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*5.3 SIMULATING PROBABILITY DISTRIBUTIONS

Pseudorandom number generators can be used to approximate various probability distribu-
tions that can be used to simulate natural phenomena. A probability distribution assigns
probabilities, which are values in [0,1], to a set of random elementary events. The sum of
the probabilities of all of the elementary events must be equal to 1. For example, a weather
forecast that calls for a 70% chance of rain is a (predicted) probability distribution: the
probability of rain is 0.7 and the probability of no rain is 0.3. Mathematicians usually think
of probability distributions as assigning probabilities to numerical values or intervals of
values rather than natural events, although we can always define an equivalence between a
natural event and a numerical value.

Python provides support for several probability distributions in the random module. Here
we will just look at two especially common ones: the uniform and normal distributions. Each
of these is based on Python’s random function.

The uniform distribution

The simplest general probability distribution is the uniform distribution, which assigns equal
probability to every value in a range, or to every equal length interval in a range. A PRNG
like the random function returns values in [0,1) according to a uniform distribution. The
more general Python function random.uniform(a, b) returns a uniformly random value in
the interval [a,b]. In other words, it is equally likely to return any number in [a,b]. For
example,

>>> random.uniform(0, 100)
77.10524701669804

The normal distribution

Measurements of most everyday and natural processes tend to exhibit a “bell curve” distribu-
tion, formally known as a normal or Gaussian distribution. A normal distribution describes
a process that tends to generate values that are centered around a mean. For example,
measurements of people’s heights and weights tend to fall into a normal distribution, as do
the velocities of molecules in an ideal gas.

A normal distribution has two parameters: a mean value and a standard deviation. The
standard deviation is, intuitively, the average distance a value is from the mean; a low
standard deviation will give values that tend to be tightly clustered around the mean while
a high standard deviation will give values that tend to be spread out from the mean.

The normal distribution assigns probabilities to intervals of real numbers in such a way that
numbers centered around the mean have higher probability than those that are further from
the mean. Therefore, if we are generating random values according to a normal distribution,
we are more likely to get values close to the mean than values farther from the mean.

The Python function random.gauss returns a value according to a normal distribution with
a given mean and standard deviation. For example, the following returns a value according
to the normal distribution with mean 0 and standard deviation 0.25.

>>> random.gauss(0, 0.25)
-0.3371607214433552
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Figure 1 A histogram of 100,000 samples from random.gauss(0, 0.25).

Figure 1 shows a histogram of 100,000 values returned by random.gauss(0, 0.25). Notice
that the “bell curve” of frequencies is centered at the mean of 0.

The central limit theorem
Intuitively, the normal distribution is so common because phenomena that are the sums
of many additive random factors tend to be normal. For example, a person’s height is the
result of several different genes and the person’s health, so the distribution of heights in a
population tends to be normal. To illustrate this phenomenon, let’s create a histogram of the
sums of numbers generated by the random function. Below, the sumRandom function returns
the sum of n random numbers in the interval [0,1). The sumRandomHist function creates
a list named samples that contains trials of these sums, and then plots a histogram of
them.
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import matplotlib.pyplot as pyplot
import random

def sumRandom(n):
"""Returns the sum of n pseudorandom numbers in [0,1).

Parameter:
n: the number of pseudorandom numbers to generate

Return value: the sum of n pseudorandom numbers in [0,1)
"""

total = 0
for index in range(n):

total = total + random.random()
return total

def sumRandomHist(n, trials):
"""Displays a histogram of sums of n pseudorandom numbers.

Parameters:
n: the number of pseudorandom numbers in each sum
trials: the number of sums to generate

Return value: None
"""

samples = [ ]
for index in range(trials):

samples.append(sumRandom(n))
pyplot.hist(samples, 100)
pyplot.show()

Reflection 1 Call sumRandomHist with 100,000 trials and values of n equal to 1, 2, 3,
and 10. What do you notice?

When we call sumRandomHist with n = 1, we get the expected uniform distribution of values,
shown in the upper left of Figure 2. However, for increasing values of n, we notice that the
distribution of values very quickly begins to look like a normal distribution, as illustrated in
the rest of Figure 2. In addition, the standard deviation of the distribution (intuitively, the
width of the “bell”) appears to get smaller relative to the mean.

The mathematical name for this phenomenon is the central limit theorem. Intuitively, the
central limit theorem implies that any large set of independent measurements of a process
that is the cumulative result of many random factors will look like a normal distribution.
Because a normal distribution is centered around a mean, this also implies that the average
of all of the measurements will be close to the true mean.
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Figure 2 Results of sumRandomHist(n, 100000) with n = 1, 2, 3, 10.

Exercises
5.3.1* A more realistic random walk has the movement in each step follow a normal

distribution . In particular, in each step, we can change both x and y according
to a normal distribution with mean 0. Because the values produced by this
distribution will be both positive and negative, the particle can potentially move
in any direction. To make the step sizes small, we need to use a small standard
deviation, say 0.5:

x = x + random.gauss(0, 0.5)
y = y + random.gauss(0, 0.5)

Modify the randomWalk function so that it updates the position of the particle
in this way instead. Then use the rwMonteCarlo and plotDistances functions
to run a Monte Carlo simulation with your new randomWalk function. As we
did earlier, call plotDistances(1000, 10000). How do your results differ from
the original version?

5.3.2* Write a function

uniform(a, b)

that returns a number in the interval [a,b) using only the random.random

function. (Do not use the random.uniform function.)
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5.3.3. Suppose we want a pseudorandom integer between 0 and 7 (inclusive). How can
we use the random.random() and int functions to get this result?

5.3.4. Write a function

randomRange(a, b)

that returns a pseudorandom integer in the interval [a . .b] using only the
random.random function. (Do not use random.randrange or random.randint.)

5.3.5. Write a function

normalHist(mean, stdDev, trials)

that produces a histogram of trials values returned by the gauss function
with the given mean and standard deviation. In other words, reproduce Figure 1.
(This is very similar to the sumRandomHist function.)

5.3.6. Write a function

uniformHist(a, b, trials)

that produces a histogram of trials values in the range [a,b] returned by the
uniform function. In other words, reproduce the top left histogram in Figure 2.
(This is very similar to the sumRandomHist function.)

5.3.7. Write a function

plotChiSquared(k, trials)

that produces a histogram of trials values, each of which is the sum of k
squares of values given by the random.gauss function with mean 0 and standard
deviation 1. (This is very similar to the sumRandomHist function.) The resulting
probability distribution is known as the chi-squared distribution (χ2 distribution)
with k degrees of freedom.
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Selected Exercise Solutions
5.3.1 def randomWalk(steps, tortoise, draw):

x = 0
y = 0
moveLength = 10
for step in range(steps):

x = x + random.gauss(0, 0.5)
y = y + random.gauss(0, 0.5)
if draw:

tortoise.goto(x * moveLength, y * moveLength)
return distance(0, 0, x, y)
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5.3.2 def uniform(a, b):
return a + random.random() * (b - a)


