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*7.7 DATA CLUSTERING

In some large data sets, we are interested in discovering groups of items that are similar in
some way. For example, suppose we are trying to determine whether a suite of test results is
indicative of a malignant tumor. If we have these test results for a large number of patients,
together with information about whether each patient has been diagnosed with a malignant
tumor, then we can test whether clusters of similar test results correspond uniformly to
the same diagnosis. If they do, the clustering is evidence that the tests can be used to test
for malignancy, and the clusters give insights into the range of results that correspond to
that diagnosis. Because data clustering can result in deep insights like this, it is another
fundamental technique used in data mining .

Algorithms that cluster items according to their similarity are easiest to understand initially
with two-dimensional data (e.g., longitude and latitude) that can be represented visually.
Therefore, before you tackle the tumor diagnosis problem (as an exercise), we will look at a
data set containing the geographic locations of vehicular collisions in New York City.5

The clustering problem turns out to be very difficult, and there are no known efficient
algorithms that solve it exactly. Instead, people use heuristics. A heuristic is an algorithm
that does not necessarily give the best answer, but tends to work well in practice. Colloquially,
you might think of a heuristic as a “good rule of thumb.” We will discuss a common clustering
heuristic known as k-means clustering . In k-means clustering, the data is partitioned
into k clusters, and each cluster has an associated centroid , defined to be the mean of the
points in the cluster. The heuristic consists of a number of iterations in which each point is
(re)assigned to the cluster of the closest, or “most similar,” centroid, and then the centroids
of each cluster are recomputed based on their potentially new membership. These steps are
described in pseudocode below.

Algorithm k-means Clustering

Input: a list of data, the number of clusters k, and a number of iterations
1 centroids ← k random items from data
2 repeat iterations times:
3 create k empty clusters
4 repeat for each item in data:
5 assign item to the cluster with the closest centroid
6 recompute the centroid for each cluster

Output: lists of clusters and centroids

Defining similarity
Similarity or “closeness” among items in a data set can be defined in a variety of ways; here
we will define similarity simply in terms of normal Euclidean distance. If each item in our
data set has m numerical attributes, then we can think of these attributes as a point in
m-dimensional space. Given two m-dimensional points p and q, we can find the distance

5http://nypd.openscrape.com
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between them using the formula

distance(p, q) =
√

(p[0] − q[0])2 + (p[1] − q[1])2 +⋯ + (p[m − 1] − q[m − 1])2.

In Python, we can represent each point as a tuple of m numbers. For example, each of the
following three tuples might represent six test results (m = 6) for one patient:

patient1 = (85, 92, 45, 27, 31, 0.0)
patient2 = (85, 64, 59, 32, 23, 0.0)
patient3 = (86, 54, 33, 16, 54, 0.0)

To find the distance between patient1 and patient2, we compute

√
(85 − 85)2 + (92 − 64)2 + (45 − 59)2 + (27 − 32)2 + (31 − 23)2 + (0 − 0)2 ≈ 32.7

and to find the distance between patient1 and patient3, we compute

√
(85 − 86)2 + (92 − 54)2 + (45 − 33)2 + (27 − 16)2 + (31 − 54)2 + (0 − 0)2 ≈ 47.3.

Because the distance between patient1 and patient2 is less than the distance between
patient1 and patient3, we consider the results for patient1 to be more similar to the
results for patient2 than to the results for patient3.

Reflection 1 What is the distance between patient2 and patient3? Are the results
of patient1 or patient3 more similar to the results of patient2? Are the results of
patient1 or patient2 more similar to the results of patient3?

A simple example
To illustrate in more detail how the heuristic works, suppose we want to group the small set
of six points plotted below into k = 2 clusters.

The lower left corner of the rectangle has coordinates (0,0) and each square is one unit on a
side. So our six points have coordinates (0.5,5), (1.75,5.75), (3.5,2), (4,3.5), (5,2), and
(7,1). We begin by randomly choosing k = 2 of our points to be the initial centroids. In the
figure below, we chose one centroid to be the red point at (0.5,5) and the other centroid to
be the blue point at (7,1).
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In the first iteration of the heuristic, we compute the distance between every point and
each of the two centroids, represented by the dashed line segments below. We assign each
point to a cluster associated with the closest centroid. The three points circled in red below
are closest to the red centroid and the three points circled in blue are closest to the blue
centroid.

Once every point is assigned to a cluster, we compute new centroids for the clusters, defined
to be the mean of all the points in the cluster. The x and y coordinates of the new centroid
of the red cluster are (0.5 + 1.75 + 4)/3 = 25/12 ≈ 2.08 and (5 + 5.75 + 3.5)/3 = 4.75. The x
and y coordinates of the new centroid of the blue cluster are (3.5 + 5 + 7)/3 = 31/6 ≈ 5.17
and (2 + 2 + 1)/3 = 5/3 ≈ 1.67. These are the new red and blue points shown below.

In the second iteration of the heuristic, we once again compute the closest centroid for
each point. After this iteration, as illustrated below, the point (4,3.5) is now grouped with
the lower right points because it is closer to the blue centroid than to the red centroid
(distance((2.08,4.75), (4,3.5)) ≈ 2.29 and distance((5.17,1.67), (4,3.5)) ≈ 2.17).
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Next, we once again compute new centroids. The x and y coordinates of the new centroid of
the red cluster are (0.5+ 1.75)/2 = 1.125 and (5+ 5.75)/2 = 5.375. The x and y coordinates of
the new centroid of the blue cluster are (3.5+4+5+7)/4 = 4.875 and (1+2+2+3.5)/4 = 2.125.
These new centroids are shown below.

In the third iteration, when we find the closest centroid for each point, we find that nothing
changes. Therefore, these clusters are the final ones chosen by the heuristic.

Implementing k-means clustering
When we implement this heuristic in Python, the input list data will contain tuples like the
points in the previous example:

data = [(0.5, 5), (1.75, 5.75), (3.5, 2), (4, 3.5), (5, 2), (7, 1)]

We will need k additional lists to hold the items in the k clusters, as well as a list of k
centroids. Copying actual data items to these lists in each iteration is inefficient if the items
contain many attributes, and ambiguous if multiple items have the same attributes. So
we will represent items by their indices in data instead. This approach is described in the
following more fleshed-out pseudocode.
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Algorithm k-means Clustering — More Detail

Input: a list of data, the number of clusters k, and a number of iterations
1 centroids ← a list of k random items from data
2 repeat iterations times:
3 repeat for each index from 0 to k − 1:
4 clusters[index] ← an empty list of indices (of items in data)
5 repeat for each item in data:
6 minimum index ← the index of the centroid closest to item
7 append the index of item to clusters[minimum index]
8 repeat for each index from 0 to k − 1:
9 centroids[index] ← mean of the items in clusters[index]

Output: lists of clusters and centroids

To get the initial list of centroids in line 1, we will choose k random tuples from data by
using the sample function from the random module.

centroids = random.sample(data, k)

The remainder of the function will consist of a for loop that makes iterations passes over
the list of tuples in data. Within the loop, we first create a list of k empty lists, one for each
cluster (corresponding to lines 3–4 above).

clusters = []
for clustIndex in range(k):

clusters.append([])

For example, if k = 4 then, after this loop, clusters will be [[ ], [ ], [ ], [ ]]. The
first empty list, clusters[0], will be used to hold the indices of the points in the cluster
associated with centroids[0]; the second empty list, clusters[1], will be used to hold the
indices of the points in the cluster associated with centroids[1]; and so on. Some care has
to be taken to create this list of lists; clusters = [[]] * k does not work. Exercise 7.7.6
asks you to investigate this further.

Next, to implement lines 5–7, we iterate over the indices of the points in data.

for dataIndex in range(len(data)):
minIndex = 0
for clustIndex in range(1, k):

dist = distance(centroids[clustIndex], data[dataIndex])
if dist < distance(centroids[minIndex], data[dataIndex]):

minIndex = clustIndex
clusters[minIndex].append(dataIndex)

In each iteration, we find the centroid that is closest to the point data[dataIndex]. The
inner for loop is essentially the same algorithm that we used in Section 7.1 to find the
minimum value in a list. The difference here is that we need to find the index of the centroid
with the minimum distance to data[dataIndex]. (We leave writing this distance function
as Exercise 7.7.1.) We maintain the index of the closest centroid in the variable named
minIndex. Once we have found the final value of minIndex, we append dataIndex to the
list of indices assigned to the cluster with index minIndex.
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After we have assigned all of the points to a cluster, to implement lines 8–9, we compute
each new centroid with a function named centroid. We leave writing this function as
Exercise 7.7.2.

for clustIndex in range(k):
centroids[clustIndex] = centroid(clusters[clustIndex], data)

The complete function is reproduced below:

def kmeans(data, k, iterations):
"""Cluster data into k clusters with the k-means clustering algorithm.

Parameters:
data: a list of points
k: the number of desired clusters
iterations: the number of iterations of the algorithm

Return value:
a tuple containing the list of clusters and the list
of centroids; each cluster is represented by a list
of indices of the points assigned to that cluster

"""

centroids = random.sample(data, k)

for step in range(iterations):
clusters = []
for clustIndex in range(k):

clusters.append([])

for dataIndex in range(len(data)):
minIndex = 0
for clustIndex in range(1, k):

dist = distance(centroids[clustIndex], data[dataIndex])
if dist < distance(centroids[minIndex], data[dataIndex]):

minIndex = clustIndex
clusters[minIndex].append(dataIndex)

for clustIndex in range(k):
centroids[clustIndex] = centroid(clusters[clustIndex], data)

return (clusters, centroids)

Next we apply this function to a real data set.

Locating bicycle safety programs
Suppose that, in response to an increase in the number of vehicular accidents in New York
City involving cyclists, we want to find the best locations to establish a limited number
of bicycle safety programs. To do the most good, we would like to centrally locate these
programs in areas containing the most cycling injuries. In other words, we want to locate
safety programs at the centroids of clusters of accidents.
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We can use the k-means clustering heuristic to find these centroids. The data file containing
the accident information6, which is available on the book website, is tab-separated and
contains a row for each of 7,642 collisions involving bicycles between August, 2011 and
August, 2013 in all five boroughs of New York City. Associated with each collision are 68
attributes that include information about the location, injuries, and whether pedestrians
or cyclists were involved. The first few rows of the data file look like this (with triangles
representing tab characters):

borocode▷precinct▷year▷month▷lon▷lat▷street1▷street2▷collisions▷...

3▷60▷2011▷8▷-73.987424▷40.58539▷CROPSEY AVENUE▷SHORE PARKWAY▷4▷...

3▷60▷2011▷8▷-73.98584▷40.576503▷MERMAID AVENUE▷WEST 19 STREET▷2▷...

3▷60▷2011▷8▷-73.983088▷40.579161▷NEPTUNE AVENUE▷WEST 15 STREET▷2▷...

3▷60▷2011▷8▷-73.986609▷40.574894▷SURF AVENUE▷WEST 20 STREET▷1▷...

3▷61▷2011▷8▷-73.955477▷40.598939▷AVENUE U▷EAST 16 STREET▷2▷...

To cluster the data, we will only need a list of accident locations as (longitude, latitude)
tuples. To limit the data in our analysis, we will extract the locations of only those accidents
that occurred in Manhattan (borocode 1) during 2012. The following function reads this
data.

def readAccidentData(fileName):
"""Read locations of bicycle accidents in Manhattan.

Parameter:
fileName: the name of the data file

Return value: a list of (longitude, latitude) tuples
"""

inputFile = open(fileName, 'r', encoding = 'utf-8')
header = inputFile.readline()
data = [ ]
for line in inputFile:

row = line.split('\t')
if (int(row[0]) == 1) and (int(row[2]) == 2012): # borough and yr

data.append((float(row[4]), float(row[5]))) # long, latitude
inputFile.close()
return data

Once we have the data as a list of tuples, we can call the kmeans function to find the clusters
and centroids. If we had enough funding for six bicycle safety programs, we would call the
function with k = 6 as follows:

data = readAccidentData('collisions_cyclists.txt')
(clusters, centroids) = kmeans(data, 6, 100)

Figure 1, created by the following plotClusters function, visualizes the clusters in different
colors with centroids represented by stars.

6The data file contains the rows of the file at http://nypd.openscrape.com/collisions.csv.gz
(accessed October 1, 2013) that involved a bicyclist.
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import matplotlib.pyplot as pyplot

def plotClusters(clusters, data, centroids):
"""Plot clusters and centroids in unique colors.

Parameters:
clusters: a list of k lists of data indices
data: a list of points
centroids: a list of k centroid points

Return value: None
"""

colors = ['blue', 'red', 'yellow', 'green', 'purple', 'orange']
for clustIndex in range(len(clusters)): # plot clusters of points

x = []
y = []
for dataIndex in clusters[clustIndex]:

x.append(data[dataIndex][0])
y.append(data[dataIndex][1])

pyplot.scatter(x, y, 10, color = colors[clustIndex])

x = []
y = []
for centroid in centroids: # plot centroids

x.append(centroid[0])
y.append(centroid[1])

pyplot.scatter(x, y, 200, marker = '*', color = 'black')
pyplot.show()

Exercise 7.7.3, asks you to reproduce the plot in Figure 1 by combining the functions in this
section. Exercise 7.7.4 asks you to apply k-means clustering to the tumor diagnosis problem
that we discussed at the beginning of the chapter.

Exercises
7.7.1* Write a function

distance(p, q)

that returns the Euclidean distance between k-dimensional points p and q, each
of which is represented by a tuple with length k.

7.7.2* Write the function

centroid(cluster, data)

that is needed by the kmeans function. The function should compute the centroid
of the given cluster, which is a list of indices of points in data. Remember that
the points in data can be of any length, and the centroid must be a tuple of the
same length. It will probably be most convenient to build up the centroid in a list
and then convert it to a tuple using the tuple function. If the cluster is empty,
then return a randomly chosen point from data with random.choice(data).

7.7.3* Combine the distance and centroid functions that you wrote in the previous
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Figure 1 Six clusters of bicycle accidents in Manhattan. Stars represent centroids.

two exercises with the kmeans, readAccidentData, and plotClusters functions
to create a complete program that produces the plot in Figure 1. The data file,
collisions_cyclists.txt, is available on the book website.

7.7.4. In this exercise, you will apply k-means clustering to the tumor diagnosis problem
mentioned at the beginning of this section, using a data set of breast cancer
biopsy results. This data set, available on the book website, contains nine test
results for each of 683 individuals.7 The first few lines of the comma-separated
data set look like this:

1000025,5,1,1,1,2,1,3,1,1,2

1002945,5,4,4,5,7,10,3,2,1,2

1015425,3,1,1,1,2,2,3,1,1,2

1016277,6,8,8,1,3,4,3,7,1,2

1017023,4,1,1,3,2,1,3,1,1,2

1017122,8,10,10,8,7,10,9,7,1,4

⋮
The first number in each row is a unique sample number and the last number
in each row is either 2 or 4, where 2 means “benign” and 4 means “malignant.”
Of the 683 samples in the data set, 444 were diagnosed as benign and 239 were
diagnosed as malignant. The nine numbers on each line between the sample
number and the diagnosis are test result values that have been normalized to

7The data set on the book’s website is the file from http://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+(Original) with 16 rows containing missing attributes removed.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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a 1–10 scale. (There is additional information accompanying the data on the
book’s website.)

The first step is to write a function

readFile(filename)

that reads this data and returns two lists, one of test results and the other of
diagnoses. The test results will be in a list of 9-element tuples and the diagnosis
values will be a list of integers that are in the same order as the test results.

Next, write a program, with the following main function, that clusters the data
into k = 2 groups.

def main():
data, diagnosis = readFile('breast-cancer-wisconsin.csv')
clusters, centroids = kmeans(data, 2, 10)
for clustIndex in range(2):

count = {2: 0, 4: 0}
for index in clusters[clustIndex]:

count[diagnosis[index]] = count[diagnosis[index]] + 1
print('Cluster', clustIndex)
print(' benign:', count[2], 'malignant:', count[4])

If one of these two groups contains predominantly benign samples and the other
contains predominantly malignant samples, then this provides evidence that these
test results can discriminate between malignant and benign tumors. To complete
the program, you will need to incorporate the distance and centroid functions
from Exercises 7.7.1 and 7.7.2, the kmeans function, and your readFile function.
The data file, breast-cancer-wisconsin.csv, is available on the book website.
Describe the results.

7.7.5. Suppose you are manufacturing t-shirts and need to define three sizes (S, M, and
L) based on torso length and chest circumference. You have these measurements
from 100 customers (found on the book website). Use k-means clustering to
group the customers into three clusters, and use these clusters to define the
three t-shirt sizes.

7.7.6. In the kmeans function, we needed to create a new list of empty clusters at the
beginning of each iteration. To create this list, we did the following:

clusters = []
for clustIndex in range(k):

clusters.append([])

Alternatively, we could have created a list of lists using the * repetition operator
like this:

clusters = [[]] * k

However, this will not work correctly, as evidenced by the following:

>>> clusters = [[]] * 5
>>> clusters
[[], [], [], [], []]
>>> clusters[2].append(4)
>>> clusters
[[4], [4], [4], [4], [4]]

What is going on here?

7.7.7. Modify the kmeans function so that it does not need to take the number of
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iterations as a parameter. Instead, the function should iterate until the list of
clusters stops changing. In other words, the loop should iterate while the list of
clusters generated in an iteration is not the same as the list of clusters from the
previous iteration.
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Selected Exercise Solutions
7.7.1 import math

def distance(p, q):
m = len(p)
sumSquares = 0
for i in range(m):

sumSquares = sumSquares + (p[i] - q[i]) ** 2
return math.sqrt(sumSquares)

7.7.2 import random

def centroid(cluster, data):
n = len(cluster)
if n == 0:

return random.choice(data)
m = len(data[0]) # dimension of points
theCentroid = []
for index in range(m):

sum = 0
for dataIndex in cluster:

point = data[dataIndex]
sum = sum + point[index]

theCentroid.append(sum / n)
return tuple(theCentroid)

7.7.3 def main():
data = readAccidentData('collisions_cyclists.txt')
clusters, centroids = kmeans(data, 6, 100)
plotClusters(clusters, data, centroids)

main()


