
*7.6 LINEAR REGRESSION ⌅ O7.6-1

*7.6 LINEAR REGRESSION

Suppose you work in college admissions, and would like to determine how well various
admissions data predict success in college. For example, if an applicant earned a 3.1 GPA in
high school, is that a predictor of cumulative college GPA? Are SAT scores better or worse
predictors?

Analyses such as these, looking for relationships between two (or more) variables, are called
regression analyses . In a regression analysis, we would like to find a function or formula that
accurately predicts the value of a dependent variable based on the value of an independent
variable. In the college admissions problem, the independent variables are high school GPA
and SAT scores, and the dependent variable is cumulative GPA in college. A regression
analysis would choose one independent variable (e.g., high school GPA) and try to find a
function that accurately predicts the value of one dependent variable (e.g., college GPA).
Regression is a fundamental technique of data mining , which seeks to extract patterns
and other meaningful information from large data sets.

The input to a regression problem is a data set consisting of n pairs of values. The first value
in each pair is a value of the independent variable and the second value is the corresponding
value of the dependent variable. For example, consider the following miniscule data set.

High school GPA College GPA

3.1 2.8
3.8 3.7
3.4 3.2

We can also think of each row in the table, which represents one student, as an (x,y) point
where x is the value of the independent variable and y is the value of the dependent variable.

The most common type of regression analysis is called linear regression . A linear regression
finds a straight line that most closely approximates the relationship between the two variables.
The most commonly used linear regression technique, called the least squares method, finds
the line that minimizes the sum of the squares of the vertical distances between the line and
the data points. This is represented graphically below.

The red line segments in the figure represent the vertical distances between the points and
the dashed line. This dashed line represents the line that results in the minimum total
squared vertical distance for these points.

Mathematically, we are trying to find the line y =mx + b (with slope m and y-intercept b)

Copyright Taylor and Francis, 2021

O7.6-2 ⌅ Discovering Computer Science, Second Edition

for which
�(x,y)
(y − (mx + b))

2

is the minimum. The x and y in this notation represent any one of the points (x,y) in our
data set; (y−(mx+ b)) represents the vertical distance between the height of (x,y) (given by
y) and the height of the line at (x,y) (given by mx + b). The uppercase Greek letter sigma
(⌃) with (x,y) below it means that we are taking the sum over all points (x,y) in our data
set.

To find the least squares line for a data set, we could test all of the possible lines, and
choose the one with the minimum total squared distance. However, since there are an infinite
number of such lines, this “brute force” approach would take a very long time. Fortunately,
the least squares line can be found exactly using calculus. The slope m of this line is given
by

m =
n ⋅∑(xy) −∑x ⋅∑y

n ⋅∑ (x
2) − (∑x)

2

and the y-intercept b is given by

b =
∑y −m∑x

n
.

Although the notation is these formulas may look imposing, the quantities are really quite
simple:

• n is the number of points

• ∑x is the sum of the x coordinates of all of the points (x,y)

• ∑y is the sum of the y coordinates of all of the points (x,y)

• ∑(xy) is the sum of x times y for all of the points (x,y)

• ∑(x2
) is the sum of the squares of the x coordinates of all of the points (x,y)

For example, suppose we had only three points: (5,4), (3,2), and (8,3). Then

• ∑x = 5 + 3 + 8 = 16

• ∑y = 4 + 2 + 3 = 9

• ∑(xy) = (5 ⋅ 4) + (3 ⋅ 2) + (8 ⋅ 3) = 20 + 6 + 24 = 50

• ∑(x2
) = 52

+ 32
+ 82
= 25 + 9 + 64 = 98

Therefore,

m =
n ⋅∑(xy) −∑x ⋅∑y

n ⋅∑ (x
2) − (∑x)

2 =
3 ⋅ 50 − 16 ⋅ 9

3 ⋅ 98 − 162
=

3

19

and

b =
∑y −m∑x

n
=

9 − (3�19) ⋅ 16

3
=

41

19
.

Plugging in these values, we find that the formula for the least squares line is

y = �
3

19
�x +

41

19
,

which is plotted below.

*7.6 LINEAR REGRESSION ⌅ O7.6-3

Figure 1 High school GPA and corresponding college GPA with regression line.

41/19

3

19

Given these formulas, it is fairly easy to write a linearRegression function to find the
least squares regression line. Suppose the function takes as parameters a list of x coordinates
named x and a list of y coordinates named y (just like pyplot.plot). The x coordinates
are values of the independent variable and the y coordinates are the values of the dependent
variable. We can use four accumulators to compute the four sums above. For example, ∑x

can be computed with

n = len(x) # number of points
sumx = 0 # sum of x coordinates
for index in range(n):

sumx = sumx + x[index]

Exercise 7.6.1 asks you to complete the implementation of this function.

Once we have a function that performs linear regression, it is fairly simple to plot a set of
points with the regression line:

O7.6-4 ⌅ Discovering Computer Science, Second Edition

import matplotlib.pyplot as pyplot

def plotRegression(x, y, xLabel, yLabel):
"""Plot points in x and y with a linear regression line.

Parameters:
x: a list of x values (independent variable)
y: a list of y values (dependent variable)
xLabel: a string to label the x axis
yLabel: a string to label the y axis

Return value: None
"""

pyplot.scatter(x, y) # plot the points

m, b = linearRegression(x, y) # find the regression line

plot the regression line
minX = min(x)
maxX = max(x)
pyplot.plot([minX, maxX], [m * minX + b, m * maxX + b], color = 'red')
pyplot.xlabel(xLabel)
pyplot.ylabel(yLabel)
pyplot.show()

Returning to our college admissions problem, suppose the high school GPA values are in a
list named hsGPA and the college GPA values are in a list named collegeGPA. Then we can
get our regression line by calling

plotRegression(hsGPA, collegeGPA, 'HS GPA', 'College GPA')

An example plot with real data is shown in Figure 1.

Reflection 1 What can you discern from this plot? Does high school GPA do a good job
of predicting college GPA?

In the exercises below, and in Project 7.4, you will have the opportunity to investigate
this problem in more detail. Projects 7.3 and 7.5 also use linear regression to approximate
the demand curve for an economics problem and predict flood levels on the Snake River,
respectively.

Exercises
7.6.1* Complete the function

linearRegression(x, y)

The function should return the slope m and y-intercept b of the least squares
regression line for the points whose x and y coordinates are stored in the lists x
and y, respectively. (Your function should use only one loop.)

7.6.2* The table below lists the average homework and exam scores for a class (one
row per student). Write a program that uses the completed linearRegression

*7.6 LINEAR REGRESSION ⌅ O7.6-5

function from Exercise 7.6.1 and the plotRegression function to plot a linear
regression line for this data.

HW Exam

63 73
91 99
81 98
67 82

100 97
87 99
91 96
74 77
26 33

100 98
78 100
59 81
85 38
69 74

7.6.3. On the book website, you will find a CSV data file named sat.csv that contains
GPA and SAT data for 105 students. Write a function

readData(filename)

that reads the data from this file and returns a tuple of two lists containing the
data in the first and fourth columns of the file (high school GPAs and college
GPAs). Then use the plotRegression function (which will call your completed
linearRegression function from Exercise 7.6.1) to plot this data with a linear
regression line to determine whether there is a correlation between high school
GPA and college GPA. (Your plot should look like Figure 1.)

7.6.4. A standard way to measure how well a regression line fits a set of data is to
compute the coe�cient of determination, often called the R

2 coe�cient, of the
regression line. R

2 is defined to be

R
2
= 1 −

S

T

where S and T are defined as follows:

S = �(x,y)
(y − (mx + b))

2

T = �(x,y)
(y − ȳ)

2 , where ȳ is the mean y value

For example, the three points in the text (5, 4), (3, 2), and (8, 3) have regression
line

y = �
3

19
�x +

41

19
.

So m = 3�19 and b = 41�19. Therefore,

• ȳ = (4 + 2 + 3)�3 = 3

• T = ∑(y − ȳ)
2
= (4 − 3)2 + (2 − 3)2 + (3 − 3)2 = 2

O7.6-6 ⌅ Discovering Computer Science, Second Edition

• S = ∑(y − (mx + b))
2
= (4 − 56�19)2 + (2 − 50�19)2 + (3 − 65�19)2 = 608�361

• R
2
= 1 − (608�361)�2 = 1 − 304�361 = 57�361 ≈ 0.15789

The R
2 coe�cient is always between 0 and 1, with values closer to 1 indicating

a better fit.

Write a function

rSquared(x, y, m, b)

that returns the R
2 coe�cient for the set of points whose x and y coordinates

are stored in the lists x and y, respectively. The third and fourth parameters
are the slope and y-intercept of the regression line for the set of points. For
example, to apply your function to the example above, you would call

rSquared([5, 3, 8], [4, 2, 3], 3/19, 41/19)

7.6.5. An alternative linear regression method, called a Deming regression finds the
line that minimizes the squares of the perpendicular distances between the
points and the line rather than the vertical distances. While the traditional least
squares method accounts only for errors in the y values, this technique accounts
for errors in both x and y. The slope and y-intercept of the line found by this
method are4

m =
syy − sxx +

�
(syy − sxx)

2 + 4(sxy)2

2sxy

and
b = ȳ −mx̄

where

• x̄ = (1�n)∑x, the mean of the x coordinates of all of the points (x,y)

• ȳ = (1�n)∑y, the mean of the y coordinates of all of the points (x,y)

• sxx = (1�(n − 1))∑(x − x̄)
2

• syy = (1�(n − 1))∑(y − ȳ)
2

• sxy = (1�(n − 1))∑(x − x̄)(y − ȳ)

Write a function

linearRegressionDeming(x, y)

that computes these values of m and b. Test your function by using it in the
plotRegression function, applied to a data set from a previous exercise in this
section.

4These formulas assume that the variances of the x and y errors are equal.

*7.6 LINEAR REGRESSION ⌅ O7.6-7

Selected Exercise Solutions
7.6.1 def linearRegression(x, y):

n = len(x) # number of points
sumx = 0 # sum of x coordinates
sumy = 0 # sum of y coordinates
sumxy = 0 # sum of products of x and y coordinates
sumxx = 0 # sum of squares of x coordinates
for index in range(n):

sumx = sumx + x[index]
sumy = sumy + y[index]
sumxy = sumxy + x[index] * y[index]
sumxx = sumxx + x[index] * x[index]

sumx2 = sumx ** 2 # square of sum of x coordinates

m = (n * sumxy - sumx * sumy) / (n * sumxx - sumx2) # slope
b = (sumy - m * sumx) / n # y intercept
return m, b

7.6.2 hw = [63, 91, 81, 67, 100, 87, 91, 74, 26, 100,78, 59, 85, 69]
exam = [73, 99, 98, 82, 97, 99, 96, 77, 33, 98, 100, 81, 38, 74]
plotRegression(hw, exam, 'Average HW Score', 'Average Exam Score')

