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*6.8 COMPUTATIONAL GENOMICS

Every living cell contains molecules of DNA (deoxyribonucleic acid) that encode the genetic
blueprint of the organism. Decoding the information contained in DNA, and understanding
how it is used in all the processes of life, is an ongoing grand challenge at the center of
modern biology and medicine. Comparing the DNA of di↵erent organisms also provides
insight into evolution and the tree of life. The lengths of DNA molecules and the sheer
quantity of DNA data that have been read from living cells and recorded in text files require
that biologists use computational methods to answer this challenge.

A genomics primer
As illustrated in Figure 1, DNA is a long double-stranded molecule in the shape of a double
helix. Each strand is a chain of smaller units called nucleotides. A nucleotide consists of a
sugar (deoxyribose), a phosphate group, and one of four nitrogenous bases: adenine (A),
thymine (T), cytosine (C), or guanine (G). Each nucleotide in a molecule can be represented
by the letter corresponding to the base it contains, and an entire strand can be represented
by a string of characters corresponding to its sequence of nucleotides. For example, the
following string represents a small DNA molecule consisting of an adenine nucleotide followed
by a guanine nucleotide followed by a cytosine nucleotide, etc.:

http://ghr.nlm.nih.gov/handbook/basics/dna

Figure 1 An illustration of a DNA double helix.
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>>> dna = 'agcttttcattctgactg'

(The case of the characters is irrelevant; some sequence repositories use lowercase and some
use uppercase.) Real DNA sequences are stored in large text files; we will look more closely
at these later.

A base on one strand is connected via a hydrogen bond to a complementary base on the other
strand. C and G are complements, as are A and T. A base and its connected complement
are called a base pair . The two strands are “antiparallel” in the sense that they are traversed
in opposite directions by the cellular machinery that copies and reads DNA. On each
strand, DNA is read in an “upstream-to-downstream” direction, but the “upstream” and
“downstream” ends are reversed on the two strands. For reasons that are not relevant here,
the “upstream” end is called 5’ (read “five prime”) and the downstream end is called 3’
(read “three prime”). For example, the sequence in the top strand below, read from 5’ to 3’,
is AGCTT...CTG, while the bottom strand, called its reverse complement, also read 5’ to 3’,
is CAGTC...GCT.

A G C T T T T C A T T C T G A C T G

T C G A A A A G T A A G A C T G A C

5'-

3'-

- 3'

- 5'

Reflection 1 When DNA sequences are stored in text files, only the sequence on one
strand is stored. Why?

RNA (ribonucleic acid) is a similar molecule, but each nucleotide contains a di↵erent sugar
(ribose instead of deoxyribose), and a base named uracil (U) takes the place of thymine
(T). RNA molecules are also single-stranded. As a result, RNA tends to “fold” when
complementary bases on the same strand pair with each other. This folded structure forms
a unique three-dimensional shape that plays a significant role in the molecule’s function.

Some regions of a DNA molecule are called genes because they encode genetic information.
A gene is transcribed by an enzyme called RNA polymerase to produce a complementary
molecule of RNA. For example, the DNA sequence 5’-GACTGAT-3’ would be transcribed
into the RNA sequence 3’-CUGACUA-5’. If the RNA is a messenger RNA (mRNA), then it
contains a coding region that will ultimately be used to build a protein. Other RNA products
of transcription, called RNA genes, are not translated into proteins, and are often instead
involved in regulating whether genes are transcribed or translated into proteins. Upstream
from the transcribed sequence is a promoter region that binds to RNA polymerase to initiate
transcription. Upstream from there is often a regulatory region that influences whether or
not the gene is transcribed.

direction of transcription ("downstream")

The coding region of a mRNA is translated into a protein by a molecular machine called a
ribosome. A ribosome reads the coding region in groups of three nucleotides called codons .



*6.8 COMPUTATIONAL GENOMICS ⌅ O6.8-3

U C A G

U UUU Phe F UCU Ser S UAU Tyr Y UGU Cys C U

UUC Phe F UCC Ser S UAC Tyr Y UGC Cys C C

UUA Leu L UCA Ser S UAA Stop * UGA Stop * A

UUG Leu L UCG Ser S UAG Stop * UGG Trp W G

C CUU Leu L CCU Pro P CAU His H CGU Arg R U

CUC Leu L CCC Pro P CAC His H CGC Arg R C

CUA Leu L CCA Pro P CAA Gln Q CGA Arg R A

CUG Leu L CCG Pro P CAG Gln Q CGG Arg R G

A AUU Ile I ACU Thr T AAU Asn N AGU Ser S U

AUC Ile I ACC Thr T AAC Asn N AGC Ser S C

AUA Ile I ACA Thr T AAA Lys K AGA Arg R A

AUG Met M ACG Thr T AAG Lys K AGG Arg R G

G GUU Val V GCU Ala A GAU Asp D GGU Gly G U

GUC Val V GCC Ala A GAC Asp D GGC Gly G C

GUA Val V GCA Ala A GAA Glu E GGA Gly G A

GUG Val V GCG Ala A GAG Glu E GGG Gly G G

Table 1 The standard genetic code that translates between codons and amino acids.
For each codon, both the three letter code and the single letter code are shown for
the corresponding amino acid.

In prokaryotes (e.g., bacteria), the coding region begins with a particular start codon and
ends with one of three stop codons . The ribosome translates each mRNA codon between the
start and stop codons into an amino acid, according to the genetic code, shown in Table 1.
It is this sequence of amino acids that comprises the final protein. The genes of eukaryotes
(organisms whose cells contain a nucleus) are more complicated, partially because they
are interspersed with untranslated regions called introns that must be spliced out before
translation can occur.

Reflection 2 What amino acid sequence is represented by the mRNA sequence
CAU UUU GAG?

Reflection 3 Notice that, in the genetic code (Table 1), most amino acids are represented
by several similar codons. Keeping in mind that nucleotides can mutate over time, what
evolutionary advantage might this hold?

The complete sequence of an organism’s DNA is called its genome. The size of a genome
can range from 105 base pairs (bp) in the simplest bacteria to 1.5 × 1011 bp in some plants.
The human genome contains about 3.2 × 109 (3.2 billion) bp. Interestingly, the size of an
organism’s genome does not necessarily correspond to its complexity; plants have some of
the largest genomes, far exceeding the size of the human genome.

The subfield of biology that studies the structure and function of genomes is called genomics.
To better understand a genome, genomicists ask questions such as:

• What is the frequency of each base in the genome? What is the frequency of each
codon? For each amino acid, is there a bias toward particular codons?
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• Where are the genes and what are their functions?

• How similar are two sequences? Sequence comparison can be used to determine whether
two genes have a shared ancestry, called homology. Sequence comparison between
homologous sequences can also give clues to an unidentified gene’s function.

• How are a set of organisms related evolutionarily? We can use sequence comparison
to build a phylogenetic tree that specifies genetic relations between species.

• Scientists have discovered that mammalian genomes are largely reshu✏ed collections of
similar blocks, called synteny blocks. What is the most likely sequence of rearrangement
events to have changed one genome into the other?

• What genes are regulated together? Identifying groups of genes that are regulated in
the same way can lead to insights into genes’ functions, especially those related to
disease.

Because genomes are so large, questions like these can only be answered computationally. In
the next few pages, we will look at how the methods and techniques from previous sections
can be used to answer some of the questions above. We leave many additional examples as
exercises. We will begin by working with small sequences; later, we will discuss how to read
some longer sequences from files and the web.

Basic DNA analysis
We can use some of the techniques from the previous section to answer questions in the first
bullet above. For example, bacterial genomes are sometimes categorized according to their
ratio of G and C bases to A and T bases. The fraction of bases that are G or C is called the
genome’s GC content. There are a few ways that we can compute the GC content. First, we
could simply use the count method:

>>> gc = (dna.count('c') + dna.count('g')) / len(dna)
>>> gc
0.3888888888888889

Or, we could use a for loop like this:

def gcContent(dna):
"""Compute the GC content of a DNA sequence.

Parameter:
dna: a string representing a DNA sequence

Return value: the GC content of the DNA sequence
"""

dna = dna.lower()
count = 0
for nt in dna: # nt is short for "nucleotide"

if nt in 'cg':
count = count + 1

return count / len(dna)
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Reflection 4 Why do we convert dna to lowercase at the beginning of the function?

Because DNA sequences can be in either upper or lowercase, we need to account for both
possibilities when we write a function. But rather than check for both possibilities in our
functions, it is easier to just convert the parameter to either upper or lowercase at the
beginning.

To gather statistics about the codons in genes, we need to count the number of non-
overlapping occurrences of any particular codon. This is very similar to iterating over slices
of a text, except that we need to increment the index variable by three in each step:

def countCodon(dna, codon):
"""Find the number of occurrences of a codon in a DNA sequence.

Parameters:
dna: a string representing a DNA sequence
codon: a string representing a codon

Return value: the number of occurrences of the codon in dna
"""

dna = dna.lower()
codon = codon.lower()
count = 0
for index in range(0, len(dna) - 2, 3):

if dna[index:index + 3] == codon:
count = count + 1

return count

Reflection 5 Why do we subtract 2 from len(dna) above?

Transforming sequences
When DNA sequences are stored in databases, only the sequence of one strand is stored.
But genes and other features may exist on either strand, so we need to be able to derive
the reverse complement sequence from the original. To first compute the complement of a
sequence, we can use a string accumulator, but append the complement of each base in each
iteration.

def complement(dna):
"""Return the complement of a DNA sequence.

Parameter:
dna: a string representing a DNA sequence

Return value: the complement of the DNA sequence
"""

dna = dna.lower()
compdna = ''
for nt in dna:

if nt == 'a':
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compdna = compdna + 't'
elif nt == 'c':

compdna = compdna + 'g'
elif nt == 'g':

compdna = compdna + 'c'
else:

compdna = compdna + 'a'
return compdna

To turn our complement into a reverse complement, we need to write an algorithm to reverse
a string of DNA. Let’s look at two di↵erent ways we might do this. First, we could iterate
over the original string in reverse order and append the characters to the new string in that
order.

Reflection 6 How can we iterate over indices in reverse order?

We can iterate over the indices in reverse order by using a range that starts at len(dna)
- 1 and goes down to, but not including, −1 using a step of −1. A function that uses this
technique follows.

def reverse(dna):
"""Return the reverse of a DNA sequence.

Parameter:
dna: a string representing a DNA sequence

Return value: the reverse of the DNA sequence
"""

revdna = ''
for index in range(len(dna) - 1, -1, -1):

revdna = revdna + dna[index]
return revdna

A more elegant solution simply iterates over the characters in dna in the normal order, but
prepends each character to the revdna string.

def reverse(dna):
""" (docstring omitted) """

revdna = ''
for nt in dna:

revdna = nt + revdna
return revdna

Finally, we can combine the complement and reverse functions to create a function for
reverse complement:
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def reverseComplement(dna):
"""Return the reverse complement of a DNA sequence.

Parameter:
dna: a string representing a DNA sequence

Return value: the reverse complement of the DNA sequence
"""

return reverse(complement(dna))

This function first computes the complement of dna, then calls reverse on the result. We
can now, for example, use the reverseComplement function to count the frequency of a
particular codon on both strands of a DNA sequence:

countForward = countCodon(dna, 'atg')
countBackward = countCodon(reverseComplement(dna), 'atg')

Comparing sequences
Measuring the similarity between DNA sequences, called comparative genomics, has become
an important area in modern biology. Comparing the genomes of di↵erent species can provide
fundamental insights into evolutionary relationships. Biologists can also discover the function
of an unknown gene by comparing it to genes with known functions in evolutionarily related
species.

Dot plots are used heavily in computational genomics to provide visual representations of
how similar large DNA and amino sequences are. Consider the following two sequences. The
dotplot1 function in Section 6.6 would show pairwise matches between the nucleotides in
black only.

Sequence 1: agctttgcattctgacag
Sequence 2: accttttaattctgtacag

But notice that the last four bases in the two sequences are actually the same; if you insert
a gap in the first sequence, above the last T in the second sequence, then the number of
di↵ering bases drops from eight to four, as illustrated below.

Sequence 1: agctttgcattctg-acag
Sequence 2: accttttaattctgtacag

Evolutionarily, if the DNA of the closest common ancestor of these two species contained a
T in the location of the gap, then we interpret the gap as a deletion in the first sequence.
Or, if the closest common ancestor did not have this T, then we interpret the gap as an
insertion in the second sequence. These insertions and deletions, collectively called indels,
are common; therefore, sequence comparison algorithms must take them into account. So,
just as the first dotplot1 function did not adequately represent the similarity between texts,
neither does it for DNA sequences. Figure 2 shows a complete dot plot, using the dotplot
function from Section 6.6, for the sequences above.

As we saw in the previous section, dot plots tend to be more useful when we reduce the
“noise” by instead comparing subsequences of a given length, say `, within a sliding window.
Because there are 4` di↵erent possible subsequences with length `, fewer matches are likely.
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Figure 2 A dot plot comparing individual bases in agctttgcattctgacag and
accttttaattctgtacag. The dots representing the main alignment are highlighted.

Figure 3 A dot plot comparing two hypothetical short proteins
PDAQNPDMSFFKMLFLPESARWIQRTHGKNS and PDAQNPDMPLFLMKFFSESARWIQRTHGKNS.
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Dot plots are also more useful when comparing sequences of amino acids. Since there are 20
di↵erent amino acids, we tend to see less noise in the plots. For example, Figure 3 shows a
dot plot for the following hypothetical small proteins. Each letter corresponds to a di↵erent
amino acid. (See Table 1 for the meanings of the letters if you are interested.)

seq1 = 'PDAQNPDMSFFKMLFLPESARWIQRTHGKNS'
seq2 = 'PDAQNPDMPLFLMKFFSESARWIQRTHGKNS'

Notice how the plot shows an inversion in one sequence compared the other, highlighted in
red above.

Reading sequence files
DNA sequences are archived and made publicly available in a database managed by the
National Center for Biotechnology Information (NCBI), a division of the National Institutes
of Health (NIH). Each sequence in the database has an associated identifier known as an
accession number. For example, the accession number for the first segment of the Burmese
python (Python molurus bivittatus) genome is AEQU02000001. You can find this data by
visiting the NCBI website at http://www.ncbi.nlm.nih.gov, entering the accession number
in the search box, and selecting “Nucleotide” from the drop-down menu.

Genomic data is commonly stored in a format called FASTA [47]. A FASTA file begins with
a header preceded by a greater-than sign (>), followed by several lines of sequence data.
Each line of sequence is terminated with a newline character. For example, the FASTA file
for the first segment of the Burmese python genome looks like this:

>gi|541020484|gb|AEQU02000001.1| Python bivittatus ...
AGGCCTGGCGCAATATGGTTCATGGGGTCACGAAGAGTCGGACACGACTTAACGACTAAACAACAATTAA
TTCTAAACCCTAGCTATCTGGGTTGCTTCCCTACATTATATTTCCGTGAATAAATCTCACTAAACTCAGA
AGGATTTACTTTTGAGTGAACACTCATGATCAAGAACTCAGAAAACTGAAAGGATTCGGGAATAGAAGTG
TTATTTCAGCCCTTTCCAATCTTCTAAAAAGCTGACAGTAATACCTTTTTTTGTTTTAAAAATTTAAAAA
GAGCACTCACATTTATGCTACAGAATGAGTCTGTAACAGGGAAGCCAGAAGGGAAAAAGACTGAAACGTA
AACCAAGGACATAATGCAGGGATCATAATTTCTAGTTGGCAAGACTAAAGTCTATACATGTTTTATTGAA
AAACCACTGCTATTTGCTCTTACAAGAACTTATCCCTCCAGAAAAAGTAGCACTGGCTTGATACTGCCTG
CTCTAACTCAACAGTTTCAGGAAGTGCTGGCAGCCCCTCCTAACACCATCTCAGCTAGCAAGACCAAGTT
GTGCAAGTCCACTCTATCTCATAACAAAACCTCTTTAATTAAACTTGAAAGCCTAGAGCTTTTTTTACCT
TGGTTCTTCAAGTCTTCGTTTGTACAATATGGGCCAATGTCATAGCTTGGTGTATTAGTATTATTATTGT
TACTGTTGGTTACACAGTCAGTCAGATGTTTAGACTGGATTTGACATTTTTACCCATGTATCGAGTCCTT
CCCAAGGACCTGGGATAGGCAGATGTTGGTGTTTGATGGTGTTAAAGGT

To use this DNA sequence in a program, we need to extract the unadorned sequence into a
string, removing the header and newline characters. A function to do this is very similar to
those in Section 6.2.

def readFASTA(fileName):
"""Read a FASTA file containing a single sequence and return

the sequence as a string.

Parameter:
fileName: a string representing the name of a FASTA file

Return value: a string containing the sequence in the FASTA file
"""

http://www.ncbi.nlm.nih.gov
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fastaFile = open(fileName, 'r', encoding = 'utf-8')
header = fastaFile.readline()
dna = ''
for line in fastaFile:

dna = dna + line[:-1]
fastaFile.close()
return dna

After opening the FASTA file, we read the header line with the readline function. We will
not need this header, so this readline just serves to move the file pointer past the first line,
to the start of the actual sequence. To read the rest of the file, we iterate over it, line by
line. In each iteration, we append the line, without the newline character at the end, to a
growing string named dna. There is a link on the book website to the FASTA file above so
that you can try out this function.

We can also directly access FASTA files by using a URL that sends a query to NCBI. The
URL below submits a request to the NCBI website to download the FASTA file for the first
segment of the Burmese python genome (with accession number AEQU02000001).

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore
&id=AEQU02000001&rettype=fasta&retmode=text

To retrieve a di↵erent sequence, we would just need to insert a di↵erent accession number
(in red). The following function puts all of the pieces together.

import urllib.request as web

def getFASTA(id):
"""Fetch the DNA sequence with the given id from NCBI and return

it as a string.

Parameter:
id: the identifier of a DNA sequence

Return value: a string representing the sequence with the given id
"""

prefix1 = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi'
prefix2 = '?db=nuccore&id='
suffix = '&rettype=fasta&retmode=text'
url = prefix1 + prefix2 + id + suffix
readFile = web.urlopen(url)
header = readFile.readline()
dna = ''
for line in readFile:

line = line[:-1]
dna = dna + line.decode('utf-8')

readFile.close()
return dna

The function first creates a string containing the URL for the accession number passed in
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parameter id. The first common parts of the URL are assigned to the prefix variables,
and the last part of the URL is assigned to suffix. We construct the custom URL by
concatenating these pieces with the accession number. We then open the URL and use the
code from the previous readFASTA function to extract the DNA sequence and return it as a
string.

Reflection 7 Use the getFASTA function to read the first segment of the Burmese python
genome (accession number AEQU02000001).

We have just barely touched on the growing field of computational genomics. The following
exercises explore some additional problems and provide many opportunities to practice your
algorithm design and programming skills.

Exercises
6.8.1* Write a function

countACG(dna)

that returns the fraction of nucleotides in the given DNA sequence that are not
T. Use a for loop that iterates over the characters in the string.

6.8.2. Repeat the previous exercise, but use a for loop that iterates over the indices
of the string instead.

6.8.3* Write a function

printCodons(dna)

that prints the codons, starting at the left end, in the string dna. For example,
printCodons('ggtacactgt') would print

ggt
aca
ctg

6.8.4. Write a function

findCodon(dna, codon)

that returns the index of the first occurrence of the given codon in the string
dna. Unlike in the countCodon function, increment the loop index by 1 instead
of 3, so you can find the codon at any position.

6.8.5. Write a function

findATG(dna)

that builds up a list of indices of all of the positions of the codon ATG in the
given DNA string. Do not use the built-in index method or find method.
Constructing the list of indices is very similar to what we have done several
times in building lists to plot.

6.8.6. Since codons consist of three bases each, transcription can occur in one of three
independent reading frames in any sequence of DNA by starting at o↵sets 0, 1,
and 2 from the left end. For example, if our DNA sequence was ggtacactgtcat,
the codons in the three reading frames are:

RF 1: ggt aca ctg tca t
RF 2: g gta cac tgt cat
RF 3: gg tac act gtc at

Write a function
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printCodonsAll(dna)

that uses your function from Exercise 6.8.3 to print the codons in all three
reading frames.

6.8.7. Most vertebrates have much lower density of CG pairs (called CG dinucleotides)
than would be expected by chance. However, they often have relatively high
concentrations upstream from genes (coding regions). For this reason, finding
these so-called “CpG islands” is often a good way to find putative sites of genes.
(The “p” between C and G denotes the phosphodiester bond between the C and
G, versus a hydrogen bond across two complementary strands.) Without using
the built-in count method, write a function

CpG(dna)

that returns the fraction of dinucleotides that are cg. For example, if dna were
atcgttcg, then the function should return 0.5 because half of the sequence is
composed of CG dinucleotides.

6.8.8* A microsatellite or simple sequence repeat (SSR) is a contiguous repeat of
a short sequence of DNA. The repeated sequence is typically 2–4 bases in
length and can be repeated 10–100 times or more. For example, cacacacaca is
a short SSR of ca, a very common repeat in humans. Microsatellites are very
common in the DNA of most organisms, but their lengths are highly variable
within populations because of replication errors resulting from “slippage” during
copying. Comparing the distribution of length variants within and between
populations can be used to determine genetic relationships and learn about
evolutionary processes.

Write a function

ssr(dna, repeat)

that returns the length (number of repeats) of the first SSR in dna that repeats
the parameter repeat. If repeat is not found, return 0. Use the find method
of the string class to find the first instance of repeat in dna.

6.8.9. Write another version of the ssr function that finds the length of the longest
SSR in dna that repeats the parameter repeat. Your function should repeatedly
call the ssr function in the previous problem. You will probably want to use a
while loop.

6.8.10. Write a third version of the ssr function that uses the function in the previous
problem to find the longest SSR of any dinucleotide (sequence with length 2) in
dna. Your function should return the longest repeated dinucleotide.

6.8.11. Write a function

palindrome(dna)

that returns True if dna is the same as its reverse complement, and False
otherwise. (Note that this is di↵erent from the standard definition of palindrome.)
For example, gaattc is a palindrome because it and its reverse complement
are the same. These sequences turn out to be very important because certain
restriction enzymes target specific palindromic sequences and cut the DNA
molecule at that location. For example, the EcoR1 restriction enzyme cuts DNA
of the bacteria Escherichia coli at the sequence gaattc in the following way:

5'--gaattc--3' 5'--g \ aattc--3'
|||||| ⇒ | \ |

3'--cttaag--5' 3'--cttaa \ g--5'
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6.8.12* Write a function

dna2rna(dna)

that returns returns a copy of dna with every T replaced by a U.

6.8.13. Write a function

transcribe(dna)

that returns the RNA equivalent of the reverse complement of dna. (Utilize
previously written functions to accomplish this in one line.)

6.8.14. Write a function

clean(dna)

that returns a new DNA string in which every character that is not an A, C,
G, or T is replaced with an N. For example, clean('goat') should return the
string 'gnat'.

6.8.15. When DNA molecules are sequenced, there are often ambiguities that arise
in the process. To handle these situations, there are also “ambiguous symbols”
defined that code for one of a set of bases.

Symbol Possible Bases Symbol Possible Bases
R A G B C G T
Y C T D A G T
K G T H A C T
M A C V A C G
S C G N A C G T
W A T

Write a function

fix(dna)

that returns a DNA string in which each ambiguous symbol is replaced with
one of the possible bases it represents, each with equal probability. For example,
if an R exists in dna, it should be replaced with either an A with probability 1/2
or a G with probability 1/2.

6.8.16. Write a function

mark(dna)

that returns a new DNA string in which every start codon ATG is replaced with
>>>, and every stop codon (TAA, TAG, or TGA) is replaced with <<<. Your
loop should increment by 3 in each iteration so that you are only considering
non-overlapping codons. For example, mark('ttgatggagcattagaag') should
return the string 'ttg>>>gagcat<<<aag'.

6.8.17. The accession number for the hepatitis A virus is NC_001489. Write a program
that uses the getFASTA function to get the DNA sequence for hepatitis A,
and then the gcContent function from this section to find the GC content of
hepatitis A.

6.8.18. The DNA of the hepatitis C virus encodes a single long protein that is eventually
processed by enzymes called proteases to produce ten smaller proteins. There
are seven di↵erent types of the virus. The accession numbers for the proteins
produced by type 1 and type 2 are NP_671491 and YP_001469630. Write a
program that uses the getFASTA function and your dot plot function from
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Exercise 6.6.14 to produce a dot plot comparing these two proteins using a
window of size 4.

6.8.19. Hox genes control key aspects of embryonic development. Early in development,
the embryo consists of several segments that will eventually become the main
axis of the head-to-tail body plan. The Hox genes dictate what body part each
segment will become. One particular Hox gene, called Hox A1, seems to control
development of the hindbrain. Write a program that uses the getFASTA function
and your dot plot function from Exercise 6.6.14 to produce a dot plot comparing
the human and mouse Hox A1 genes, using a window of size 8. The human
Hox A1 gene has accession number U10421.1 and the mouse Hox A1 gene has
accession number NM_010449.4.
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Selected Exercise Solutions
6.8.1 def countACG(dna):

dna = dna.lower()
count = 0
for nt in dna:

if nt != 't':
count = count + 1

return count / len(dna)

6.8.3 def printCodons(dna):
for index in range(0, len(dna) - 2, 3):

print(dna[index:index+3])

6.8.8 def ssr(dna, repeat):
start = dna.find(repeat)
if start < 0:

return 0
count = 0
for index in range(start, len(dna), len(repeat)):

if dna[index : index + len(repeat)] == repeat:
count = count + 1

else:
return count

# OR

def ssr(dna, repeat):
start = dna.find(repeat)
if start < 0:

return 0
count = 0
index = start
while index < len(dna) and dna[index:index + len(repeat)] == repeat:

count = count + 1
index = index + len(repeat)

return count

6.8.12 def dna2rna(dna):
dna = dna.lower()
rna = ''
for nt in dna:

if nt == 't':
rna = rna + 'u'

else:
rna = rna + nt

return rna


