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*6.7 TIME COMPLEXITY

The algorithms that we are now designing have the potential to be applied to very large
texts or even entire corpora. So this is an opportune time to revisit the time complexity of
algorithms to develop a better understanding of what you might expect in these cases.

Recall that we analyze the time complexity of algorithms by counting the number of
elementary steps that they require, in relation to the size of the input. An elementary step
is one that takes the same amount of time every time we execute it, no matter what the
input is. In Section 1.4, we gave the following examples of elementary steps:

• arithmetic operations,

• assignments of values to variables,

• testing a condition involving numbers or a character, and

• examining a character in a string or a number in a list.

Reflection 1 Should a comparison between two strings, like word1 < word2, also count
as an elementary step?

To determine whether word1 < word2, the first characters must be compared, and then, if
the first characters are equal, the second characters must be compared, etc. until either two
characters are not the same or we reach the end of one of the strings. The total number of
individual character comparisons depends on the values assigned to those variable names.
Therefore, a string comparison may require many elementary steps, not just one. As we
will discuss in the rest of this section, the time complexity of string operations must be
considered carefully.

Best case vs. worst case
Let’s look at string comparison more carefully.

Reflection 2 If word1 = ’python’ and word2 = ’rattlesnake’, how many char-
acter comparisons are necessary to conclude that word1 < word2 is true? What if
word1 = ’rattlesnake’ and word2 = ’rattlesnakes’?

In the first case, only a comparison of the first characters is required to determine that the
expression is true. However, in the second case, or if the two strings are the same, we must
compare every character to yield an answer. Therefore, assuming one string is not the empty
string, the minimum number of comparisons is 1 and the maximum number of comparisons
is n, where n is the length of the shorter string. (Exercise 6.7.1 more explicitly illustrates
how a string comparison works.)

Put another way, the best-case time complexity of a string comparison is constant, or O(1),
because it does not depend on the input size, and the worst-case time complexity for a
string comparison is linearly proportional to n, or O(n).

Reflection 3 Do you think the best-case time complexity or the worst-case time complexity
is more representative of the true time complexity in practice?

We are typically much more interested in the worst-case time complexity of an algorithm
because it describes a guarantee on how long an algorithm can take. It also tends to be more
representative of what happens in practice. For example, intuitively, the average number of
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character comparisons in a string comparison is about half the length of the shorter string,
or n�2. Since n�2 is linearly proportional to n, the average case is also linear-time, making it
more similar to the worst-case than the best-case.

Reflection 4 What if one or both of the strings are constants, e.g., evaluating whether
word == 'buzzards'?

Because one of the values is a string literal with eight characters, we know that no more
than eight character comparisons are ever required to decide whether the strings are equal,
and this is independent of the input to any algorithm containing the comparison. Therefore,
the time complexity of this operation is constant.

The algorithms that we have written in this chapter are a bit more complicated, at least
at first glance. For example, let’s look at the findCharacter function from Section 6.4,
reproduced below.

1 def findCharacter(text, targetCharacter):
2 """ (docstring omitted) """

3 targetIndex = -1 # assume it won't be found
4 for index in range(len(text)):
5 if text[index] == targetCharacter: # if found, then
6 targetIndex = index # remember where
7 break # and exit the loop early
8 return targetIndex

The first and last statements in the function, on lines 3 and 8, are elementary steps because
their times are independent of the value of the input, text. The rest of the work in the
function is done by the for loop on lines 4–7.

Reflection 5 Suppose that text contains n characters (i.e., len(text) is n). In terms of
n, how many times does the for loop iterate?

The loop iterates n times, once for each character in text. In each of these iterations, an
integer is implicitly assigned to the variable index, which we count as one elementary step
per iteration. Then the comparison in the if statement on line 5 is executed. Since both
text[index] and targetCharacter are single characters, this is one more elementary step
per iteration. The two elementary steps on lines 6–7, which are only executed if the condition
is true, also end the loop. So each iteration of the for loop will execute between two and
four elementary steps, but the latter can only happen once.

Reflection 6 Overall how many elementary steps does this function execute in the best
and worst cases?

In the best case, the if condition in the for loop will be true right away, causing the loop
to end after only one iteration. Overall then, the function will execute one elementary step
in line 3, plus four elementary steps in its one iteration of the loop, plus one elementary step
in line 8, for a total of six elementary steps. This means that the function is a constant-time,
or O(1), algorithm in the best case.

In the worst case, the if condition will be false during the first n− 1 iterations, allowing the
loop to reach its last possible iteration. The for loop will execute two elementary steps in
each of these n − 1 iterations, for a total of 2(n − 1). The final, n-th iteration will execute
between two and four elementary steps, depending on whether the if condition is true.
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Figure 1 An empirical analysis of the time complexity of the findCharacter function.

Therefore, overall the function will execute 2 + 2(n − 1) + 4 = 2n + 4 elementary steps in the
worst case, meaning that it is a linear-time, or O(n), algorithm.

For this reason, the algorithmic technique used by findCharacter (and the find function
from the same section) is known as a linear search (or sequential search). In Chapter 10,
we will see an alternative search algorithm that is much faster, but it can only be used in
cases where the data is maintained in sorted order.

This analysis makes perfect sense if you think about it. In the best case, the findCharacter
function will find the character it seeks in the first character of text and finish right away.
On the other hand, in the worst case, it will search through the entire text and either not
find the character it seeks or find it in the very last character in text.

To see if this analysis holds up in practice, we timed findCharacter on increasingly long
portions of the text of Herman Melville’s Moby Dick . To simulate the worst-case behavior,
we searched for a control character that is almost definitely not found in any ordinary text
file. The results of this experiment are shown in Figure 1. The x-axis of the plot represents
the length of the text segments that we used, from the first 10,000 characters up to the
entire book, in 10,000-character increments. You can see that the curve is pretty close to a
straight line, indicating a linear time complexity.

Asymptotic time complexity
The jagged nature of the line in Figure 1 is due to the variable workload on the computer
while this program ran. Every time we run a program like this, the time it takes will be
a little di↵erent. And if we ran it on di↵erent computers, it would be even more di↵erent.
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But the linear rate at which the time grows with input size will be the same regardless.
Intuitively, this is one reason why we are only concerned with general classifications of
algorithms like constant-time and linear-time, rather than the exact number of elementary
steps they require. A related reason is that di↵erent elementary steps take di↵erent amounts
of time on di↵erent computers and in di↵erent programming languages. So the distinction
between something like 2n + 4 and 5n + 2 elementary steps is really meaningless. It could be
the case that the algorithm with 5n+ 2 elementary steps is actually a little faster in practice
because the elementary steps that it uses are faster than the ones the other algorithm uses.
So all that really matters is that both time complexities are linear functions of n.

As we discussed briefly back in Section 1.4, understanding the scalability of algorithms is
the most important reason we are only interested in general classifications of time complexity.
In other words, we are really only concerned with how well an algorithm will cope when
inputs scale up to huge sizes. Intuitively, this is because virtually all algorithms are going to
be very fast when the input sizes are small. Indeed, we saw in Figure 1 that the running
time of findCharacter on the entire text of Moby Dick, about 1.2 million characters, was
less than one-tenth of a second. However, when input sizes get really large, di↵erences in
time complexity can become quite significant.

We formally call this idea asymptotic time complexity . Asymptotic refers to our interest
in arbitrarily large input sizes. An asymptote, a line that an infinite curve gets arbitrarily
close to, but never actually touches, should be familiar if you have taken some calculus.

In asymptotic time complexity, we simplify 2n + 4 to O(n) because the other terms in the
expression have virtually no impact on the growth rate as the input size grows very large.
To make this concrete, let’s compare the growth rates of 2n + 4 and n.

n 2n + 4 growth factor

10 24 —
100 204 8.5000

1,000 2,004 9.8235
10,000 20,004 9.9820

100,000 200,004 9.9982
1,000,000 2,000,004 9.9998

10,000,000 20,000,004 9.9999

The first column of the table contains exponentially increasing values of n. In each row, the
value of n is growing by a factor of ten. Compare this to the third column, which shows the
rate at which 2n+ 4 is growing. In the second row, 2n+ 4 grew by a factor of 204�24 = 8.5. In
the third row, it grew by a factor of 2,004�204 = 9.8235. As n grows larger and larger, this
ratio gets closer and closer to ten. In other words, for very large values of n, n and 2n + 4
grow at essentially identical rates! So the constants 2 and 4 in the expression 2n + 4 have
virtually no impact at all on the rate at which the expression grows when n gets large. By
saying that 2n + 4 is asymptotically O(n), we are saying that 2n + 4 is really the same thing
as n, as n approaches infinity.

Understanding this, dealing with asymptotic time complexity actually makes analyzing
algorithms quite a bit simpler! Consider the splitIntoWords function from Section 6.1,
reproduced below.
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1 def splitIntoWords(text):
2 """ (docstring omitted) """

3 wordList = []
4 prevCharacter = ' '
5 word = ''
6 for character in text:
7 if character not in string.whitespace:
8 word = word + character
9 elif prevCharacter not in string.whitespace:

10 wordList.append(word)
11 word = ''
12 prevCharacter = character
13 if word != '':
14 wordList.append(word)
15 return wordList

This function is dominated by a for loop that iterates n times, where n=len(text), the
size of the input. Therefore, as long as each iteration of the loop contains a constant number
of elementary steps and all of the statements outside the loop don’t comprise more than
O(n) elementary steps, this is a linear-time algorithm. In other words, we don’t need to
worry about the exact number of elementary steps in the body of the loop, just that the
number is constant. This is indeed the case because each of lines 7–12 can be considered to
be a constant number of elementary steps.3 Outside the loop, the same can be said for lines
3–5 and 13–15. Therefore the worst-case asymptotic time complexity of this algorithm is
O(n)! We leave it as an exercise for you to support each of these assertions in more detail.

As another example, consider this partial dotplot function from Section 6.6.

1 def dotplot(text1, text2):
2 """ (docstring omitted) """

3 text1 = text1.lower()
4 text2 = text2.lower()
5 x = []
6 y = []
7 for index1 in range(len(text1)):
8 for index2 in range(len(text2)):
9 if text1[index1] == text2[index2]:

10 x.append(index1)
11 y.append(index2)
12 # plot x and y (omitted)

To simplify things a bit, assume that text1 and text2 are the same length, so n represents
the length of both strings. Let’s start at the top with the two calls to the lower method in
lines 3–4.

3Line 8 would appear to be a linear-time operation because it involves copying the characters in
the previous value of word. However, a clever trick is employed in the Python interpreter that makes
each concatenation in a long sequence of concatenations a constant-time operation on average. A
more in-depth discussion of this, in the context of lists, can be found in Section 7.5.
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(a) (b)

Figure 2 Two views comparing n
2
+ 2n + 2 (blue), n

2 (green), and n (red).

Reflection 7 Are lines 3 and 4 elementary steps? If not, about how many elementary
steps do they require?

Since the lower method needs to consider every character in the string, each of these lines
must require about n elementary steps. The two lines following are each one elementary
step. The main part of the function is a for loop in lines 8–11 that is nested inside another
for loop. The inner for loop iterates n times and each of the statements in the body of
the loop is an elementary step, so the inner for loop contains at most 3n elementary steps.
In each of the n iterations of the outer for loop on line 7, the inner for loop is executed
one time. Therefore, the total number of elementary steps in the nested loops is n ⋅ 3n = 3n2.
Altogether then, the function contains about 2n + 2 + 3n

2 elementary steps.

Since n
2 grows faster than both 2n and 2, we can ignore both of those terms, and say that

this algorithm’s asymptotic time complexity is O(n2
). The intuition behind this asymptotic

time complexity is illustrated in Figure 2. When we view n
2
+ 2n + 2 and n

2 together for
very small values of n in Figure 2(a), it appears as if n

2
+ 2n + 2 is diverging from n

2, but
when we “zoom out,” looking at values of n that are just a little larger, as in Figure 2(b),
we see that the functions are almost indistinguishable. In both graphs, we can also see that
both n

2
+ 2n + 2 and n

2 are significantly di↵erent than a linear time complexity, which is
almost indistinguishable from the x-axis.

Algorithms like dotplot that have O(n2
) asymptotic time complexity are said to be

quadratic-time algorithms .

Another way to visualize the di↵erence between a linear-time algorithm and a quadratic-time
algorithm is shown in Figure 3. Suppose each square represents one elementary step. On
the left is a representation of the work required in a linear-time algorithm. If the size of
the input to the linear-time algorithm increases from n − 1 to n (n = 7 in the pictures),
then the algorithm must execute one additional elementary step (in gray). On the right is a
representation of the work involved in a quadratic-time algorithm. If the size of the input
to the quadratic-time algorithm increases from n − 1 to n, then the algorithm gains 2n − 1
additional steps. So we can see that the amount of work in a quadratic-time algorithm grows
much more quickly than the work required by a linear-time algorithm!
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Figure 3 Linear vs. quadratic growth.

Exercises
6.7.1. The following function more explicitly illustrates how a string comparison works

“behind the scenes.” The comparisons variable counts how many individual
character comparisons are made.

def compare(word1, word2):
index = 0
comparisons = 3
while (index < len(word1)) and (index < len(word2)) \

and (word1[index] == word2[index]):
index = index + 1
comparisons = comparisons + 3

if index == len(word1) and index == len(word2): # case 1: ==
result = 'equal'
comparisons = comparisons + 2

elif index == len(word1) and index < len(word2): # case 2: <
result = 'less'
comparisons = comparisons + 2

elif index == len(word2) and index < len(word1): # case 3: >
result = 'greater'
comparisons = comparisons + 2

elif word1[index] < word2[index]: # case 4: <
result = 'less'
comparisons = comparisons + 1

else: # case 5: >
result = 'greater'
comparisons = comparisons + 1

return result, comparisons

def main():
word1 = 'canny'
word2 = 'candidate'
result, comparisons = compare(word1, word2)
if result == 'less':

print(word1 + ' comes before ' + word2 + '.')
elif result == 'greater':
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print(word1 + ' comes after ' + word2 + '.')
else:

print(word1 + ' and ' + word2 + ' are equal.')

print(str(comparisons) + ' comparisons were made.')

main()

Study and experiment with this function and answer the following questions.

(a) Explain why each of the five cases gives the result that it does.

(b) How many comparisons happen in the compare function when

i. 'canny' is compared to 'candidate'?
ii. 'canny' is compared to 'danny'?
iii. 'canny' is compared to 'canny'?
iv. 'can' is compared to 'canada'?
v. 'canoeing' is compared to 'canoe'?

(c) Suppose word1 and word2 are the same n-character string. How many
comparisons happen when word1 is compared to word2?

(d) Suppose word1 (with m characters) is a prefix of word2 (with n char-
acters). How many comparisons happen when word1 is compared to
word2?

(e) The value of comparisons actually over-counts the number of compar-
isons in some cases. When does this happen?

6.7.2. For each of the following code snippets, think carefully about how it must work,
and then indicate whether it represents a constant-time algorithm, a linear-time
algorithm, or a quadratic-time algorithm. The variable name refers to a string
object with length n. Justify each of your answers.

(a)* name = name.upper()

(b)* name = name.find('x')

(c)* name = 'accident'.find('x')

(d) newName = name.replace('a', 'e')

(e) newName = name + 'son'

(f) newName = 'jack' + 'son'

(g) index = ord('H') - ord('A') + 1

(h)* for character in name:
print(character)

(i) for character in 'hello':
print(character)

(j) if name == newName:
print('yes')
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(k) if name == 'hello':
print('yes')

(l) if 'x' in name:
print('yes')

(m) for character in name:
x = name.find(character)

6.7.3. The following function performs rough worst-case timing experiments of a test
function on increasingly long segments of a dummy text. It uses the time.time()
function (in the time module), which returns the current time in seconds elapsed
since January 1, 1970.

import time

def timing(maxLength, stepLength):
"""Plot timing experiments on a text analysis function.

Parameters:
maxLength: the maximum length of the test text
stepLength: steps between test text lengths

Return value: None
"""

text = 'a' * maxLength # a dummy text
times = []

for length in range(stepLength, maxLength, stepLength):
testText = text[:length]
begin = time.time()

# call a function to time here with argument(s) testText

end = time.time()
times.append(end - begin) # append elapsed time

pyplot.plot(range(stepLength, maxLength, stepLength), times)
pyplot.xlabel('n = len(text)')
pyplot.ylabel('Seconds')
pyplot.show()

The plot produced by this function is an empirically derived time complexity
plot similar to that in Figure 1. Use this function to perform timing experiments
with each of the following functions below. For (a)–(c), use timing(500000,
10000). For (d), use timing(5000, 100). Discuss each result, including what
it appears to indicate about the asymptotic time complexity of the function.

(a)* the fletcherChecksum function on page 249

(b) the wordFrequency function on page 268

(c) the copy function on page 225
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(d) the truncated dotplot function on page O6.7-5 (use testText for both
arguments)

6.7.4. Decide whether each of the following functions from this chapter is asymptotically
a constant-time, linear-time, or quadratic-time algorithm. Explain each of your
answers.

(a)* the copy function on page 225 (see the footnote on page O6.7-5)

(b) the removePunctuation function on page 227 (see the footnote on
page O6.7-5)

(c) the normalize function on page 227

(d)* the wordTokens function on page 231

(e) the wordCount function on page 232

(f) the fletcherChecksum function on page 249

(g) the wordFrequency function on page 268

(h) the sliceFrequencies function on page 270

6.7.5. What is the asymptotic time complexity of an algorithm that requires each of
the following numbers of elementary steps? Assume that n is the length of the
input in each case.

(a) 7n − 4

(b) 6

(c) 3n
2
+ 2n + 6

(d) 4n
3
+ 5n + 2n

(e) n log2 n + 2n

6.7.6. Suppose that two algorithms for the same problem require 12n and n
2 elementary

steps. On a computer capable of executing 1 billion steps per second, how long
will each algorithm take (in seconds) on inputs of size n = 10, 102, 104, 106, and
109? Is the algorithm that requires n

2 steps ever faster than the algorithm that
requires 12n steps?
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Selected Exercise Solutions
6.7.2 (a) linear time

(b) linear time

(c) constant time

(h) linear time

6.7.3 (a) Calling timing(500000, 10000) with fletcherChecksum(testText) between
the calls to time.time() yields a plot that resembles a straight diagonal line,
suggesting a linear time complexity.

6.7.4 (a) linear-time

(d) linear-time


