
*4.5 NUMERICAL ANALYSIS � O4.5-1

*4.5 NUMERICAL ANALYSIS

Accumulator algorithms are also used in the natural and social sciences to approximate the
values of common mathematical constants, and to numerically compute values and roots of
complicated functions that cannot be solved mathematically. In this section, we will discuss
a few relatively simple examples from this field of mathematics and computer science, known
as numerical analysis.

The harmonic series
Suppose we have an ant that starts walking from one end of a 1 meter long rubber rope.
During the first minute, the ant walks 10 cm. At the end of the first minute, we stretch the
rubber rope uniformly by 1 meter, so it is now 2 meters long. During the next minute, the
ant walks another 10 cm, and then we stretch the rope again by 1 meter. If we continue this
process indefinitely, will the ant ever reach the other end of the rope? If it does, how long
will it take?

The answer lies in counting what fraction of the rope the ant traverses in each minute.
During the first minute, the ant walks 1/10 of the distance to the end of the rope. After
stretching, the ant has still traversed 1/10 of the distance because the portion of the rope on
which the ant walked was doubled along with the rest of the rope. However, in the second
minute, the ant’s 10 cm stroll only covers 10/200 = 1/20 of the entire distance. Therefore,
after 2 minutes, the ant has covered 1/10 + 1/20 of the rope. During the third minute, the
rope is 3 m long, so the ant covers only 10/300 = 1/30 of the distance. This pattern continues,
so our problem boils down to whether the following sum ever reaches 1.

1

10
+ 1

20
+ 1

30
+⋯ = 1

10
(1 + 1

2
+ 1

3
+⋯)

Naturally, we can answer this question using an accumulator. But how do we add these
fractional terms? In Exercise 4.1.23, you may have computed 1 + 2 + 3 +⋯ + n:

def sumNumbers(n):
total = 0
for number in range(1, n + 1):

total = total + number
return total

In each iteration of this for loop, we add the value of number to the accumulator variable
total. Since number is assigned the values 1,2,3, . . . ,n, total has the sum of these values
after the loop. To compute the fraction of the rope traveled by the ant, we can modify this
function to add 1 / number in each iteration instead, and then multiply the result by 1/10:

Copyright Taylor and Francis, 2021

O4.5-2 � Discovering Computer Science, Second Edition

def ant(n):
"""Simulates the "ant on a rubber rope" problem. The rope
is initially 1 m long and the ant walks 10 cm each minute.

Parameter:
n: the number of minutes the ant walks

Return value: fraction of the rope traveled by the ant in n minutes
"""

total = 0
for number in range(1, n + 1):

total = total + (1 / number)
return total * 0.1

To answer our question with this function, we need to try several values of n to see if we can
find a sufficiently high value for which the sum exceeds 1. If we find such a value, then we
need to work with smaller values until we find the value of n for which the sum first reaches
or exceeds 1.

Reflection 1 Using at most 5 calls to the ant function, find a range of minutes that
answers the question.

For example, ant(100) returns about 0.52, ant(1000) returns about 0.75, ant(10000)
returns about 0.98, and ant(15000) returns about 1.02. So the ant will reach the other
end of the rope after 10,000–15,000 minutes. As cumbersome as that was, continuing it to
find the exact number of minutes required would be far worse.

Reflection 2 How would we write a function to find when the ant first reaches or exceeds
the end of the rope? (Hint: this is similar to the carbon-14 half-life problem.) We will leave
the answer as an exercise.

This infinite version of the sum that we computed in our loop,

1 + 1

2
+ 1

3
+⋯ ,

is called the harmonic series and each finite sum

Hn = 1 + 1

2
+ 1

3
+⋯ + 1

n

is called the nth harmonic number. (Mathematically, the ant reaches the other end of the rope
because the harmonic series diverges, that is, its partial sums increase forever.) The harmonic
series can be used to approximate the natural logarithm (ln) function. For sufficiently large
values of n,

Hn = 1 + 1

2
+ 1

3
+⋯ + 1

n
≈ lnn + 0.577.

This is illustrated in Figure 1 for only small values of n. Notice how the approximation
improves as n increases.

Reflection 3 Knowing that Hn ≈ lnn + 0.577, how can you approximate how long until
the ant will reach the end of the rope if it walks only 1 cm each minute?

*4.5 NUMERICAL ANALYSIS � O4.5-3

0 5 10 15 20 25 30
n

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

Harmonic series
ln n + 0.577

Figure 1 Harmonic series approximation of the natural logarithm (ln).

To answer this question, we want to find n such that

100 = lnn + 0.577

since the ant’s first step is not 1/100 of the total distance. This is the same as

e100−0.577 = n.

In Python, we can find the answer with math.exp(100 - 0.577), which gives about 1.5×1043

minutes, a long time indeed.

Approximating π
The value π is probably the most famous mathematical constant. There have been many
infinite series found over the past 500 years that can be used to approximate π. One of the
most famous is known as the Leibniz series, named after Gottfried Leibniz, the co-inventor
of calculus:

π = 4(1 − 1

3
+ 1

5
− 1

7
+⋯)

Like the harmonic series approximation of the natural logarithm, the more terms we compute
of this series, the closer we get to the true value of π. To compute this sum, we need to
identify a pattern in the terms, and relate them to the values of the index variable in a for

loop. Then we can fill in the red blank line below with an expression that computes the ith

term from the value of the index variable i.

O4.5-4 � Discovering Computer Science, Second Edition

def leibniz(terms):
"""Computes a partial sum of the Leibniz series.

Parameter:
terms: the number of terms to add

Return value: the sum of the given number of terms
"""

total = 0
for i in range(terms):

total = total +
pi = total * 4
return pi

To find the pattern, we can write down the values of the index variable next to the values in
the series to identify a relationship:

i 0 1 2 3 4 ⋯

ith term 1 − 1
3

1
5

− 1
7

1
9

⋯

Ignoring the alternating signs for a moment, we can see that the absolute value of the ith

term is
1

2i + 1
.

To alternate the signs, we use the fact that −1 raised to an even power is 1, while −1 raised
to an odd power is −1. Since the even terms are positive and odd terms are negative, the
final expression for the i term is

(−1)i ⋅ 1

2i + 1
.

Therefore, the red assignment statement in our leibniz function should be

total = total + (-1) ** i / (2 * i + 1)

Reflection 4 Call the completed leibniz function with a series of increasing arguments.
What do you notice about how the values converge to π?

By examining several values of the function, you might notice that they alternate between
being greater and less than the actual value of π. Figure 2 illustrates this.

Approximating square roots
The square root function (

√
n) cannot, in general, be computed directly. But it can be

approximated very well with many iterations of the following difference equation, known as
the Babylonian method (or Newton’s method):

X(k) = 1

2
(X(k − 1) + n

X(k − 1)) ,

*4.5 NUMERICAL ANALYSIS � O4.5-5

0 20 40 60 80 100
Terms

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Figure 2 The Leibniz series converging to π.

where n is the value whose square root we want and k is the number of iterations of the
algorithm. If k = 0, then X(k) is defined to be 1. The approximation of

√
n will be better

for larger values of k; X(20) will be closer to the actual square root than X(10).
Similar to our previous examples, we can compute successive values of the difference equation
using iteration. In this case, each value is computed from the previous value according to
the formula above. If we let the variable name x represent a term in the difference equation,
then we can compute the kth term with the following simple function:

def sqrt(n, k):
"""Approximates the square root of n with k iterations of the

Babylonian method.

Parameters:
n: the number to take the square root of
k: number of iterations

Return value: the approximate square root of n
"""

x = 1.0
for index in range(k):

x = 0.5 * (x + n / x)
return x

O4.5-6 � Discovering Computer Science, Second Edition

Reflection 5 Call the function above to approximate
√

10 with various values of k. What
value of k is necessary to match the value given by the math.sqrt function?

Exercises
4.5.1* Recall Reflection 2: How would we write a function to find when the ant first

reaches or exceeds the end of the rope? (Hint: this is similar to the carbon-14
half-life problem.)

(a) Write a function to answer this question.

(b) How long does it take for the ant to traverse the entire rope?

(c) If the ant walks 5 cm each minute, how long does it take to reach the
other end?

4.5.2. Augment the ant function so that it also produces the plot in Figure 1.

4.5.3* The value e (Euler’s number, the base of the natural logarithm) is equal to the
infinite sum

e = 1 + 1

1!
+ 1

2!
+ 1

3!
+⋯

Write a function

e(n)

that approximates the value of e by computing and returning the value of n

terms of this sum. For example, calling e(4) should return the value 1 + 1/1 +
1/2 + 1/6 ≈ 2.667. Your function should call the factorial function you wrote
for Exercise 4.1.26 to aid in the computation.

4.5.4. Calling the factorial function repeatedly in the function you wrote for the pre-
vious problem is very inefficient because many of the same arithmetic operations
are being performed repeatedly. Explain where this is happening.

4.5.5. To avoid the problems suggested by the previous exercise, rewrite the function
from Exercise 4.5.3 without calling the factorial function.

4.5.6* Rather than specifying the number of iterations in advance, numerical algorithms
usually iterate until the absolute value of the current term is sufficiently small.
At this point, we assume the approximation is “good enough.” Rewrite the
leibniz function so that it iterates while the absolute value of the current term
is greater than 10−6.

4.5.7. Similar to the previous exercise, rewrite the sqrt function so that it iterates
while the absolute value of the difference between the current and previous
values of x is greater than 10−15.

4.5.8. The following expression, discovered in the 14th century by Indian mathematician
Madhava of Sangamagrama, is another way to compute π.

π =
√

12(1 − 1

3 ⋅ 3 +
1

5 ⋅ 32 −
1

7 ⋅ 33 +⋯)

Write a function

approxPi(n)

*4.5 NUMERICAL ANALYSIS � O4.5-7

that computes n terms of this expression to approximate π. For example,
approxPi(3) should return the value

√
12(1 − 1

3 ⋅ 3 +
1

5 ⋅ 32) ≈
√

12(1 − 0.111 + 0.022) ≈ 3.156.

To determine the pattern in the sequence of terms, consider this table:

Term number Term

0 1/(30 ⋅ 1)
1 1/(31 ⋅ 3)
2 1/(32 ⋅ 5)
3 1/(33 ⋅ 7)
⋮ ⋮
i ?

What is the term for a general value of i?

4.5.9* The Wallis product, named after 17th century English mathematician John
Wallis, is an infinite product that converges to π:

π = 2(2

1
⋅ 2

3
⋅ 4

3
⋅ 4

5
⋅ 6

5
⋅ 6

7
⋅ ⋯)

Write a function

wallis(terms)

that computes the given number of terms in the Wallis product. Hint: Consider
the terms in pairs and find an expression for each pair. Then iterate over the
number of pairs needed to flesh out the required number of terms. You may
assume that terms is even.

4.5.10. The Nilakantha series, named after Nilakantha Somayaji, a 15th century Indian
mathematician, is another infinite series for π:

π = 3 + 4

2 ⋅ 3 ⋅ 4 −
4

4 ⋅ 5 ⋅ 6 +
4

6 ⋅ 7 ⋅ 8 −
4

8 ⋅ 9 ⋅ 10
+⋯

Write a function

nilakantha(terms)

that computes the given number of terms in the Nilakantha series.

4.5.11. The following infinite product was discovered by François Viète, a 16th century
French mathematician:

π = 2 ⋅ 2√
2
⋅ 2√

2 +
√

2
⋅ 2√

2 +
√

2 +
√

2

⋅ 2√
2 +

√
2 +

√
2 +

√
2

⋯

Write a function

viete(terms)

that computes the given number of terms in the Viète’s product. (Look at the
pattern carefully; it is not as hard as it looks if you base the denominator in
each term on the denominator of the previous term.)

O4.5-8 � Discovering Computer Science, Second Edition

Selected Exercise Solutions
4.5.1 (a) def ant():

total = 0
step = 0
while total < 10:

step = step + 1
total = total + (1 / step)

return step

(b) 12,367 minutes = over 8.5 days

(c) about 272,459,350 minutes = over 518 years

4.5.3 def e(n):
total = 1
for i in range(1, n):

total = total + 1.0 / factorial(i)
return total

4.5.6 def leibniz():
total = 0
term = 1
index = 0
while abs(term) > 1e-6:

term = (-1) ** index / (2 * index + 1)
total = total + term
index = index + 1

pi = total * 4
return pi

4.5.9 def wallis(terms):
pairs = terms / 2
product = 1
for i in range(pairs):

first = (2.0 * (i + 1)) / (2 * i + 1)
second = (2.0 * (i + 1)) / (2 * i + 3)
product = product * first * second

pi = product * 2
return pi

