to another
infected person. The following six operations will handle these basic needs.

Method Arguments Description

create world, infected create a new person with random position and
heading in world and infect if infected is true

get position — return the person’s position as a tuple
is infected — return whether the person is infected
within person, distance return true if a given person is within distance

of my position, false otherwise

infect infection probability set infected to true with the given probability
step — take one step in the simulation

You may notice that these methods fall into three categories:

1. A constructor creates a new instance of an ADT.

2. An accessor reads the attributes of an instance and returns information derived
from them, but does not modify the attributes’ values.

3. A mutator modifies the values of the attributes of an instance.
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Reflection 12.2 To which category does each of the six Person methods belong?

The first operation we defined is the constructor because it creates a new Person
instance. The next three operations are accessors because they give information
derived from the attributes of an instance without modifying it. Finally, infect and
step are mutators because they may change the attributes of an instance.

Before we implement the Person class, let’s also lay out the structure of the World
ADT. The world will need dimentions, a list of the people in the world, the probability
that a person becomes infected if they come into contact with an infected person, and
the number of people infected. These are maintained in the following five attributes.

Instance Variable Description

width, height the width and height of the world
infection probability the probability that a person becomes infected if they come

into contact with an infected person
people a list of people in the world
number infected the number of infected people

In addition, based on the simulation algorithm, we know that the World will need
to able to infect people who come too close to an already-infected person, and run
one step of the main simulation loop, which we call step all. We will also need some
accessor methods to get attributes of the world when needed.

Method Arguments Description

create width, height,
infection probability,
population size

create a new world with the given
dimensions and infection probability,
and populate it with one infected per-
son and population size − 1 uninfected
people

get width, get height — return the width and height
get number infected — return number infected
infect neighbors person infect neighbors of an infected person

with probability = infection probability
step all — move all inhabitants one step and

spread the infection

Person class
Let’s begin our implementation by designing a class that implements a simplified
version of the Person ADT, one that is not tied to any World. This will allow us
to experiment and get a better feel for how classes work, before we dive into the
complete simulation.
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The constructor

The definition of a new class begins with the keyword class followed by the name
of the class and, of course, a colon. The class’ methods are indented below.

The constructor of a class is named __init__ (with two underscore characters at
both the beginning and the end). The beginning of the SimplePerson class, with
its constructor, is shown below.

class SimplePerson:
"""A simple person class."""

_STEP = 5 # class variable (constant)

def __init__(self, infected):
"""Create a new, possibly infected, person with random heading."""

self._infected = infected
self._turtle = turtle.Turtle()
self._turtle.setheading(random.randrange(360))

if self._infected:
self._turtle.color('red')

else:
self._turtle.color('blue')

The constructor is implicitly called when we create a new object by calling the
function bearing the name of the class. For example, when we created the two
Turtle objects above, we implicitly invoked the Turtle constructor twice. To invoke
the constructor of the SimplePerson class to create a new, uninfected SimplePerson

object, we could call

someone = SimplePerson(False)

The first parameter of the __init__ method, named self, is an implicit reference to
the object on which the method is being called. In the assignment statement above,
self is assigned to the new object being created. This same object is returned by
the constructor and assigned to someone. We never explicitly pass anything in for
self. The additional constructor parameter infected is a Boolean value used to
initialize the object’s infection status.

The SimplePerson class has two instance variables named self._infected and
self._turtle. The former is a Boolean value indicating whether the person is
currently infected with the virus and the latter is a visual representation of the
person in the simulation. We will also use self._turtle to implicitly store each
person’s position and heading (since it will do that anyway).

Every instance variable name is preceded by self to signify that it belongs to the
particular instance (object) of the class assigned to self. For example, since self is
assigned to the new object created by the constructor, the assignment statement

someone = SimplePerson(False)
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is creating a new SimplePerson object named someone and assigning values to
someone._infected and someone._turtle.

The underscore (_) character before each instance variable name is a Python conven-
tion that indicates that the instance variables should be private, i.e., never accessed
from outside the class.1 We want instance variables to be private so they can only be
changed by methods of the class, and not in unintended ways outside the class. For
example, we do not want a simulation using our class to incorrectly move a person’s
turtle or change their infection status in ways that might mess up the simulation.
This idea, which is a key characteristic of object-oriented programming, is called
encapsulation . Encapsulation also refers more generally to the practice of bundling
instance variables and methods together in a class.

The scope of an instance variable is the entire object. This means that we can access
and change the value of any instance variable in any method of the class. In contrast,
variable names defined inside a method that are not preceded by self, such as the
infected parameter in the constructor, are just normal local variables with scope
limited to the method.

Just before the constructor above is a class variable named _STEP, which will act
as a constant move distance for all people turtles. A class variable is shared by all
objects in a class. Since _STEP is a constant, it doesn’t make sense to have a separate
copy for every object; instead, all objects will share this one copy.

Accessor methods

Now let’s add the three accessor methods to the SimplePerson class.

def getPosition(self):
"""Return the person's position as a tuple.

Parameter:
self: the Person object

Return value: position of self as a tuple
"""

return self._turtle.position()

def isInfected(self):
"""Return whether the person is infected.

Parameter:
self: the Person object

Return value: Boolean indicating whether self is infected
"""

return self._infected

1Python does not actually enforce this, but some other languages do.
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def within(self, otherPerson, distance):
"""Return True if otherPerson is within distance

of my position, False otherwise.

Parameters:
self: the Person object
otherPerson: another Person object
distance: a number

Return value: Boolean indicating whether otherPerson's position
is within distance of self's position

"""

myPosition = self.getPosition()
otherPosition = otherPerson.getPosition()
diffX = myPosition[0] - otherPosition[0]
diffY = myPosition[1] - otherPosition[1]
return math.sqrt(diffX ** 2 + diffY ** 2) <= distance

The getPosition method uses the position method of self._turtle to return a
tuple containing the current position. The only parameter to this method is self.
If we called someone.getPosition(), the object someone is implicitly passed in
for the parameter self, even though it is not passed in the parentheses following
the name of the method. Similarly, the isInfected method simply returns the
value of self._infected. The within method computes the distance between self

and another SimplePerson object and returns a Boolean value indicating whether
they are within the given distance of each other. Notice that the method calls the
getPosition method of both self and otherPerson to get tuples of their positions.
When we call a method of the class from within another method, we still need to
preface the name of the method with self or another object, just as we do with
instance variables.

Mutator methods

To round out the class, we will add the following two mutator methods.

def infect(self, infectionProbability):
"""Infect self with the given probability.

Parameters:
self: the Person object
infectionProbability: probability of infection

Return value: Boolean indicating whether infection happened
"""

if not self._infected and random.random() < infectionProbability:
self._infected = True
self._turtle.color('red')
return True

return False
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def step(self):
"""Advance self one step in the simulation.

Parameter:
self: the Person object

Return value: None
"""

if random.random() < 0.1:
self._turtle.left(random.randrange(-90, 90))

self._turtle.forward(self._STEP)

The infect method infects the person, if they are not already infected, with the
given probability. If the person is infected, the method returns True to signify
“success.” If the object is not infected, it returns False. In the step method, we
simulate a person’s movement by normally (90% of the time) moving forward along
their current heading, and occasionally (10% of the time) turning to the left or right
by some random angle.

When we write classes, we will store each one in its own file. By convention, the
names of our classes will be capitalized, but the filenames will be in lowercase.

Reflection 12.3 Create a new file named simpleperson.py containing the SimplePerson

class. (You will also need to import some modules at the top.)

After saving the SimplePerson class in simpleperson.py, we can create a new,
uninfected SimplePerson object with

>>> import simpleperson
>>> someone = simpleperson.SimplePerson(False)

or

>>> from simpleperson import *
>>> someone = SimplePerson(False)

Reflection 12.4 Create a new SimplePerson object in a Python shell with one of the
options above. Or you can write a short program in the same directory as simpleperson.py
if you have trouble importing from the shell. What happens when create the object?

When you create a new SimplePerson object, a turtle graphics window should open
and display a blue turtle facing in a random direction in the center of the screen.
This is someone._turtle, the Turtle object inside the someone object. Now call
the getPosition method, followed by a few calls to step.

>>> someone.getPosition()
(0.00,0.00)
>>> someone.step()
>>> someone.step()
>>> someone.getPosition()
(9.21,-3.91) # your result will differ
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Each time you call step, you are invoking the step method on the SimplePerson

object named someone, which moves someone’s turtle a little. You can see how this
has changed someone’s _turtle instance variable when you call getPosition again.
Since step moves the turtle so little, try calling it in a loop:

>>> for count in range(50):
someone.step()

Initially, someone is not infected with the virus (because we passed False into the
constructor), which you can verify by calling the isInfected method.

>>> someone.isInfected()
False

Now try infecting someone with probability 0.5. You may have to try a few times
until it is successful. Then verify that it worked by calling isInfected again.

>>> someone.infect(0.5)
False
>>> someone.infect(0.5)
True
>>> someone.isInfected()
True

After someone becomes infected, you should notice that the turtle turns red. Next
create another, uninfected SimplePerson object and move them a bit.

>>> someoneElse = SimplePerson(False)
>>> someoneElse.isInfected()
False
>>> for count in range(50):

someoneElse.step()

If we want to know if this new person is within some distance of the infected someone,
we can call the within method.

>>> someoneElse.within(someone, 10)
False
>>> someoneElse.within(someone, 500)
True

When you call the within method in this way, someoneElse is passed in for self

and someone is passed in for otherPerson. Chances are, they are not very close to
each other but if you keep trying larger distances, the method should eventually
return True.

Reflection 12.5 Does calling someone.within(someoneElse, 500) do the same thing?
In this case, which object is assigned to self and which is assigned to otherPerson?

Augmenting the Person class
Now that you are a more comfortable with the mechanics of classes, let’s flesh out
the full Person class that we will use in our simulation. The Person class will be
identical to the SimplePerson class, except for edits and additions to two methods.
The first changes are to the constructor, highlighted below.
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class Person:
"""A person in an epidemic simulation."""

_STEP = 5 # class variable (constant)

def __init__(self, myWorld, infected):
"""Create a person with random position/heading in myWorld."""

self._world = myWorld
self._infected = infected

self._turtle = turtle.RawTurtle(self._world._screen)
self._turtle.speed(0)
self._turtle.up()
self._turtle.resizemode('user')
self._turtle.shape('circle')
self._turtle.shapesize(0.5)

self._turtle.setheading(random.randrange(360))
x = random.randrange(self._world.getWidth())
y = random.randrange(self._world.getHeight())
self._turtle.goto(x, y)

if self._infected:
self._turtle.color('red')

else:
self._turtle.color('blue')

First, we added a myWorld parameter that will serve as the World object to which the
Person belongs. (We will implement World next.) We have also assigned _turtle

to a RawTurtle object instead of a normal Turtle object. RawTurtle is just like
Turtle, but it will allow us to do some fancier graphical interface things later.
The TurtleScreen object named self._world._screen that we pass into the
RawTurtle constructor is an instance variable of the World class. Its purpose is to
make sure that every Person turtle draws in the same window. We also added some
turtle formatting that will make each person a small circle. Finally, we give each
person a random starting position, using the soon-to-be-implemented getWidth and
getHeight methods of the World class to set the bounds of the position.

The second edit is to the step method as highlighted below.

def step(self):
""" (docstring omitted) """

if random.random() < 0.1:
self._turtle.left(random.randrange(-90, 90))

self._turtle.forward(self._STEP)

# wrap around to the other side of the world if necessary
newX = self._turtle.xcor() % self._world.getWidth()
newY = self._turtle.ycor() % self._world.getHeight()
if self._turtle.position() != (newX, newY):

self._turtle.goto(newX, newY)
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This addition guards against a person stepping off the edge of the world. When this
happens, rather than have them “bounce” back, we wrap them around to the other
side by using modular arithmetic. In this way, the world is treated like a torus.

Reflection 12.6 Create a new file named person.py containing the Person class. Start
from the SimplePerson class and make the highlighted changes.

World class
The constructor of the World class will take five parameters, in addition to self.

from person import *

class World:
"""A two-dimensional world class."""

_INFECT_DISTANCE = 6 # class variable (constant)

def __init__(self, width, height, infectProb, popSize, screen):
"""Create a new world with the given dimensions and infection

probability, and populate it with one infected person and
popSize - 1 uninfected people."""

self._width = width
self._height = height
self._infectionProbability = infectProb
self._screen = screen

self._numberInfected = 1
self._people = [Person(self, True)] # one infected person

for index in range(popSize - 1): # uninfected people
person = Person(self, False)
self._people.append(person)

At the top of the file, we need to import the Person class so that we can create
new people in the constructor. Just before the constructor is a class variable named
_INFECT_DISTANCE which is how close someone needs to be to an infected person to
become infected themselves.

Reflection 12.7 How many instance variables does the World class have?

The class has six instance variables. The first four, self._width, self._height,
self._infectionProbability and self._screen, are initialized by parameters.
The _screen instance variable is the name of the TurtleScreen object on which
all of the Person turtles will be drawn. It will be created by the main program.
The remainder of the constructor populates the world by creating a list named
self._people containing one infected person and popSize - 1 uninfected people.
The Person constructor is called to create each person.
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In addition to the constructor, the World class will have the following three accessor
methods.

def getWidth(self):
""" (docstring omitted) """

return self._width

def getHeight(self):
""" (docstring omitted) """

return self._height

def getNumberInfected(self):
""" (docstring omitted) """

return self._numberInfected

As in the Person class, these methods simply return the values of instance variables
so that the instance variables are never accessed directly from outside the class. The
getWidth and getHeight methods are used in the step method of the Person class,
and the getNumberInfected method will be used by our main program to plot the
number of infected individuals over the course of the simulation.

Finally, the World class is rounded out by two mutator methods.

def infectNeighbors(self, infectedPerson):
""" (docstring omitted) """

for otherPerson in self._people:
if not otherPerson.isInfected() and \
otherPerson.within(infectedPerson, self._INFECT_DISTANCE):
if otherPerson.infect(self._infectionProbability):

self._numberInfected = self._numberInfected + 1

def stepAll(self):
""" (docstring omitted) """

for person in self._people:
person.step()
if person.isInfected():

self.infectNeighbors(person)

The infectNeighbors method takes an infected person as a parameter and then
iterates over everyone in the world, infecting anyone within self._INFECT_DISTANCE

with probability self._infectionProbability. If a person is successfully infected,
the value of self._numberInfected is incremented. The stepAll method imple-
ments each step of the simulation, as we laid out at the beginning of the section.

Reflection 12.8 Create another new file named world.py containing the World class.
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The simulation
With our classes created, the following program will drive the simulation.

import turtle
from world import *

WIDTH = 600 # width of the world
HEIGHT = 600 # height of the world
NUM_PEOPLE = 200 # number of people to simulate
INFECTION_PROB = 0.5 # probability that someone gets infected

def main():
worldScreen = turtle.Screen() # a screen for the turtles
worldScreen.setup(WIDTH, HEIGHT) # set window size
worldScreen.setworldcoordinates(0, 0, WIDTH - 1, HEIGHT - 1)
worldScreen.tracer(0) # turn off screen updates

world = World(WIDTH, HEIGHT, INFECTION_PROB, NUM_PEOPLE, worldScreen)

while world.getNumberInfected() < NUM_PEOPLE: # until all infected
world.stepAll() # advance all people one step
worldScreen.update() # manually update screen after each step

worldScreen.exitonclick()

main()

The main function creates a Screen object named worldScreen on which the turtles
representing people can live. This is passed in as the last parameter of the World

constructor. Then the program iterates until the number of infected people is equal
to the total number of people. In each iteration, the simulation is advanced one step
by calling world.stepAll(). A screenshot of the finished simulation is shown on
the lefthand side of Figure 12.1.

Reflection 12.9 Augment the main function so that it plots the number of in-
fected people over the course of the simulation. Display your plot just before
worldScreen.exitonclick(). It should look similar to the plot on the righthand side of
Figure 12.1.

On the book website you can find an augmented version of this program that
incorporates sliders for the number of people and infection probability, and plots the
number infected as the simulation is running. A screenshot is shown in Figure 12.2.
This program also demonstrates how to use the graphics framework underlying turtle
graphics, called Tkinter, to add graphical user interface elements to programs. Later
in this chapter, we will design a more sophisticated agent-based simulation of flying
birds in which each bird interacts with other birds in the flock, resulting in emergent
flocking behavior.
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Figure 12.1 On the left is a screenshot midway through the epidemic simulation with

200 people and infection probability 0.5. On the right is a plot of the number infected.

Figure 12.2 A screenshot midway through the augmented epidemic simulation.



12.1 SIMULATING AN EPIDEMIC � 483

Exercises
12.1.1* Name two accessor methods and two mutator methods in the Turtle class.

12.1.2. Name two accessor methods and two mutator methods in the list class.

12.1.3. Add a new method

allInfected(self)

to the World class that returns True if everyone in the world is infected, and
False otherwise. Show how to use this new method in the while loop of the
main simulation.

12.1.4* Add a new method

add(self, person)

to the World class that adds a new Person object named person to the world.
If the person is infected, increment the value of self._numberInfected.

12.1.5. Add a new method

distance(self, otherPerson)

to the Person class that returns the distance between the Person objects self
and otherPerson. Show how to use your new method to simplify the within

method.

12.1.6. In this exercise, you will modify the epidemic simulation so that some people
stay at home during the epidemic.

(a) Add a new instance variable to the Person class named self._home,
initialized to False, which will indicate whether the person is sheltered
at home.

(b) Add a method named stayHome to the Person class that sets
self._home to True.

(c) Modify the infect method of the Person class so that a person at home
cannot become infected.

(d) Modify the step method of the Person class so that the person does
not move if they are at home.

(e) Add a parameter to the constructor of the World class that defines the
probability that a person will stay home. In the loop that populates the
world, call person.stayHome() with that probability.

(f) Run the simulation with these modifications. You will need to modify
the loop in the main function so that it runs for a particular number of
iterations (say, 1000) since now the entire population is unlikely to get
infected all at once. What do you notice from the plot? (This assumes
you have completed Reflection 12.9.)

12.1.7. In this exercise, you will modify the epidemic simulation so that infected people
can recover and become immune after a specified number of simulation steps.

(a) Add two new instance variables to the Person class named
self._infectedSteps and self._immune. The former counts the num-
ber of simulation steps that have elapsed since the person has been
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infected. The second is a Boolean value indicating whether the person is
immune to the virus.

(b) Add a method named isImmune to the Person class that returns the
value of self._immune.

(c) Modify the infect method of the Person class so that a person cannot
become infected if they are immune.

(d) Add a method named isRecovered to the Person class that checks if
the person is infected and, if so, checks whether self._infectedSteps
is equal to a constant class variable named _INFECTION_PERIOD. If
this is the case, the person becomes infected so set the person’s
self._infected and self._immune instance variables appropriately
and their turtle’s color to yellow. If the person is infected but has not
yet been so for self._INFECTION_PERIOD steps, the method should in-
crement the value of self._infectedSteps. The method should return
True if the person becomes newly immune or False otherwise.

(e) Modify the stepAll method of the World class so that it calls
isRecovered for every infected person in each iteration of the
loop. If isRecovered returns True, then decrement the value of
self._numberInfected.

(f) Run the simulation with your modifications and the class variable
_INFECTION_PERIOD set to 100. You will need to modify the loop as
specified in part (f) of the previous exercise. What do you notice from
the plot? (This assumes you have completed Reflection 12.9.)

12.1.8. Design a research question you would like to investigate using the original
epidemic simulation or the modified simulations from the previous two exercises.
Run the simulation with various parameters to answer your question.

12.1.9* (a) Write a BankAccount class that has a single instance variable (the
available balance), a constructor that takes the initial balance as a
parameter, and methods getBalance (which should return the amount
left in the account), deposit (which should deposit a given amount into
the account), and withdraw (which should remove a given amount from
the account).

(b) Using your BankAccount class from part (a), write a program that
prompts for an initial balance, creates a BankAccount object with this
balance, and then repeatedly prompts for deposits or withdrawals. After
each transaction, it should update the BankAccount object and print
the current balance. For example:

Initial balance? 100

(D)eposit, (W)ithdraw, or (Q)uit? d

Amount = 50

Your balance is now $150.00

(D)eposit, (W)ithdraw, or (Q)uit? w

Amount = 25

Your balance is now $125.00

(D)eposit, (W)ithdraw, or (Q)uit? q
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12.1.10. (a) Write a class that represents a U.S. president. The class should include
instance variables for the president’s name, party, home state, religion,
and age when he or she took office. The constructor should initialize the
president’s name to a parameter value, but initialize all other instance
variables to default values (empty strings or zero). Write accessor and
mutator methods for all five instance variables.

(b) On the book website is a tab-separated file containing a list of all
U.S. presidents with the five instance variables from part (a). Write
a function that reads this information and returns a list of president
objects representing all of the presidents in the file. Also, write a function
that, given a list of president objects and an age, prints a table with all
presidents who where at least that old when they took office, along with
their ages when they took office.

12.1.11. Write a Movie class that has as instance variables the movie title, the movie
year, and a list of actors (all of which are initialized in the constructor). Write
accessor and modifier functions for all the instance variables and an addActor

method that adds an actor to the list of actors in the movie. Finally, write a
method that takes as a parameter another movie object and checks whether
the two movies have any common actors.

There is a program on the book website with which to test your class. The
program reads actors from a movie file (like those used in Project 11.3), and
then prompts for movie titles. For each movie, you can print the actors, add an
actor, and check whether the movie has actors in common with another movie.

12.1.12. (a) Write a class representing a U.S. senator. The Senator class should
contain instance variables for the senator’s name, political party, home
state, and a list of committees on which they serve. The constructor
should initialize all of the instance variables to parameter values, except
for the list of committees, which should be initialized to an empty list.
Add accessor methods for all four instance variables, plus a mutator
method that adds a committee to a senator’s list of committees.

(b) On the book website is a function that reads a list of senators from
a file and returns a list of senator objects, using the Senator class
that you wrote in the previous exercise. Write a program that uses
this function to create a list of Senator objects, and then iterates over
the list of Senator objects, printing each senator’s name, party, and
committees. Then your program should prompt repeatedly for the name
of a committee, and print the names and parties of all senators who are
on that committee.

12.1.13. Write a class named Student that has the following instance variables: student
name, exam grades, quiz grades, lab grades, and paper grades. The constructor
should only take the student name as a parameter, but initialize all the other
instance variables (to empty lists). Write an accessor method for the name and
methods to add grades to the lists of exam, quiz, paper, and lab grades. Next,
write methods for returning the exam, quiz, paper, and lab averages. Finally,
write a method to compute the final grade for the course, assuming the average
exam grade is worth 50%, the average quiz grade is worth 10%, and the average
lab and paper grades are worth 20% each.
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12.1.14* Write a class that represents a set of numerical data from which simple de-
scriptive statistics can be computed. The class should contain five methods,
in addition to the constructor: add a new value to the data set, return the
minimum and maximum values in the data set, return the average of the values
in the data set, and return the size of the data set. Think carefully about the
instance variables needed for this class. It is not actually necessary for the class
to include a list of all of the values that have been added to it.

12.1.15. This exercise assumes you read Section 6.8. Write a Sequence class to represent a
DNA, RNA, or amino acid sequence. The class should store the type of sequence,
a sequence identifier (or accession number), and the sequence itself. Identify
and implement at least three useful methods, in addition to the constructor.

12.2 OPERATORS AND POLYMORPHISM
Suppose you are on the planning commission for your local town, and are evaluating
possible locations for a new high school. One consideration is how central the new
school will be with respect to homes within the district. If you know the location
of each home, then you can compute the most central location, called the centroid ,
with respect to the homes. The centroid is the point whose x and y coordinates are
the average of the x and y coordinates of the homes. (You may recall centroids from
Section 7.7.)

For example, the five black points below might represent five houses, each with
(x, y) coordinates representing the east-west and north-south distances (in km),
respectively, from the point (0,0). The centroid of these points is shown in blue.

(0, 0)

If the points are represented by a list of tuples like

homes = [(0.5, 5), (3.5, 2), (4, 3.5), (5, 2), (7, 1)]

then the following function can be used to return the centroid. (We will use abbrevi-
ated docstrings to save space.)
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def centroid(points):
"""Compute the centroid of a list of points stored as tuples."""

n = len(points)
if n == 0:

return None

sumX = 0
sumY = 0
for point in points:

sumX = sumX + point[0]
sumY = sumY + point[1]

return (sumX / n, sumY / n)

Calling centroid(homes) returns the tuple (4, 2.7).

We can simplify working with points by designing a new, general-purpose ordered
pair class. In addition to a geographic location, we could use this class to represent
the (x,y) position of a particle, a (row, column) position in a grid, or a vector in two
dimensions. The goal of this design will be to create a new utility class that behaves
as if it was one of the standard Python classes. To that end, we want to be able to
do arithmetic with pairs, print them, compare them, and even using indexing to
access the individual elements.

Designing a Pair ADT
Let’s begin by designing an ADT for this class. The obvious attributes are the two
numbers, which we will simply name a and b.

Instance Variable Description

a the pair’s first value
b the pair’s second value

Reflection 12.10 What methods do we need for our pair ADT if we want to use it to
compute centroids?

The centroid function added points and divided by a scalar value, so we at least need
those two operations. We will also need a constructor, and we should include methods
to access and change the numbers in the pair. These operations are summarized in
the table below.
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Method Arguments Description

create a and b create a new pair instance (a, b)

getFirst — return the first value of the pair
getSecond — return the second value of the pair
get — return a tuple (a, b) representing the pair
add pair 2 return a new pair that is the sum of this pair and pair 2
set a and b set new a and b values of the pair
scale a number multiply the values of a and b in the pair by number

Pair class
Let’s now implement the Pair abstract data type as a class. We will start with the
constructor and four other straightforward methods.

class Pair:
"""An ordered pair class."""

def __init__(self, a = 0, b = 0):
"""Create a new Pair object initialized to (a, b)."""

self._a = a # the pair's first value
self._b = b # the pair's second value

def getFirst(self):
""" (docstring omitted) """

return self._a

def getSecond(self):
""" (docstring omitted) """

return self._b

def get(self):
""" (docstring omitted) """

return (self._a, self._b)

def set(self, a, b):
""" (docstring omitted) """

self._a = a
self._b = b

Reflection 12.11 Create a new file pair.py containing this class.

The = 0 following each of the a and b parameters in the constructor is specifying a
default argument . This allows us to call the constructor with either no arguments,
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in which case 0 will be assigned to a and b, or with explicit arguments for a and b

that will override the default arguments. If we supply only one argument, then a

will be assigned to it, and 0 will be assigned to b. For example:

pair1 = Pair() # pair1 will represent (0, 0)
pair2 = Pair(3) # pair2 will represent (3, 0)
pair3 = Pair(3, 14) # pair3 will represent (3, 14)

Reflection 12.12 How would you create a new Pair object with value (0,18)?

Arithmetic methods
We define the sum of two pairs (a, b) and (c, d) as the pair (a+ c, b+d). For example,
(3,8) + (4,5) = (7,13). If we represented pairs as tuples, then an addition function
would look like this:

def add(pair1, pair2):
"""Return a tuple representing the sum of tuples pair1 and pair2."""

return (pair1[0] + pair2[0], pair1[1] + pair2[1])

To use this function to find (3, 8) + (4, 5), we could do the following:

duo1 = (3, 8)
duo2 = (4, 5)
sumPair = add(duo1, duo2) # sumPair is assigned (7, 13)
print(sumPair) # prints "(7, 13)"

In an analogous add method for the Pair class, one of the points will be assigned to
self and the other will be assigned to a parameter, as shown below.

def add(self, pair2):
"""Return a new Pair that is the sum of Pairs self and pair2."""

sumA = self._a + pair2._a
sumB = self._b + pair2._b
return Pair(sumA, sumB)

Notice that the method creates and returns a new Pair object. To find the sum of
two Pair objects named duo1 and duo2, we could call this method as follows:

duo1 = Pair(3, 8)
duo2 = Pair(4, 5)
sumPair = duo1.add(duo2) # sumPair is assigned Pair(7, 13)
print(sumPair.get()) # prints "(7, 13)"

When the add method is called, duo1 is assigned to self and duo2 is assigned to
pair2.

Reflection 12.13 Add the add method to your Pair class. Then, define two new Pair

objects in a main function and compute their sum. Because you may wish to import this
module in the future, be sure to call main like this:
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if __name__ == '__main__':
main()

Reflection 12.14 Using the add method as a template, write a subtract method that
subtracts another Pair object from self.

In contrast to add, the scale method, as we defined it above, will modify the existing
object rather than create a new one:

def scale(self, scalar):
"""Multiply the values in self by a scalar value."""

self.set(self._a * scalar, self._b * scalar)

The scale method takes a numerical value (called a scalar in mathematics) as a
parameter and uses the set method to multiply it by the values of self._a and
self._b.

Reflection 12.15 How could you write the scale method without calling self.set?

Reflection 12.16 Add the scale method to your class and use it on some Pair objects
in your main function.

Let’s now revisit the centroid function, but modify it to handle a list of Pair

objects instead of a list of tuples. The changes are highlighted below in red.

def centroid(points):
"""Compute the centroid of a list of Pair objects."""

n = len(points)
if n == 0:

return None

sumPair = Pair() # sumPair is the Pair (0, 0)
for point in points:

sumPair = sumPair.add(point) # sumPair = sumPair + point
sumPair.scale(1 / n) # divide sumPair by n
return sumPair

We have replaced the two sumX and sumY variables with a single sumPair variable,
initialized to the pair (0, 0). Inside the for loop, each value of point, which is now
a Pair object, is added to sumPair using the add method. After the loop, we use
the scale method to multiply the point by 1 / n which, of course, is the same as
dividing by n.

To use this function on the homes list from earlier, we would need to assign homes

to be a list of Pair objects instead of tuples.

homes = [Pair(0.5, 5), Pair(3.5, 2), Pair(4, 3.5), Pair(5, 2), Pair(7, 1)]
central = centroid(homes) # central is a Pair object
print(central.get())
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Printing the value of the centroid is slightly more cumbersome because we have to
convert it to a tuple first with the get method, but we will fix that shortly.

Reflection 12.17 Add the code above to your main function. What is the value of the
centroid?

Special methods
The centroid method would be even more elegant if we could simply add Pair

objects with the + operator. We have already seen how the + operator can be used with
a variety of different classes, including numbers, strings and lists, so why not Pair
objects too? The ability to define operators differently for different classes is called
operator overloading . Operator overloading is an example of polymorphism , a
feature of object-oriented programming languages in which methods and operators
respond differently to objects of different classes. For example, consider the following
list of different objects:

>>> things = [42, 'eggs ', [1, 2, 3], 3.14]

If we multiply every item in this list by 2, the multiplication operator will act
differently for each item, appropriate to its class:

>>> for item in things:
print(item * 2)

84
eggs eggs
[1, 2, 3, 1, 2, 3]
6.28

When the + operator is used, a special method named __add__ is implicitly called
(like how __init__ is implicitly called by the constructor). In other words, an
assignment statement like

name = first + last

is identical to

name = first.__add__(last)

The ability to define this special method for each class is what allows us to use the +

operator in different ways on different objects. We can implement the + operator on
Pair objects by simply changing the name of our add method to __add__:

def __add__(self, pair2):
""" (docstring omitted) """

sumA = self._a + pair2._a
sumB = self._b + pair2._b
return Pair(sumA, sumB)

With this special method defined, we can carry out our previous example as follows:

duo1 = Pair(3, 8)
duo2 = Pair(4, 5)
sumPair = duo1 + duo2 # sumPair is assigned Pair(7, 13)
print(sumPair.get()) # prints "(7, 13)"
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Reflection 12.18 Incorporate the __add__ method into your Pair class and experiment
with adding Pair objects.

Reflection 12.19 The behavior of the - operator is similarly defined by the __sub__

method. Modify your subtract method so that it is called when the - operator is used
with Pair objects.

Similarly, we can define the * and / operators to implement multiplication and
division with Pair objects. The methods corresponding to these operators are
named __mul__ and __truediv__, respectively. (Recall that / is called true division
in Python while // is called floor division. The // operator is defined by the
__floordiv__ method.) Defining multiplication of a Pair object by a scalar quantity
is similar to the scale method, but we return a new Pair instead.

def __mul__(self, scalar):
"""Return a new Pair representing self multiplied by scalar."""

return Pair(self._a * scalar, self._b * scalar)

Reflection 12.20 How is the __mul__ method different from scale? What does each
return?

With this new method, we can easily scale pairs of numbers in one statement:

bets = Pair(150, 100)
double = bets * 2 # double is assigned Pair(300, 200)

This assignment statement is equivalent to

double = bets.__mul__(2)

(but we would never call it that way).

Reflection 12.21 Why would typing double = 2 * bets instead give an error?

Reflection 12.22 Using the __mul__ operator as a template, write the __truediv__

method to divide a Pair object by a scalar value.

Applying the new addition and (true) division operators to our centroid function
makes the code much more elegant!

def centroid(points):
"""Compute the centroid of a list of Pair objects."""

n = len(points)
if n == 0:

return None

sumPair = Pair()
for point in points:

sumPair = sumPair + point
return sumPair / n

You may have already noticed that printing a Pair object is not very helpful:
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>>> myPair = Pair(5, 7)
>>> print(myPair)
<__main__.Pair object at 0x1063551d0>

This is a default string representation of an object; it tells us that myPair is a Pair

object in the __main__ namespace, located in memory at address 1063551d0 (in
hexadecimal notation). To override the default printing behavior for a Pair, we need
to define another special method named __str__. The __str__ method is called
implicitly whenever we call the str function on an object. In other words, calling

str(myPair)

is identical to calling

myPair.__str__()

Since the print function implicitly calls str on an object, defining the __str__

method also dictates how print behaves. The following __str__ method for the
Pair class returns a string representing the pair in parentheses (like a tuple).

def __str__(self):
"""Return an '(a, b)' string representation of self."""

return '(' + str(self._a) + ', ' + str(self._b) + ')'

With this method added to the class, if we want to include a string representation
of a Pair object in a larger string, we can do something like this:

print('The current values are ' + str(myPair) + '.')

Also, just calling print(myPair) will now print (5, 7).

Reflection 12.23 Add the __str__ method to your Pair class. Then print some of the
Pair objects in your main function.

Comparison operators
We can also overload the comparison operators ==, <, <=, etc. using the following
special methods.

Operator == != < <= > >=

Method __eq__ __ne__ __lt__ __le__ __gt__ __ge__

We will start by defining how the == operator behaves by defining the special method
__eq__. It is natural to say that two pairs are equal if their corresponding values
are equal, as the following method implements.

def __eq__(self, pair2):
"""Return whether self and pair2 have the same values."""

return (self._a == pair2._a) and (self._b == pair2._b)
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Let’s also override the < operator. If duo1 and duo2 are two Pair objects, then duo1

< duo2 should return True if duo1._a < duo2._a, or if duo1._a == duo2._a and
duo1._b < duo2._b. Otherwise, it should return False.

def __lt__(self, pair2):
"""Return whether self < pair2."""

return (self._a < pair2._a) or \
((self._a == pair2._a) and (self._b < pair2._b))

Suppose we store the number of wins and ties in a Pair object for each of three
teams. If a team is ranked higher when it has more wins, and the number of ties is
used to rank teams with the same number of wins, then the comparison operators
we defined can be used to decide rankings.

wins1 = Pair(6, 2) # 6 wins, 2 ties
wins2 = Pair(6, 4) # 6 wins, 4 ties
wins3 = Pair(6, 2) # 6 wins, 2 ties

print(wins1 < wins2) # prints "True"
print(wins2 < wins3) # prints "False"
print(wins1 == wins3) # prints "True"

With the __eq__ and __lt__ methods defined, Python will automatically deduce
the outcomes of the other four comparison operators. However, we will still leave
their implementations to you as practice exercises.

Reflection 12.24 Add these two new methods to your Pair class. Experiment with some
comparisons, including those we did not implement, in your main function.

Indexing
When an element in a string, list, tuple, or dictionary is accessed with indexing, a
special method named __getitem__ is implicitly called. For example, if maxPrices
and minPrices are lists, then

priceRange = maxPrices[0] - minPrices[0]

is equivalent to

priceRange = maxPrices.__getitem__(0) - minPrices.__getitem__(0)

Similarly, when we use indexing to change the value of an element in a sequence, a
method named __setitem__ is implicitly called. For example,

temperatures[1] = 18.9

is equivalent to

temperatures.__setitem__(1, 18.9)

In the Pair class, we can use indexing with __getitem__ as an alternative to the
getFirst and getSecond methods to access the individual values in a Pair object.
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def __getitem__(self, index):
"""Return the first (index 0) or second (index 1) value in self.

For other index values, return None."""

if index == 0:
return self._a

if index == 1:
return self._b

return None

The __getitem__ method returns the value of self._a or self._b if index is 0 or
1, respectively. If index is anything else, it returns None.

Reflection 12.25 Is this behavior consistent with what happens when you use an erroneous
index with a list?

When we use an erroneous index with an object from one of the built-in classes, we
get a IndexError. We will look at how to implement this alternative behavior in
Sections 12.4 and 12.5.

As an example, suppose we have a Pair object defined as follows:

counts = Pair(12, 15)

With the new __getitem__ method, we can retrieve the individual values in counts

with

first = counts[0]
second = counts[1]

as these statements are equivalent to

first = counts.__getitem__(0)
second = counts.__getitem__(1)

Next, we can implement the __setitem__ method as follows.

def __setitem__(self, index, value):
"""Set the first (index 0) or second (index 1) item to value."""

if index == 0:
self._a = value

elif index == 1:
self._b = value

The __setitem__ method assigns self._a or self._b to the given value if index
is 0 or 1, respectively.

Reflection 12.26 What does the __setitem__ method do if index is not 0 or 1?

With the new __setitem__ method, we can assign a new value to counts with

counts[0] = 14
counts[1] = 16
print(counts) # prints "(14, 16)"

With these indexing methods defined, we can now also use indexing within other
methods, as convenient. For example, we can use indexing in the __add__ method
to get the individual values and in the set method to assign new values.
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def __add__(self, pair2):
""" (docstring omitted) """

sumA = self[0] + pair2[0]
sumB = self[1] + pair2[1]
return Pair(sumA, sumB)

def set(self, a, b):
""" (docstring omitted) """

self[0] = a
self[1] = b

Reflection 12.27 Add the two indexing methods to your Pair class. Then modify the
__lt__ method so that it uses indexing to access values of self._a and self._b instead.

You can find a summary of these and other special methods in Appendix A.9.

Exercises
12.2.1* Add a method to the Pair class named round that rounds the two values to

the nearest integers.

12.2.2* Suppose you are tallying the votes in an election between two candidates. Write
a program that repeatedly prompts for additional votes for both candidates,
stores these votes in a Pair object, and then adds this Pair object to a running
sum of votes, also stored in Pair object. For example, your program output
may look like this:

Enter votes (q to quit): 1 2
Enter votes (q to quit): 2 4
Enter votes (q to quit): q

Candidate 1: 3 votes
Candidate 2: 6 votes

12.2.3* Suppose you are writing code for a runner’s watch that keeps track of a list of
split times and total elapsed times. While the timer is running, and the split
button is pressed, the time elapsed since the last split is recorded in a Pair

object along with the total elapsed time so far. For example, if the split button
were pressed at 65, 67, and 62 second intervals, the list of (split, elapsed) pairs
would be [(65, 65), (67, 132), (62, 194)] (where a tuple represents a
Pair object). Write a function that is meant to be called when the split button
is pressed to update this list of Pair objects. Your function should take two
parameters: the current list of Pair objects and the current split time.

12.2.4. A data logging program for a jetliner periodically records the time along with
the current altitude in a Pair object. Write a function that takes such a list of
Pair objects as a parameter and plots the data using matplotlib.

12.2.5. Write a function that returns the distance between two two-dimensional points,
each represented as a Pair object.

12.2.6. Write a function that returns the average distance between a list of points, each
represented by a Pair object, and a given site, also represented as a Pair object.
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12.2.7. The file africa.txt, available on the book website, contains (longitude, latitude)
locations for cities on the African continent. The following program reads this
file into a list of Pair objects, find the closest and farthest pairs of points
in the list, and then plot all of the points using turtle graphics, coloring the
closest pair blue and farthest pair red. Finish this program by adding a method
named draw(self, tortoise, color) to the Pair class that plots a Pair

object as an (x,y) point, and writing the functions named closestPairs and
farthestPairs.

import turtle

class Pair:
FILL IN THE CLASS HERE FROM THE TEXT

def draw(self, tortoise, color):
pass

def closestPairs(points):
pass

def farthestPairs(points):
pass

def main():
points = []
inputFile = open('africa.txt', 'r', encoding = 'utf-8')
for line in inputFile:

values = line.split()
longitude = float(values[0])
latitude = float(values[1])
p = Pair(longitude, latitude)
points.append(p)

cpoint1, cpoint2 = closestPairs(points)
fpoint1, fpoint2 = farthestPairs(points)

george = turtle.Turtle()
screen = george.getscreen()
screen.setworldcoordinates(-37, -23, 37, 58)
george.hideturtle()
george.speed(0)
screen.tracer(10)
for point in points:

point.draw(george, 'black')
cpoint1.draw(george, 'blue')
cpoint2.draw(george, 'blue')
fpoint1.draw(george, 'red')
fpoint2.draw(george, 'red')
screen.update()
screen.exitonclick()

main()
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12.2.8. Rewrite the Pair class so that it stores its two values in a two-element list
instead. The way in which the class’ methods are called should remain exactly
the same. In other words, the way someone uses the class (the ADT specification)
must remain the same even though the implementation changes.

12.2.9* Implement alternative __mul__ and __truediv__ methods for the Pair class
that multiply two Pair objects. The product of two Pair objects pair1 and
pair2 is a Pair object in which the first value is the product of the first values
of pair1 and pair2, and the second value is the product of the second values
of pair1 and pair2. Division is defined similarly.

12.2.10. Implement the remaining four comparison operators (!=, <=, >, >=) for the Pair

class.

12.2.11. Rewrite your linearRegression function from Exercise 7.6.1 so that it takes a
list of Pair objects as a parameter.

12.2.12. Add a __str__ method to the president class that you wrote in Exercise 12.1.10.
The method should return a string containing the president’s name and political
party, for example, 'Kennedy (D)'. Also, write a function that, given a list
of president objects and a state abbreviation, prints the presidents in this list
(indirectly using the new __str__ method) that are from that state.

12.2.13. Add a __lt__ method to the president class that you wrote in Exercise 12.1.10.
The method should base its results on a comparison of the presidents’ ages.

12.2.14. Add a __str__ method to the Senator class from Exercise 12.1.12 that
prints the name of the senator followed by their party, for example,
'Brown, Sherrod (D)'. Also modify your program from part (b) so that it
uses the new __str__ method.

12.2.15. Rewrite the distance function from Exercise 12.2.5 so that it uses indexing to
get the first and second values from each pair.

12.2.16. Write a class that represents a rational number (i.e., a number that can be
represented as a fraction). The constructor for your class should take a numerator
and denominator as parameters. In addition, implement the following methods
for your class:

• arithmetic: __add__, __sub__, __mul__, __truediv__

• comparison: __lt__, __eq__, __le__

• __str__

When you are done, you should be able to perform calculations like the following:

a = Rational(3, 2) # 3/2
b = Rational(1, 3) # 1/3
total = a + b
print(total) # should print 11/6
print(a < b) # should print False

*12.3 A FLOCKING SIMULATION
This section is available on the book website.
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*12.4 A STACK ADT
This section is available on the book website.

*12.5 A DICTIONARY ADT
This section is available on the book website.

12.6 SUMMARY AND FURTHER DISCOVERY
When we design an algorithm using an object-oriented approach, we begin by
identifying the main objects in our problem, and then define abstract data types for
them. When we design a new ADT, we need to identify the data that the ADT will
contain and the operations that will be allowed on that data. These operations are
generally organized into three categories: constructors, accessors, and mutators.

In an object-oriented programming language like Python, abstract data types are
implemented as classes. A Python class contains a set of functions called methods
and a set of instance variables whose names are preceded by self within the class.
The name self always refers to the object on which a method is called. Bundling
instance variables and methods together in a class, and restricting public access to
the instance variables, is known as encapsulation, a key feature of object-oriented
programming.

A class can also define the meaning of several special methods that dictate how
operators and built-in functions behave on the class. These special methods partially
implement another feature of object-oriented languages called polymorphism, which
refers to the ability of a programming language to do different things when the same
method is called on objects from different classes.

The manner in which a class implements the specification given by the abstract data
type is called a data structure. There may be many different data structures that
one can use to implement a particular abstract data type. For example, the Pair
ADT from the beginning of this chapter may be implemented with two individual
variables, a list of length two, a two-element tuple, or a dictionary with two entries.

To illustrate how classes are used in larger programs, we designed an agent-based
simulation that simulates a viral epidemic in the first section and then a more
complex simulation of flocking birds or schooling fish later on. These simulations
consist of two main classes that interact with each other: an agent class and a
class for the world that the agents inhabit. Agent-based simulations can be used
in a variety of disciplines including sociology, biology, economics, and the physical
sciences.

Finally, we designed two collection classes, a Stack and a Dictionary, to demonstrate
how more complex classes can be implemented in Python.
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Notes for further discovery
This chapter’s epigraph is from one of the first papers written by Barbara Liskov,
in 1974 [35]. In 1968, Dr. Liskov was one of the first women to earn a Ph.D. in
computer science in the United States. She has taught computer science at MIT
since 1972, and was honored with the Turing Award in 2008.

The boids model was created by Craig Reynolds [54]. For more information on
agent-based simulations, we suggest looking at The Computational Beauty of Nature
by Gary Flake [17], Think Complexity by Allen Downey [13], Agent-based Models
by Nigel Gilbert [19], and Introduction to Computational Science by Angela Shiflet
and George Shiflet [61].

*12.7 PROJECTS
This section is available on the book website.
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data structure, 407, O12.4-1
database, 409, 411, 437, P12.2-1
De Morgan’s laws, 118, 185
debugging, 37
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def, 67
default argument, 488
degree distribution, 462
degrees, 88
del operator, O12.5-6
dendrite, P8.3-1
depth-first search, 400, 457, 467, O12.4-6,

P9.2-3
design by contract, 199–203
deterministic, 165
dict class, 99, 311–325, 339, 353, 446,

O7.5-9
in operator, 312
keys, 314
values, 315

dictionary, 311
dictionary ADT, O12.5-1–P10.2-4
Difference Engine, 106
difference equation, 390, O5.2-1

coupled, O4.4-8
differential equation, O4.4-7
diffusion, O4.4-11, P4.3-1
diffusion-limited aggregation, P8.3-1
digital humanities, see text analysis
Dijkstra, Edsger, 46
disease, 443, O6.8-4, P9.3-2
distance, 94, 171, 451, 458, 496, 498,

O12.3-4, P12.1-2
distribution

degree, see degree distribution
probability, see probability distribution

divide and conquer algorithm, 396, 433
divide by zero error, 119
division method, O12.5-2
DNA, 123, 486, O6.8-1, P7.7-2

profile, 324
docstring, 78, 201
dot plot, 272, O6.8-7
Downey, Allen, 468, 500
Doyle, Sir Arthur Conan, 333
duplicates, removing, O7.5-1

earthquake, 325, 341, 409, 423, 425
economics, 104, P7.3-1
education, P7.2-1
efficiency, 37, 39, 110, 242, 295, 393, 412,

416, 422, 430, 437, see also time
complexity

election, 496, P7.6-1
Electronic Frontier Foundation, 334

elementary step, 40, O6.7-1
embryo, O6.8-14
emergence, 342, 443, O12.3-1, P8.2-2
employment, P7.2-1
empty string, 224
encapsulation, 53, 474
encoding, 113, 241, 265
ENIAC, O5.2-1
epidemic, 463
epidemic simulation

agent-based, 470
cellular automata, P8.4-1
network, P11.2-1
population model, O4.4-8

epidemiology, P11.2-1
epoch, O7.5-10
equilibrium, P8.2-1
error, 37, 111, 120, 133, 158, see also

exception, O4.4-7, P5.1-2
divide by zero, see divide by zero error
index, see index error
name, see name error
overflow, see overflow
syntax, see syntax error

escape character, 227
Escherichia coli, O6.8-12, P6.2-1
ethics, 37, 334
Euclid’s GCD algorithm, 386
eukaryote, O6.8-3
Euler’s method, O4.4-7
Euler’s number, 93, OA-1, P8.2-1
event loop, P12.1-4
evolution, 463, O6.8-1, P7.7-1
exception, 202, O12.4-3

AssertionError, 203
catching, 207, 286
FileNotFoundError, 240
IndexError, 251, 495
KeyError, O12.5-4
NameError, 31, 98
raising, O12.4-3
SyntaxError, 29, 58, 180
TypeError, 201
ZeroDivisionError, 119

executable, 11
executing algorithms, 10
exhaustive search, O10.5-2
exponential growth, 162, P4.4-3
exponential-time algorithm, O10.5-2
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external sorting algorithm, 437

Facebook, 444, 464, 466, P11.2-1
factorial, 148, 386, P7.7-1
FASTA, O6.8-9
Fellows, Michael R., 1, 46
ferromagnetism, P8.2-1
fetch and execute cycle, 111
Fibonacci numbers, 404, O4.4-11
file object, 239

close, 240
open, 239
read, 240
readline, O6.8-10
seek, 263
write, 242

file system, 238
files, 238

closing, 240, 242
opening, 239
reading, 240
reset file pointer, 263
writing, 242

finite state machine, 124
fish, 130, 150, 155, O12.3-1
fitness, P7.7-2
flag variable, 172, 186, P5.2-2
Flake, Gary, 500
Flatland, 335, 363
Flesch-Kincaid reading level, 6, 25
Fletcher’s algorithm, 249
float class, 26
float function, 27, 327
floating point notation, 114
flocking, O12.3-1
flood fill algorithm, P9.2-3
flooding, P7.5-1
flower, 55
fluid, 166, P8.3-1
for loop, 58, 225, 241, 286, 315
forensics, P12.1-1
formal grammar, O9.6-1
formal parameters, see parameters
format function, 146, 262
format string, see format function
fractal, 367

Brownian tree, P8.3-1
dragon curve, O9.6-4
Hilbert curve, 374
Koch curve, 369

Lindenmayer system, O9.6-4
quadratic Koch curve, 373
Sierpinski carpet, 375
Sierpinski triangle, 373
tree, 367

function, 24, 67, 78, 87
function call, 27
function invocation, see function call
functional abstraction, 5–6, 24, 66, 106, 469
functional decomposition, 8, 55, 223

game, 107, 165, 210, 388, 418, P11.3-1
Game of Life, 342
garbage collection, 30
gas, P8.3-1

greenhouse, P7.1-1
ideal, see ideal gas
natural, P9.3-1

Gaussian distribution, see normal
distribution

gene, O5.3-2, P6.2-1
Hox, see Hox gene

genetic algorithm, P7.7-2
genetic code, O6.8-3
genome, O6.8-3, P7.7-1
genomics, O6.8-1
geology, 322, 325, P9.3-2
geometric mean, 148
gerrymandering, P9.2-1
GIF image format, 356, OA-7
gigabyte (GB), 96, 113
gigahertz (GHz), 96, 111
Gilbert, Nigel, 363, 500
global, 80
global namespace, 101
Global Positioning System, P12.1-1
global variable, 70, 78, 80
globals function, 101
Google, 106, 224
GPA, 38, 96, 193, O7.6-1, P7.4-1
grades, 38, 96, 193, 196, 485
grammar

formal, see formal grammar
graph, 444

connected, 457, 467
random, see random graph

grayscale, 353, 357, 361
greatest common divisor (GCD), 386
grid, 166, 342, 353, 400, 459, O12.3-1,

P12.3-1
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growth rate, 130, 143, 147, 160, 330, O4.4-1

hailstone numbers, 217
half-life, O4.4-12
Hall, Monty, 178
halting problem, 126
Hamming distance, 279
Harel, David, 127
harmonic series, O4.5-2
hash function, O12.5-8, P12.2-1
hash table, 315, 409, O12.5-2–P10.2-4
Hawking, Stephen, 129, 164
Hello, world, 24, 47
help function, 82, O12.5-3
hertz, 111
heuristic, O10.5-2, P7.7-1

genetic algorithm, see genetic algorithm
k-means clustering, see k-means

clustering
hexadecimal, 114, 493
high performance computing, 109
Hilbert curve, 374
Hillis, Danny, 127
histogram, 173, 178, 321, O5.3-2, P7.7-4
Hodges, Andrew, 128
Holmes, Sherlock, 285, 333
House of Representatives, P9.2-1
Hox gene, O6.8-14
HTML, see Hypertext Markup Language
hub, 462, 466, P11.3-3
Huffman coding, 250
Hypertext Markup Language, 243

ideal gas, 95, O5.3-1
IDLE, 23, 47
Idle, Eric, 47
if, 167
if-then statement, see conditional
Image class, 357, OA-7

get, 357, OA-7
height, 357, OA-7
save, 358, OA-7
set, 358, OA-7
show, 358, OA-7
update, OA-7
width, 357, OA-7

image file formats, 356
BMP, see BMP image format
GIF, see GIF image format
JPEG, see JPEG image format

image filter, 355–362
image module, 357

mainloop, OA-7
images, digital, 353–362
immutable, 224, 319
import, 52, 78, 150

from, 234
in operator, 226, O12.5-8

dictionary, 312
list, 272, O7.5-3
string, 226

income, 140, 180, P12.2-1
increment, 31
independent cascade model, P11.1-1
index error, 252
index variable, 58
indexing, 251, 288, 494

negative, see negative indexing
indirect competition, O4.4-13
infection, O4.4-8, P11.2-1
infinite loop, 157, 202
infinity, see math module, inf
initial condition, O4.4-1
input function, 31, 211
input/output, 3
insertion sort algorithm, 427–433
Instagram, 443
instance variable, 51, 469

private, 474
int function, 27, 211
integer, 26
Intel Corporation, 113, O10.5-2
intelligence, 107, O12.3-1, P12.3-1
interest rate, 93, 149, 154, 159, 196, 217,

P4.2-1
internal sorting algorithm, 437
Internet, 4, 110, 165, 243, 443, 458
Internet Movie Database (IMDb), P11.3-1
interpreter, 24, 70, 78, 80, 102, 108
interval notation, 167
intractable, O10.5-1
investment, 149, 154, 196, P4.2-2
Ising model, P8.2-1
isinstance function, 201
isotope, O4.4-4, P7.1-1
iteration, 16, 57, 376

over a file, 241
over a list, 62, 268, 286
over a string, 225
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over dictionary keys, 315
over indices, 258, 289

Jockers, Matthew L., 283
Johnson, Deborah, 334
Johnson, Steven, 363
Johnston, Leslie, 221, 282
JPEG image format, 356

k-means clustering, O7.7-1
Kasparov, Garry, 107
Keeling curve, P7.1-3
Keeling, Charles David, P7.1-3
Kermack, William, O4.4-8
key, 311, 339, 409, 411, 446, O12.5-1, P10.2-1
keyword argument, 153, 329
Keyword in Context (KWIC), 282
keywords, 29
kilobyte (KB), 113
Knuth, Donald E., 1, 46, 49, 106
Koch curve, 369, O9.6-4

Lamm, Ehud, 363
latitude, 326, 330, 331, 341, 423, 497,

P12.1-1
Lazere, Cathy, 283
Lehmer peudorandom number generator,

O5.2-1
Lehmer, Derrick, O5.2-1
Leibniz series, O4.5-3
Leibniz, Gottfried, O4.5-3
lemmatization, 222
Lempel-Ziv-Welch algorithm, 250, 356
len function, 231, 286
Let’s Make a Deal, 178
Library of Congress, 33, 221
LIFO, O12.4-1
limited precision, see precision
Lindenmayer system, O9.6-1–P9.1-5

dragon curve, O9.6-4
Koch curve, O9.6-4
tree, P9.1-2

Lindenmayer, Aristid, 406
line continuation character, 98
linear growth, 161
linear regression, 498, O7.6-1
linear search algorithm, 392, 404, 408, 440,

O6.7-3
linear-time algorithm, 42, 282, 395, 431,

O7.5-9

LinkedIn, 444
liquid, 95, P9.3-1
Liskov, Barbara, 500, O12.4-1
list, 62, 418, see also list class

of lists, 337–342, 445
list accumulator, 152, 295–297, 305, O7.5-4
list class, 150, 273, 286–310, 376, 407,

OA-6
append, 150, 337, 453, OA-6
clear, 436, OA-6
concatenation operator +, 302
copy, 301, OA-6
count, OA-6
extend, O7.5-7, P10.2-3
index, 425, OA-6
insert, 304, 429, OA-6
pop, 304, 429, 453, OA-6, P9.1-1

in a loop, 304
remove, 305, OA-6
repetition operator *, 302
reverse, OA-6
sort, 303, 414, OA-6, P12.2-3

reverse order, 316
list comprehension, 305–307
list function, 138
loan, 149, O4.4-1, P4.2-1
local variable, 70, 98
locals function, 98
logarithm, 93, OA-1, P8.2-1
logarithmic-time algorithm, 413, 416, 417
logic gates, O3.4-5
logical operators, see Boolean operators
Lonesome George, 52, 106
longitude, 326, 330, 331, 341, 423, 497,

P12.1-1
loop, 11, 57, 155
Lotka-Volterra model, P4.4-1
Lovelace, Ada, 49, 106
Luhn algorithm, 293

MacCormick, John, 441
machine cycle, see fetch and execute cycle
machine language, 24, 108
machine learning, 318
macOS, 238
Madhava of Sangamagrama, O4.5-6
magic numbers, 83, O12.5-4
main function, 78
Mandelbrot, Benôıt, 365, 406
mantissa, 120
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market, 104, 139, 165, P4.3-1
math module

acos, OA-1
asin, OA-1
atan, OA-1
atan2, OA-1
cos, OA-1
degrees, OA-1
e, OA-1
exp, OA-1
inf, OA-1
log, OA-1
pi, OA-1
radians, OA-1
sin, OA-1
sqrt, OA-1
tan, OA-1

math module, 88, OA-1
atan, P5.2-1
cos, 88
degrees, P5.2-2
e, 89
exp, 93, O4.5-3
inf, 454
log, P4.1-2
pi, 89, 91
radians, 88
sin, 146
sqrt, 88, 171, O4.5-6

MATLAB, 150
matplotlib.pyplot module, 150, OA-4

bar, OA-4
hist, OA-4
legend, 153, OA-4
plot, 152, OA-4
scatter, 273, OA-4
title, OA-4
xlabel, 153, OA-4
xticks, 321, 330, 331, OA-4, P7.2-2
ylabel, 153, OA-4
yticks, OA-4

max function, 39
Mayer, Marissa, 407, 441
McKendrick, Anderson, O4.4-8
mean, 286, 293, 308, 460, O5.3-1, P7.3-1

geometric, see geometric mean
megabtye (MB), 113
Melville, Herman, O6.7-3
meme, O4.4-11, P11.1-1

memory, 98, 109
memory address, 53, 109, 493
memory cell, 29, 98, 109, 113, 251
merge sort algorithm, 433–441
Mersenne twister, O5.2-4
meteorite, 330
method, 51, 469
Metropolis algorithm, P8.2-1
microsatellite, O6.8-12
Milgram, Stanley, 468
Miller, Keith, 219, 334
min function, 39
Mlodinow, Leonard, 219
Moby Dick, 240, 266, O6.7-3
model, 102, 125, 129, 166, O4.4-5, P4.4-1
module, 52, 166
modulo operator, 121
Mohs hardness scale, 322
mole, 95
molecule, 166, O3.4-5, P8.3-1
Monte Carlo simulation, 171–175, 178, 179,

215, 217, 310, O5.3-4, P9.3-2
Monty Python’s Flying Circus, 23
Moore’s Law, O10.5-2
Moore, Gordon, O10.5-2
movie, 485, O12.5-9, P11.3-1
moving average, see smoothing data
mutable, 297

n logn-time algorithm, 438
n-grams, 277, 317
name error, 31
namespace, 98, 234, 300, 493
narrow escape problem, P5.2-1
natural language processing, 224, 318
Natural Language Toolkit (NLTK), 224
negative indexing, 251
neighborhood, 342, 346, 352, 447, 459,

O12.3-4
nested loop, 276, 282, 347, 350, 356, 421,

426, 429, 460, O7.5-10
network, 443

actors, P11.3-1
airline, 463
data, 109
electrical, 444
epidemic, P11.2-1
neural, see neural network
simulation on a, P11.1-1
social, see social network
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neural network, 363, 444, 458
newline character, 35, 98
Newton’s method, see Babylonian method
Nicholson-Bailey model, P4.1-1
Nilakantha series, O4.5-7
NLP, see natural language processing
Noble, Safiya Umoja, 47
None, 28, 82, 173, 286, 303, O12.5-3
normal distribution, 175, O5.3-1, P5.2-1
normalization, 222
NP-complete, O10.5-3
nucleotide, O6.8-1
numerical analysis, O4.5-1
NumPy, 306, 349

O’Neil, Cathy, 47, 333
object, 52, 285, 469
ocean, 293, 334, P7.1-1
oil, P9.3-1
Olson, Brian, P9.2-1
open reading frame (ORF), P6.2-1
operating system, 108
operation, see abstract data type
operator overloading, 491
operator precedence, 25, 186
ord function, 248
ordered pair, 487
ORF, see open reading frame (ORF)
os module

access, 240
os.path module

isfile, 240
overflow, 119

P=NP problem, O10.5-3
Pair ADT, 487
Palaeocene-Eocene Thermal Maximum

(PETM), P7.1-3
palindrome, 380, O12.4-5
pandas, 339
pandemic, see epidemic
parallel lists, 327, 423
parallel programming, 109
parameters, 69, 87
parasitoid, P4.1-1
Parberry, Ian, 1, 46
parity checking, 255
Park, Stephen, 219
Park-Miller PRNG, O5.2-2
particle, 66, P8.3-1

password, 194, 322, 382
percolation, P9.3-1
Petzold, Charles, 127
phase transition, P8.2-1
phone tree, 45
physics, P8.2-1
pixel, 118, 353, O10.5-2, P9.2-2
plagiarism, 277
plurality voting, P7.6-1
political science, 485, P5.1-1
polling, P5.1-1
Polya, George, 2
polymorphism, 491
polynomial-time algorithm, 441, O10.5-3
population, 123, 129, 330, P11.2-1
population dynamics simulation, 130–136,

O4.4-1
postcondition, 201
power set, 387
precision

limited, 119, 354, O3.4-2
unlimited, 119

precondition, 200
predator-prey model, P4.4-1
predicate function, 182
prime number, 426, O12.5-2
print function, 28, 135
privacy, 334
private method, O12.5-3
PRNG, see pseudorandom number generator
probability distribution, O5.3-1

chi-squared, see chi-squared distribution
Gaussian, see normal distribution
normal, see normal distribution
uniform, see uniform distribution

probability mass function, 320
problem, 3, 129, 365
processor, 109
profit, 83, 140, 154, 159, 397, 404, O7.5-11,

P7.3-1
program, 23
programming language, 23
Project Gutenberg, 240, 245
prokaryote, O6.8-3, P6.2-1
promoter, O6.8-2
prompt, 24
protein, 443, O6.8-13
pseudocode, 10, O9.6-2
pseudoplasmodium, P12.3-1
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pseudorandom number generator, 166,
O5.2-1

Pythagorean theorem, O12.3-6
Python shell, 23

quadratic growth, 162
quadratic Koch curve, 373
quadratic-time algorithm, 282, 423, 432, 433,

439, O7.5-7
query, 31, 409, 423, O6.8-10, P10.1-1
queue, 453, O12.4-6

radians, 88
radiocarbon dating, O4.4-12
raise, O12.4-3
RAM, see memory
random graph, 464
random module, 74, 166, O5.3-1

choice, OA-6
gauss, OA-4
random, 166, OA-4
randrange, OA-4
sample, OA-6
seed, OA-4
shuffle, OA-6
uniform, O5.3-4

random number generator, 166
true, 166, 219

random walk, 66, 166, O5.3-4, P5.2-1
biased, 177

randomness, 165, O5.2-3
range function, 58, 137, 144
rank, 494, P7.2-2
rate

birth, O4.4-13, P4.4-1
clock, see clock rate
death, O4.4-13, P4.4-1
decay, O4.4-4
growth, see growth rate
infection, O4.4-9
interest, see interest rate
product adoption, P4.3-1
recovery, O4.4-8
sampling, 96
streamflow, P7.5-2
unemployment, see unemployment rate

reading level, 4
recurrence relation, 390, 393, see also

difference equation, O4.4-1
closed form, 395

recursion, 365–405, 415–417, 433–441
register, 109
regression analysis, O7.6-1
regression testing, 207, 234
relational database, 409
relational operators, see comparison

operators
remainder, 121, O12.4-4
repetition operator, 34
reproduction number, 160
Resnick, Mitchell, 363
return, 90, 192
return value, 24, 87
reversing a string, O12.4-3
Reynolds, Craig, 500, O12.3-1
RGB color model, 60, 353
RNA, O6.8-2
RNG, see random number generator
robot, 400, P7.7-1
rock-paper-scissors-lizard-Spock, 217
round function, 28

salary, 321
sampling, P7.1-2
satellite data, 423, P10.2-4
scalability, 42, O6.7-4
scale-free networks, 462
Schelling model, 470, P8.1-1
Schelling, Thomas, P8.1-1
Schutt, Rachel, 333
scope, 70, 98
Screen class, 57, OA-3

bgcolor, OA-3
bgpic, 62, OA-3
colormode, OA-3
exitonclick, 57, OA-3
mainloop, 74, OA-3
numinput, OA-3
onclick, 74, OA-3
setup, 62, OA-3
setworldcoordinates, 62, 143, 147,

O12.3-11, P7.7-2
textinput, OA-3
tracer, O12.3-11
update, OA-3

search, 260, 407
binary, see binary search algorithm
binary search tree, P10.2-2
breadth-first, see breadth-first search
database, 409
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depth-first, see depth-first search
hash table, O12.5-4, P12.2-1
linear, see linear search algorithm
open reading frames, P6.2-1
table, 338
web, 4, 407

secondary storage, 110
segregation, P8.1-1
selection sort algorithm, 418–427
self-documenting, 28, 84
self-similarity, 365, 375, 415, P10.2-5
Senate, 485, 498
sentiment analysis, 318
sequential search, see linear search algorithm
set class, 263
Shakespeare, William, 365, 406
Shasha, Dennis, 283
shell, see Python shell
Shiflet, Angela, 164, 500
Shiflet, George, 164, 500
short circuit evaluation, 183, 381
side effect, 78, 201
Sierpinski carpet, 375
Sierpinski triangle, 373
Sieve of Eratosthenes, 426
sign and magnitude, O3.4-2
simulation, 129

agent-based, see agent-based simulation
cellular automaton, see cellular

automaton
network, see network, simulation on a
population dynamics, see population

dynamics simulation
SIR model, O4.4-8, P11.2-1
SIS model, O4.4-12
slicing, 252, 288
small-world network, 458
smoothing data, 294, P7.1-2
snake_case, 84
Sneetches, P8.1-1
social network, 136, 166, 444, 446, P11.1-1
sociology, P12.2-2
sorting

insertion, see insertion sort algorithm
merge, see merge sort algorithm
selection, see selection sort algorithm
Timsort, see Timsort

sparse, 458, O12.3-2
special methods, 486–498, OA-8

__add__, 491, OA-8
__contains__, O12.5-8
__delitem__, OA-8
__eq__, 493, OA-8
__floordiv__, 492, OA-8
__ge__, 493, OA-8
__getitem__, 494, O12.5-5
__gt__, 493, OA-8
__init__, 473, 488, OA-8
__le__, 493, OA-8
__len__, OA-8
__lt__, 493, 494, OA-8
__mul__, 492, OA-8
__ne__, 493, OA-8
__setitem__, 494, O12.5-5
__str__, 493, OA-8
__sub__, 492, OA-8
__truediv__, 492, OA-8

SQL, 409
stack, O12.4-1, P9.1-1
standard deviation, O5.3-5, P7.3-1
start codon, O6.8-3, P6.2-1
statement, 10
statistics, descriptive, 286–292, 486
stemming, 222
Stewart, Ian, 283
stop codon, O6.8-3, P6.2-1
stop words, 222, 309, 316
str class, 222–282, OA-5

concatenation operator +, 27
count, OA-5
endswith, 237, OA-5
find, 257, OA-5
join, 309
lower, 224, 273, OA-5
lstrip, OA-5
repetition operator *, 34
replace, 224, OA-5
rstrip, 241, OA-5
split, 228, 327, OA-5
startswith, 244, OA-5
strip, OA-5
upper, OA-5

str function, 27
strategy, 215, 217, P11.2-2
streamflow, P7.5-2
string, 24, 61, see also str class
string accumulator, 225, 281, O6.8-5
Strogatz, Steven, 468
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subproblem, 7, 376, 379, 380, 388, 392, 396,
400, 415, P10.2-5

Super Diego, 52, 106
supercomputer, 109
swap, 21, 34, 96, 308, 419, 423, 425, 433,

P7.7-3
swarm intelligence, O12.3-1
syntax, 23
syntax error, 29
sys module

setrecursionlimit, P9.2-6

tab character, 98
tab-separated values, 330, 331, 485, O7.7-7,

P11.3-1
technology, 5, O4.4-7
tectonic plates, 325
temperature, 34, 95, 97, 194, 293, 330, 334,

336, P7.1-1
test case, 205
tetrahedron, 88
text analysis

bag of words model, 317
bigrams, 317
dot plot, 272
n-grams, 277, 317
normalization, 222
reading level, 6, 25
sentiment analysis, 318
stop words, 309, 316
tokenization, 222
vocabulary, O7.5-9

threads, 109
three-dimensional, O6.8-2, P12.4-1
threshold, P9.3-3
time complexity, 40, 162, O6.7-1

asymptotic, see asymptotic time
complexity

best-case, 431, O6.7-1
constant, see constant-time algorithm
linear, see linear-time algorithm
logarithmic, see logarithmic-time

algorithm
n logn, see n logn-time algorithm
quadratic, see quadratic-time algorithm
worst-case, O6.7-1

time module, 97, O6.7-9
Timsort, 433
tipping point, see phase transition
tkinter module, 357, 481

token, 222
tokenization, 222
top-down design, 8
tortoise, 52
torus, 479
tour, P7.7-1
Tower of Hanoi, 388
trace table, 11, 16
tracking, 331, P12.1-1
tractable, O10.5-1
tradeoff, 120, O4.4-6
transcription, O6.8-2
transistor, O10.5-2, P9.3-2
translation, O6.8-2
transportation, P12.1-1
traveling salesperson problem (TSP), P7.7-1
tree, 9, 238, 365

binary search, see binary search tree
Brownian, see Brownian tree
fractal, see fractal, tree
functional decomposition, see functional

decomposition
Lindenmayer system, see Lindenmayer

system, tree
phone, see phone tree
phylogenetic, O6.8-4

triangular numbers, 163
tribbles, 160
trigonometry, 88, O12.3-6, P8.3-2
truth table, 115
try/except statements, 207, 286
tuple, 62, 319, 322, 345, 353, 374, 423, 488,

489, 493, O7.5-11, P7.7-1
as dictionary key, 353, O12.3-2

Turing Award, 47, 106, 500, O12.4-1
Turing complete, 126
Turing machine, 125, O9.6-1
Turing, Alan, 47, 125, 128
Turtle class, 51, OA-2

backward, OA-2
begin_fill, 61, OA-2
circle, OA-2
distance, 66
dot, 62, OA-2
down, 71, OA-2
end_fill, 61, OA-2
fillcolor, 61, OA-2
forward, 53, OA-2
getscreen, 57, OA-2
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goto, 62, 142, OA-2
heading, 55, OA-2
hideturtle, OA-2
home, OA-2
left, 55, OA-2
pencolor, 60, OA-2
pensize, 71, OA-2
position, 53, OA-2
right, 71, OA-2
setheading, OA-2
speed, 57, OA-2
towards, 66
up, 62, 71, OA-2
xcor, OA-2
ycor, OA-2

turtle graphics, 49
turtle module, 52
two’s complement, O3.4-2
type, 26
type function, 26

unemployment rate, 297, P7.2-1
Unger, Ron, 363
Unicode, 248, O12.5-8
uniform distribution, O5.3-1
uniform resource locator, 243
unit testing, 204, 233

doctest module, 205
unittest module, 205

universal, see Turing complete
URL, see uniform resource locator
UTF-8, 241, 248

vaccination, O4.4-12, P11.2-1
vampire, 154, 160
van Rossum, Guido, 23, 47
variable, 12, 24
variance, 287, 291, O7.6-6, P9.2-2
vector, 306, 487, O12.3-5, P12.4-1

unit, O12.3-8
velocity, O12.3-5, P12.4-1
Viète’s product, O4.5-7
virtual machine, 112
virus, O4.4-8, P11.2-1
vocabulary, O7.5-9
voting, P7.6-1
vpython module, P8.3-2

Wallis product, O4.5-7

while loop, 155–160, 212–218, 378, 412, 429,
456, O12.3-6, P5.2-2

whitespace characters, 245
wind chill, 34

XML, P6.1-1

zebra, Burchell’s, 330
zodiac, Chinese, 197
zombie, 153, 159
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