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*7.5 DESIGNING EFFICIENT ALGORITHMS

For most of the problems we have encountered so far, we have really only considered one
algorithm. But for most real problems that involve real data, there are many possible
algorithms with varying time complexities, and a little more ingenuity is required to find
the best one.

Removing duplicates

To illustrate, let’s consider a slightly more involved problem that can be formulated in
terms of the following “real world” situation. Suppose you organized a petition drive in your
community, and have now collected all of the lists of signatures from your volunteers. Before
you can submit your petition to the governor, you need to remove duplicate signatures from
the combined list. Rather than try to do this by hand, you decide to scan all of the names
into a file, and design an algorithm to remove the duplicates for you. Because the signatures
are numbered, you want the final list of unique names to be in their original order.

As we design an algorithm for this problem, we will keep in mind the four steps outlined in
Chapter 1:

1. Understand the problem.
2. Design an algorithm.

3. Write a program.

4. Look back.

Reflection 1 Before you read any further, make sure you understand this problem. If
you were given this list of names on paper, what algorithm would you use to remove the
duplicates?

The input to our problem is a list of items, and the output is a new list of unique items in the
same order they appeared in the original list. We will start with an intuitive algorithm and
work through a process of refinement to get progressively better solutions. In this process, we
will see how a critical look at the algorithms we write can lead to significant improvements.

A first algorithm

There are several different approaches we could use to solve this problem. One intuitive idea
is to iterate over the items and mark any duplicates of each one found further down the list.
Once all of the duplicates are marked, we can remove them from a copy of the original list.
The following example illustrates this approach with a list containing four unique names,
abbreviated A, B, C, and D. The algorithm starts at the beginning of the list, which contains
the name A. Then we search down the list and mark the duplicate in red.

A B C B D A D B
T

search for A

Next we move on to the second item, B, and mark its duplicates.
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AB C B D A D B
T

search for B

Some items, like the next item, C, do not have any duplicates.

A B C B DA DB
T

search for C

The item after C is already marked as a duplicate, so we skip the search.

A B CB D A D B
T

The next item, D, is not marked so we search for its duplicates down the list.

A B CB D A D B

———
search for D

Finally, we finish iterating over the list, but find that the remaining items are already marked
as duplicates.

Once we know where all the duplicates are, we can make a copy of the original list and
remove the duplicates from the copy. This algorithm is written in pseudocode below.

Algorithm Remove DupLIcATES — DRAFT 1

Input: a list of data
repeat for each item in data:

—_

2 if item is not marked as a duplicate, then:
3 mark later copies of item as duplicates
4| unique items <+ a copy of data

5| repeat for each item in data:

6 if item is marked, remove it from unique items
Output: unique items

Let’s think about how to implement this algorithm in Python.
| Reflection 2 How are we going to “mark” items in a Python list?

We can’t really directly “mark” items in a Python list, but we can remember the indices of
“marked” items in a separate duplicates list. So line 2 of the algorithm will need to check
whether the index of the current item is in this duplicates list, and line 3 will need to add
indices to the duplicates list.

Reflection 3 Given this manner of “marking” items in Python, will the for loop on line
2 need to iterate over list items or the indices of the list items?

Since the algorithm will be working with indices of items, the loop will need to iterate over
the indices of the items in data. Let’s update our pseudocode algorithm to reflect this so
that it will be easier to implement in Python.
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Algorithm RemoVvE DupLICATES — DRAFT 2

Input: a list of data

—_

duplicates < an empty list of indices
repeat for each index of an item in data:
if the index is not in duplicates, then:

2
3
4 add the indices of later copies of datalindex] to duplicates
5| unique items <« a copy of data

6

repeat for each index in duplicates:

7 remove the item in position index from unique items
Output: unique items

Now it should be pretty clear how we are going to implement lines 1-2. To implement line 3,
we need to search for an item in a list. We could use the Python in operator, but let’s instead
revisit how to write a search function from scratch. Recall that, in Section 6.4, we developed
a linear search algorithm (named find) that returns the index of the first occurrence of
a substring in a string. You may have applied this same idea to implement the following
linearSearch function in Exercise 7.1.17.

def linearSearch(data, target):
"""Find the index of the first occurrence of target in data.

Parameters:
data: a list to search in
target: a value to search for

Return value: the index of the first occurrence of target in data

for index in range(len(data)):
if datalindex] == target:
return index
return -1

The function iterates over the indices of the list named data, checking whether each item
equals the target value. If a match is found, the function returns the index of the match.
Otherwise, if no match is ever found, the function returns —1. Assuming we use the same
variable names in our Python function, we can use this function to implement line 3 like
this:

if linearSearch(duplicates, index) == -1: # index not in duplicates

To implement line 4, we need to find all of the indices of items equal to data[index] that
occur later in the list. A function to do this will be very similar to linearSearch, but will
differ in two ways. First, it must return a list of indices instead of a single index. Second, it
will require a third parameter that specifies where the search should begin.
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def linearSearchAll(data, target, start):
"""Find the indices of all occurrences of target in data.

Parameters:
data: a list to search in
target: a value to search for
start: the index in data to start searching from

Return value: a list of indices of all occurrences of target in data
nun

foundIndices = [ ]
for index in range(start, len(data)):
if datalindex] == target:

foundIndices.append(index)
return foundIndices

With this new function, we can implement line 4 like this:

positions = linearSearchAll(data, datal[index], index + 1)
duplicates.extend(positions)

The first statement gets a list of indices of all items matching data[index], starting at
position index + 1. The second statement adds these positions to the duplicates list. The
extend method takes a list as an argument and appends each item in this list to the list on
which it is operating.

Reflection 4 How does the statement duplicates.extend(positions) differ from
duplicates.append(positions)?

Once we have the list of duplicates, we remove them from the unique items list in lines 6-7.
The way the algorithm is written suggests using the pop method, since pop takes an index as
a parameter. But, as we saw in Section 7.2, using pop in a loop can be tricky. An alternative
approach would be to use a list accumulator to build the new list up from an empty list. To
do this, we will need to iterate over the original list and append items to the new list only if
their indices are not in the list of duplicate indices, like this:

uniqueltems = [ ]
for index in range(len(data)):
if linearSearch(duplicates, index) == -1: # index not in duplicates
uniqueItems.append(datalindex])

Putting these pieces together, we have the following Python function.

def removeDuplicatesl(data):
"""Return a list of the unique items in data, in their original order.

Parameter:
data: a list

Return value: a new list of unique items
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duplicates = [ ]
for index in range(len(data)):
if linearSearch(duplicates, index) == -1: # index not in duplicates
positions = linearSearchAll(data, datalindex], index + 1)
duplicates.extend(positions)

uniqueltems = [ ]
for index in range(len(data)):
if linearSearch(duplicates, index) == -1: # index not in duplicates
uniqueItems.append(datal[index])

return uniqueltems

| Reflection 5 Write some unit tests for the new function on a variety of inputs.

This algorithm works, but that does not mean that we should immediately leave this problem
behind. In addition to testing, it is important that we take some time to critically “look
back” and reflect on the quality of our solution. Can the function be simplified or made
more efficient? What is its time complexity?

Reflection 6 The function above can be simplified a bit. Look at the similarity between
the two for loops. Can they be combined?

The two for loops can, in fact, be combined. If the condition in the first if statement is
true, then this must be the first time we have seen this particular list item. Therefore, we
can append it to uniqueItems right then. The resulting function is a bit more streamlined:

1 def removeDuplicates2(data):

2 "t (docstring omitted) """

3 duplicates = [ ]

4 uniqueltems = [ ]

5 for index in range(len(data)):

6 if linearSearch(duplicates, index) == -1: # index not in duplicates
7 positions = linearSearchAll(data, datal[index], index + 1)

8 duplicates.extend(positions)

9 uniqueItems.append(datal[index])

10 return uniqueltems

Now let’s analyze the worst case asymptotic time complexity of the algorithm. As usual, we
will call the length of the input list n (i.e., len(data) is n). The statements on lines 3, 4,
and 10 each count as one elementary step. The rest of the algorithm is contained in the for
loop, which iterates n times. So the if statement on line 6 is executed n times and, in the
worst case, the statements on lines 7-9 are each executed n times as well. But how many
elementary steps are hidden in each of these statements?

Reflection 7 How many elementary steps are required in the worst case by the call to
linearSearch on line 67 (You might want to refer back to page 06.7-3, where we talked
about the time complexity of a linear search.)

We saw in Section 6.7 that linear search is a linear-time algorithm (hence the name). So
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Tangent 1: Amortization applied to append

Consider a typical call to the append method, like data.append(item). How many
elementary steps are involved in this call? We have seen that some Python operations,
like assignment statements, require a constant number of elementary steps while others,
like the count method, can require a linear number of elementary steps. The append
method is an interesting case because the number of elementary steps depends on how
much space is available in the chunk of memory that has been allocated to hold the list.
If there is room available at the end of this chunk of memory, then a reference to the
appended item can be placed at the end of the list in constant time. However, if the
list is already occupying all of the memory that has been allocated to it, the append
has to allocate a larger chunk of memory, and then copy the entire list to this larger
chunk. The amount of time to do this is proportional to the current length of the list.
To reconcile these different cases, we can use the average number of elementary steps
over a long sequence of append calls, a technique known as amortization.

When a new chunk of memory needs to be allocated, Python allocates more than it
actually needs so that the next few append calls will be quicker. The amount of extra
memory allocated is cleverly proportional to the length of the list, so the extra memory
grows a little more each time. Therefore, a sequence of append calls on the same list
will consist of sequences of several quick operations interspersed with increasingly rare
slow operations. If you take the average number of elementary steps over all of these
appends, it turns out to be a constant number (or very close to it). Thus an append
can be considered one elementary step!

the number of elementary steps required by line 6 is proportional to the length of the
duplicates list. The length of this list will be zero in the first iteration of the loop, but may
contain as many as n — 1 indices in the second iteration. So the total number of elementary
steps in each of these later iterations is n — 1 in the worst case.

Reflection 8 Why could duplicates have length n — 1 after the first iteration of the
loop? What value of data would make this happen?

Therefore, in the worst case, the total number of elementary steps executed in line 6, over
all the iterations of the loop, is at most 1+ (n—1)(n —1): one in the first iteration of the
loop, then at most n — 1 for each iteration thereafter. This simplifies to n? — 2n + 2 which,
asymptotically, is O(n?).
The linearSearchAll function called on line 7 is a lot like a regular linear search, but
it only iterates from start to the end of the list and it contains an append in the body
of the loop. Therefore, since we can consider the append to be an elementary step (see
Tangent 1), linearSearchAll requires about n—start elementary steps instead of n. When
linearSearchAll is called on line 7, the value of index + 1 is passed in for start, so it
really takes n — (index + 1) steps. When index is 0, n — (index + 1) =n — 1. When index is
1, n— (index + 1) =n —2. And so on. So the total number of elementary steps executed in
line 7is (n—1) + (n—2) + -+ 1. We have seen this sum before (see Tangent 4.1); it is equal
to the triangular number

n(n-1) n* n

2 2 2

which is also O(n?).

Finally, lines 8 and 9 involve a total of O(n) elementary steps. This is easier to see with line
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9 because it involves at most one append per iteration. The extend method called on line
8 effectively appends all of the values in positions to the end of duplicates. Although
one call to extend may append more than one index to duplicates at a time, overall, each
index of data can be appended at most once, so the total number of elementary steps over
all of the calls to extend must be proportional to n. In summary, we have determined the
following numbers of elementary steps for each line.

Line Elementary steps

o(1)
o(1)
O(n)
O(n?)
O(n?)
O(n)
O(n)
10 O(1)

© 00 N O Otk W

Since the maximum number of elementary steps for any line is @(n?), we have a quadratic-
time algorithm.

A more elegant algorithm

In our current algorithm, we collect a list of indices of duplicate items, and search this list
before deciding whether to append a new item to the growing list of unique items. But,
since we are now constructing the list of unique items in the same for loop, we could decide
whether the current item (datal[index]) is a duplicate by searching for it in uniqueItems
instead. This change eliminates the need for the duplicates list altogether and greatly
simplifies the algorithm:

def removeDuplicates3(data):
"nn (docstring omitted) """

duplicates =[]
uniqueltems = [ ]
for index in range(len(data)):
if linearSearch(uniqueltems, datalindex]) == -1:
Jupli ' L (positions)

uniqueItems.append(data[index])

3 H

return uniqueltems

In addition, since we are not storing indices any longer, we can iterate over the items in the
list instead of the indices, giving a much cleaner look to the function:



07.5-8 B Discovering Computer Science, Second Edition

1 def removeDuplicates4(data):

2 "t (docstring omitted) """

3 uniqueltems = [ ]

4 for item in data:

5 if linearSearch(uniqueltems, item) == -1:
6 uniqueItems.append(item)

7 return uniqueltems

| Reflection 9 This revised algorithm is certainly more elegant. But is it more efficient?

To answer this question, let’s revisit our time complexity analysis. The for loop still iterates
n times and, in the worst case, both the call to linearSearch and append are still executed
in every iteration of the loop. We saw above that the number of elementary steps executed
by the linearSearch function depends on the length of the list that is passed in. In this
case, uniqueItems can be no longer than the number of previous iterations, since at most
one item is appended to it in each iteration. So the length of uniqueItems can grow by
at most one in each iteration, meaning that the number of elementary steps executed by
linearSearch can also grow by one in each iteration in the worst case. So the total number
of elementary steps executed by all of the calls to 1inearSearch in the worst case is

_ n(n-1)

14243+ +(n-1) 5

or, once again, @(n?). In summary, the numbers of elementary steps for each line are now:

Line Elementary steps

3 0(1)
4 O(n)
5 O(n?)
6 O(n)
7 o(1)

Like our previous algorithm, the maximum value in the table is O(n?), so our new algorithm
is still a quadratic-time algorithm.

A more efficient algorithm

Reflection 10 Do you think it is possible to design a more efficient algorithm for this
problem? If so, what part(s) of the algorithm would need to be made more efficient? Are
there parts of the algorithm that are absolutely necessary and therefore cannot be made
more efficient?

To find all of the duplicates in a list, it seems obvious that we need to look at every one of
the n items in the list (using a for loop or some other kind of loop). Therefore, the time
complexity of any algorithm for this problem must be at least O(n), or linear-time. But
is a linear-time algorithm actually possible? Apart from the loop, the only work-intensive
component of the algorithm remaining is the linear search in line 5. Can the efficiency of
this step be improved?

Searching for data efficiently, as we do in a linear search, is of utmost importance in computer
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science. There are a wide variety of innovative ways to store data to facilitate fast access,
most of which are beyond the scope of an introductory book. However, we have already seen
one alternative. Recall from Tangent 7.2 that a dictionary is cleverly implemented so that
access can be considered a constant-time operation. So if we can store information about
duplicates in a dictionary, we can perform the search in line 5 in constant time!

The trick is to store the items that we have already seen as keys in a dictionary instead of
items in a list. Then we can test whether we have already seen the item by checking whether
item is already a key in the dictionary. The new function with these changes follows.

1 def removeDuplicates5(data):

2 """ (docstring omitted) """

3 uniqueItems = { }

4 for item in data:

5 if item not in uniqueltems:
6 uniqueItems[item] = True

7 return list(uniqueItems.keys())

In our new function, we associate the value True with each key, but this is an arbitrary
choice because we never actually use these values. At the end of the function, we return the
list of keys, which are exactly the unique items in the list.

Since every statement in the body of the for loop is now one elementary step, lines 5 and 6
are now executed a total of of O(n) times, as summarized below.

Line Elementary steps

3 o(1)
4 O(n)
5 O(n)
6 O(n)
7 o(1)

Therefore, the removeDuplicates5 function is a linear-time algorithm. As we saw in Sec-
tion 6.7, this makes a significant difference! Exercise 7.5.4 asks you to investigate this
difference experimentally for yourself.

Exercises

7.5.1*  The if statement in the removeDuplicates5 function can actually be completely
removed and the algorithm will still be correct. Explain why.

7.5.2.  When analyzing a text, one measure of its complexity is the number of unique
words it contains, called its vocabulary. Write a function
vocabulary (text)
that returns the vocabulary of the string text. Use the wordTokens function

from Section 6.1.

7.5.3*  Write an algorithm that returns a list of only those items in data that are
duplicates. For example, if data were [1, 2, 3, 1, 3, 1], the function should
return the list [1, 3].
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7.5.4.

7.5.5.

7.5.6.

In this exercise, you will write a program that tests whether the linear-
time removeDuplicates5 function really is faster than the quadratic-time
removeDuplicates2 and removeDuplicates4 functions. First, write a func-
tion that creates a list of n random integers between 0 and n — 1 using a list
accumulator and the random.randrange function. Then write another function
that calls each of the three functions with this list as the argument. Time how
long each call takes using the time.time function, which returns the current
time in elapsed seconds since a fixed “epoch” time (usually midnight on January
1, 1970). By calling time.time before and after each call, you can find the num-
ber of seconds that elapsed. Repeat your experiment with n = 100, 1000, 10,000,
and 100,000 (this will take a long time). Describe your results.

In a round-robin tournament, every player faces every other player exactly once,
and the player with the most head-to-head wins is deemed the champion. The
following algorithm simulates a round-robin tournament.

Algorithm Rounp RoBIN

Input: a list of n players

1| repeat for each player in players:
wins[player] < 0O

repeat for each player1 in players:

2

3

4 repeat for each player2 in players:
5 if player2 # player1:

6

winner < winner of matchup between player7 and player2

7 increment wins[winner]
Output: the player with the most wins

Assume that steps 2 and 5-7 are each one elementary step. What is the asymp-
totic time complexity of this algorithm?

The nested loop in the previous algorithm actually generates far too many
contests. Not only does it create situations in which the two players are the
same person, necessitating the if statement, it also considers every head-to-
head contest twice. The illustration on the left below (a) shows all of the
contests created by the nested for loop in the previous function in a four-player
tournament.

playeri player2 playeri player2
Amelia Amelia Amelia ® Amelia
Beth Beth Beth Beth
Caroline Caroline Caroline Caroline
David David David e David
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A line between two players represents the player on the left challenging the
player on the right. Notice, for example, that Amelia challenges Caroline and
Caroline challenges Amelia. Obviously, these are redundant, so we would like
to avoid them. The red lines represent all of the unnecessary contests. The
remaining contests that we need to consider are illustrated on the right side
above (b).

(a)  Think about how you can design an algorithm to create just the needed
contests. Imagine that you are iterating from top to bottom over the
players list on the left side of (b) above. Notice that each value of player?
on the left only challenges values of player2 on the right that come
after it in the list. First, Amelia needs to challenge Beth, Caroline, and
David. Then Beth only needs to challenge Caroline and David because
Amelia challenged her in the previous round. Then Caroline only needs
to challenge David because both Amelia and Beth already challenged
her in previous rounds. Finally, when we get to David, everyone has
already challenged him, so nothing more needs to be done.

Modify the nested for loop in the algorithm so that it implements this
more efficient algorithm instead.

(b)  What is the asymptotic time complexity of your algorithm? About how
much faster is it than the original algorithm?

Suppose you have a list of projected daily stock prices, and you wish to find the
best days to buy and sell the stock to maximize your profit. For example, if the
list of daily stock prices was [3, 2, 1, 5, 3, 9, 2], you would want to buy
on day 2 and sell on day 5, for a profit of $8 per share. Similar to the previous
exercise, you need to check all possible pairs of days, such that the sell day is
after the buy day. Write a function

profit(prices)

that returns a tuple containing the most profitable buy and sell days for the
given list of prices. For example, for the list of daily prices above, your function
should return (2, 5).
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Selected Exercise Solutions

7.5.1 Removing the if statement does not affect the dictionary at all. If the item is already
in the dictionary, its value is just assigned True again.

7.5.3 def duplicates(data):
duplicated = { }
duplicateltems = [ ]
for item in data:
if item not in duplicated:
duplicated[item] = False
elif not duplicated[item]:
duplicated[item] = True
duplicateItems.append(item)
return duplicateltems



