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*4.4 CONTINUOUS MODELS

If we want to more accurately model the situation in our fishing pond, we need to acknowledge
that the size of the fish population does not really change only once a year. Like virtually all
natural processes, the change happens continually or, mathematically speaking, continuously,
over time. To more accurately model continuous natural processes, we need to update our
population size more often, using smaller time steps. For example, we could update the size
of the fish population every month instead of every year by replacing every annual update of

population = population + 0.08 * population - 1500

with twelve monthly updates:

for month in range(12):
population = population + (0.08 / 12) * population - (1500 / 12)

Since both the growth rate of 0.08 and the harvest of 1500 are based on 1 year, we have
divided both of them by 12.

Reflection 1 Is the final value of population the same whether we update it annual or
monthly?

If the initial value of population is 12000, the value of population after one annual update
is 11460.0 while the final value after 12 monthly updates is 11439.753329049303. Because
the rate is “compounding” monthly, it reduces the population slightly more quickly.

This is exactly how bank loans work. The bank will quote an annual percentage rate (APR)
of, say, 6% (or 0.06) but then compound interest monthly at a rate of 6/12% = 0.5% (or
0.005), which means that the actual annual rate of interest you are being charged, called
the annual percentage yield (APY), is actually (1 + 0.005)12 − 1 ≈ 0.0617 = 6.17%. The APR,
which is really defined to be the monthly rate times 12, is sometimes also called the “nominal
rate.” So we can say that our fish population is increasing at a nominal rate of 8%, but
updated every month.

Difference equations
A population model like this is expressed more accurately with a difference equation , also
known as a recurrence relation . If we let P (t) represent the size of the fish population at
the end of year t, then the difference equation that defines our original model is

P (t) = P (t − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

previous year’s
population

+ 0.08 ⋅ P (t − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
proportional

increase

− 1500
±
harvest

or, equivalently,
P (t) = 1.08 ⋅ P (t − 1) − 1500.

In other words, the size of the population at the end of year t is 1.08 times the size of the
population at the end of the previous year (t−1), minus 1500. The initial population or, more
formally, the initial condition is P (0) = 12,000. We can find the projected population size for
any given year by starting with P (0), and using the difference equation to compute successive
values of P (t). For example, suppose we wanted to know the projected population size four
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years from now, represented by P (4). We start with the initial condition: P (0) = 12,000.
Then, we apply the difference equation to t = 1:

P (1) = 1.08 ⋅ P (0) − 1500 = 1.08 ⋅ 12,000 − 1500 = 11,460.

Now that we have P (1), we can compute P (2):

P (2) = 1.08 ⋅ P (1) − 1500 = 1.08 ⋅ 11,460 − 1500 = 10,876.8.

Continuing,

P (3) = 1.08 ⋅ P (2) − 1500 = 1.08 ⋅ 10,876.8 − 1500 = 10,246.94

and
P (4) = 1.08 ⋅ P (3) − 1500 = 1.08 ⋅ 10,246.94 − 1500 = 9,566.6952.

So this model projects that the bass population in 4 years will be 9,566. This is the same
process we followed in our for loop in Section 4.1.

To turn this discrete model into a continuous model, we define a small update interval,
which is customarily named ∆t (∆ represents “change,” so ∆t represents “change in time”).
If, for example, we want to update the size of our population every month, then we let
∆t = 1/12 (1/12 of a year). Then we express our difference equation as

P (t) = P (t −∆t) + (0.08 ⋅ P (t −∆t) − 1500) ⋅∆t

This difference equation is defining the population size at the end of year t in terms of the
population size one ∆t fraction of a year ago. For example, if t is 3 and ∆t is 1/12, then
P (t) represents the size of the population at the end of year 3 and P (t −∆t) represents the
size of the population at the end of “year 2 11/12,” equivalent to one month earlier. Notice
that both the growth rate and the harvest number are scaled by ∆t, just as we did in the
for loop on page O4.4-1.

To implement this model, we need to make some analogous changes to the algorithm from
Section 4.1. First, we need to pass in the value of ∆t as a parameter so that we have control
over the accuracy of the approximation. Second, we need to modify the number of iterations
in our loop to reflect 1/∆t update events each year; the number of iterations becomes
years ⋅ (1/∆t) = years/∆t. Third, we need to alter how the accumulator is updated in the
loop to reflect this new type of difference equation. These changes are reflected below. We
use dt to represent ∆t.
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Figure 1 The plot produced by calling pond(15, 12000, 1500, 0.01).

def pond(years, initialPopulation, harvest, dt):
""" (docstring omitted) """

population = initialPopulation
for step in range(1, int(years/dt) + 1):

population = population + (0.08 * population - harvest) * dt

return population

Reflection 2 Why do we use range(1, int(years/dt) + 1) in the for loop instead of
range(int(years/dt))?

We start the for loop at one instead of zero because the first iteration of the loop represents
the first time step of the simulation. The initial population size assigned to population

before the loop represents the population at time zero.

To plot the results of this simulation, we use the same technique that we used in Section 4.2.
But we also use a list accumulator to create a list of time values for the x axis because
the values of the index variable step no longer represent years. In the following function,
the value of step * dt is assigned to the variable t, and then appended to a list named
timeList.1

1Recall from Section 3.3 that this is better than adding dt in each iteration.
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import matplotlib.pyplot as pyplot

def pond(years, initialPopulation, harvest, dt):
"""Simulates a fish population in a pond, and plots annual population

size growing at a nominal annual rate of 8% with an annual harvest.

Parameters:
years: number of years to simulate
initialPopulation: the initial population size
harvest: the size of the annual harvest
dt: value of "Delta t" in the simulation

(fraction of a year)

Return value: the final population size
"""

population = initialPopulation
populationList = [initialPopulation]
timeList = [0]
t = 0
for step in range(1, int(years/dt) + 1):

population = population + (0.08 * population - harvest) * dt
populationList.append(population)
t = step * dt
timeList.append(t)

pyplot.plot(timeList, populationList)
pyplot.xlabel('Year')
pyplot.ylabel('Fish Population Size')
pyplot.show()
return population

Reflection 3 Create a trace table that shows how the values of step, t, and timeList

change in the first few iterations of the loop when dt is 0.01.

Figure 1 shows a plot produced by calling this function with ∆t = 0.01. Compare this plot
to the one in Section 4.1. To actually come close to approximating a real continuous process,
we need to use very small values of ∆t. But there are tradeoffs involved in doing so, which
we discuss in more detail later in this section.

Radiocarbon dating
When archaeologists wish to know the ages of organic relics, they often turn to radiocarbon
dating . Both carbon-12 (12C) and carbon-14 (or radiocarbon, 14C) are isotopes of carbon
that are present in our atmosphere in a relatively constant proportion. While carbon-12 is a
stable isotope, carbon-14 is unstable and decays at a known rate. All living things ingest
both isotopes, and die possessing them in the same proportion as the atmosphere. Thereafter,
an organism’s acquired carbon-14 decays at a known rate, while its carbon-12 remains intact.
By examining the current ratio of carbon-12 to carbon-14 in organic remains (up to about
60,000 years old), and comparing this ratio to the known ratio in the atmosphere, we can
approximate how long ago the organism died.
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The annual decay rate (more correctly, the decay constant2) of carbon-14 is about k =
−0.000121. Since radioactive decay is a continuous process, Q(t), the quantity of carbon-14
present at the beginning of year t, needs to be defined in terms of Q(t−∆t), the quantity of
carbon-14 a small ∆t fraction of a year ago. Therefore, the difference equation modeling the
decay of carbon-14 is

Q(t) = Q(t −∆t) + k ⋅Q(t −∆t) ⋅∆t .
Since the decay constant k is based on one year, we scale it down for an interval of length
∆t by multiplying it by ∆t. We will represent the initial condition with Q(0) = q, where q
represents the initial quantity of carbon-14.

Although this is a completely different application, we can implement the model the same
way we implemented our continuous fish population model.

import matplotlib.pyplot as pyplot

def decayC14(originalAmount, years, dt):
"""Approximates the continuous decay of carbon-14.

Parameters:
originalAmount: the original quantity of carbon-14 (g)
years: number of years to simulate
dt: value of "Delta t" in the simulation

(fraction of a year)

Return value: final quantity of carbon-14 (g)
"""

k = -0.000121
amount = originalAmount
t = 0
timeList = [0] # x values for plot
amountList = [amount] # y values for plot

for step in range(1, int(years/dt) + 1):
amount = amount + k * amount * dt
t = step * dt
timeList.append(t)
amountList.append(amount)

pyplot.plot(timeList, amountList)
pyplot.xlabel('Years')
pyplot.ylabel('Quantity of carbon-14')
pyplot.show()

return amount

Like all of our previous accumulators, this function initializes our accumulator variable,
named amount, before the loop. Then the accumulator is updated in the body of the loop
according to the difference equation above. Figure 2 shows an example plot from this
function.

2The probability of a carbon-14 molecule decaying in a very small fraction ∆t of a year is k∆t.
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Figure 2 Plot of carbon-14 decay generated with decayC14(100, 20000, 0.01).

Reflection 4 How much of 100 g of carbon-14 remains after 5,000 years of decay? Try
various ∆t values ranging from 1 down to 0.001. What do you notice?

Tradeoffs between accuracy and time
Approximations of continuous models are more accurate when the value of ∆t is smaller.
However, accuracy has a cost. The decayC14 function has time complexity proportional
to y/∆t, where y is the number of years we are simulating, since this is how many times
the for loop iterates. So, if we want to improve accuracy by dividing ∆t in half, this will
directly result in our algorithm requiring twice as much time to run. If we want ∆t to be
one-tenth of its current value, our algorithm will require ten times as long to run.

To get a sense of how decreasing values of ∆t affect the outcome, let’s look at what happens in
our decayC14 function with originalAmount = 1000 and years = 2000. The table below
contains these results, with the theoretically derived answer in the last row (see Tangent 1).
The error column shows the difference between the result and this value for each value of
dt. All values are rounded to three significant digits to reflect the approximate nature of
the decay constant. We can see from the table that smaller values of dt do indeed provide
closer approximations.
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Tangent 1: Differential equations

If you have taken a course in calculus, you may recognize each of these continuous models
as an approximation of a differential equation. A differential equation is an equation
that relates a function to the rate of change of that function, called the derivative. For
example, the differential equation corresponding to the carbon-14 decay problem is

dQ

dt
= kQ

where Q is the quantity of carbon-14, dQ/dt is the rate of change in the quantity of
carbon-14 at time t (i.e., the derivative of Q with respect to t), and k is the decay
constant. Solving this differential equation using basic calculus techniques yields

Q(t) = Q(0) ekt

where Q(0) is the original amount of carbon-14. We can use this equation to directly
compute how much of 1000 g of carbon-14 would be left after 2,000 years with:

Q(2000) = 1000 e2000k ≈ 785.0562.

Although simple differential equations like this are easily solved if you know calcu-
lus, most realistic differential equations encountered in the sciences are not, making
approximate iterative solutions essential. The approximation technique we are using
in this chapter, called Euler’s method , is the most fundamental, and introduces error
proportional to ∆t. More advanced techniques seek to reduce the approximation error
further.

dt final amount error time

1.0 785.0447 0.0115 500 µs

0.1 785.0550 0.0012 5 ms

0.01 785.0561 0.0001 50 ms

0.001 785.0562 0.0 500 ms

0.0001 785.0562 0.0 5 sec

— 785.0562 — —

Reflection 5 What is the relationship between the value of dt and the error? What
about between the value of dt and the execution time?

Each row in the table represents a computation that took ten times as long as that in the
previous row because the value of dt was ten times smaller. But the error is also ten times
smaller. Is this tradeoff worthwhile? The answer depends on the situation. Certainly using
dt = 0.0001 is not worthwhile because it gives the same answer (to three significant digits)
as dt = 0.001, but takes ten times as long.

These types of tradeoffs — quality versus cost — are common in all fields, and computer
science is no exception. Building a faster memory requires more expensive technology.
Ensuring more accurate data transmission over networks requires more overhead. And
finding better approximate solutions to hard problems requires more time.
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Simulating an epidemic
Real populations interact with each other and the environment in complex ways. Therefore,
to accurately model them requires an interdependent set of difference equations, called
coupled difference equations. In 1927, Kermack and McKendrick [29] introduced such a
model for the spread of infectious disease called the SIR model . The “S” stands for the
“susceptible” population, those who may still acquire the disease; “I” stands for the “infected”
population, and “R” stands for the “recovered” population. In this model, we assume that,
once recovered, an individual has built an immunity to the disease and cannot reacquire
it. We also assume that the total population size is constant, and no one dies from the
disease. Therefore, an individual moves from a “susceptible” state to an “infected” state to
a “recovered” state, where she remains, as pictured below.

Susceptible Infected Recovered

These assumptions apply well to common viral infections, like the flu and COVID-19,
assuming a relatively small fraction of the infected population dies.

A virus like the flu travels through a population more quickly when there are more infected
people with whom a susceptible person can come into contact. In other words, a susceptible
person is more likely to become infected if there are more infected people. Also, since the
total population size does not change, an increase in the number of infected people implies
an identical decrease in the number who are susceptible. Similarly, a decrease in the number
who are infected implies an identical increase in the number who have recovered. Like most
natural processes, the spread of disease is fluid or continuous, so we will need to model these
changes over small intervals of ∆t, as we did in the radioactive decay model.

We need to design three difference equations that describe how the sizes of the three groups
change. We will let S(t) represent the number of susceptible people on day t, I(t) represent
the number of infected people on day t, and R(t) represent the number of recovered people
on day t.

The recovered population has the most straightforward difference equation. The size of the
recovered group only increases; when infected people recover they move from the infected
group into the recovered group. The number of people who recover at each step depends on
the number of infected people at that time and the recovery rate r: the average fraction of
people who recover each day.

Reflection 6 What factors might affect the recovery rate in a real outbreak?

Since we will be dividing each day into intervals of length ∆t, we will need to use a scaled
recovery rate of r ⋅∆t for each interval. So the difference equation describing the size of the
recovered group on day t is

R(t) = R(t −∆t) + r ⋅ I(t −∆t) ⋅∆t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

newly recovered, from I

Since no one has yet recovered on day 0, we set the initial condition to be R(0) = 0.

Next, we will consider the difference equation for S(t). The size of the susceptible population
only decreases by the number of newly infected people. This decrease depends on the number
of susceptible people, the number of infected people with whom they can make contact,
and the rate at which these potential interactions produce a new infection. The number of
possible interactions between susceptible and infected individuals at time t −∆t is simply
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their product: S(t −∆t) ⋅ I(t −∆t). If we let d represent the rate at which these interactions
produce an infection, then our difference equation is

S(t) = S(t −∆t) − d ⋅ S(t −∆t) ⋅ I(t −∆t) ⋅∆t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

newly infected, to I

.

Reflection 7 What factors might affect the infection rate in a real outbreak?

If N is the total size of our population, then the initial condition is S(0) = N − 1 because we
will start with one infected person, leaving N − 1 who are susceptible.

The difference equation for the infected group depends on the number of susceptible people
who have become newly infected and the number of infected people who are newly recovered.
These numbers are precisely the number leaving the susceptible group and the number
entering the recovered group, respectively. We can simply copy those from the equations
above.

I(t) = I(t −∆t) + d ⋅ S(t −∆t) ⋅ I(t −∆t) ⋅∆t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

newly infected, from S

− r ⋅ I(t −∆t) ⋅∆t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

newly recovered, to R

.

Since we are starting with one infected person, we set I(0) = 1.

The program below is a “skeleton” for implementing this model with a recovery rate r = 0.25
and an infection rate d = 0.0004. These rates imply that the average infection lasts 1/r = 4
days and there is a 0.04% chance that an encounter between a susceptible person and an
infected person will occur and result in a new infection. The program also demonstrates
how to plot and label several curves in the same figure, and display a legend. We leave the
implementation of the difference equations in the loop as an exercise.

import matplotlib.pyplot as pyplot

def SIR(population, days, dt):
"""Simulates the SIR model of infectious disease and plots the

population sizes over time.

Parameters:
population: the population size
days: number of days to simulate
dt: the value of "Delta t" in the simulation

(fraction of a day)

Return value: None
"""

susceptible = population - 1 # susceptible count = S(t)
infected = 1.0 # infected count = I(t)
recovered = 0.0 # recovered count = R(t)
recRate = 0.25 # recovery rate r
infRate = 0.0004 # infection rate d
SList = [susceptible]
IList = [infected]
RList = [recovered]
timeList = [0]

# Loop using the difference equations goes here.
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Figure 3 Output from the SIR model with 2,200 individuals over 30 days with

∆t = 0.01.

pyplot.plot(timeList, SList, label = 'Susceptible')
pyplot.plot(timeList, IList, label = 'Infected')
pyplot.plot(timeList, RList, label = 'Recovered')
pyplot.legend(loc = 'center right')
pyplot.xlabel('Days')
pyplot.ylabel('Individuals')
pyplot.show()

Figure 3 shows the output of the model with 2,200 individuals (students at a small college,
perhaps?) over 30 days. We can see that the infection peaks after about 2 weeks, then
decreases steadily. After 30 days, the virus is just about gone, with only about 40 people
still infected. We also notice that not everyone is infected after 30 days; about 80 people are
still healthy.

Reflection 8 Look at the relationships among the three population sizes over time in
Figure 3. How do the sizes of the susceptible and recovered populations cause the decline
of the infected population after the second week? What other relationships do you notice?

When we are implementing a coupled model, we need to be careful to compute the change
in each population size based on population sizes from the previous iteration rather than
population sizes previously computed in this iteration. Therefore, we need to compute all of
the changes in population sizes for time t, denoted ∆R(t), ∆S(t) and ∆I(t), based on the
previous population sizes, before we update the new population sizes in each iteration. In
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other words, in each iteration, we first compute

∆R(t) = r ⋅ I(t −∆t) ⋅∆t,
∆S(t) = d ⋅ S(t −∆t) ⋅ I(t −∆t) ⋅∆t, and

∆I(t) = ∆S(t) −∆R(t).

Then, we use these values to update the new population sizes:

R(t) = R(t −∆t) +∆R(t),
S(t) = S(t −∆t) −∆S(t), and

I(t) = I(t −∆t) +∆I(t).

Interestingly, the SIR model can also be used to model the diffusion of ideas, fads, or memes
in a population. A “contagious” idea starts with a small group of people and can “infect”
others over time. As more people adopt the idea, it spreads more quickly because there
are more potential interactions between those who have adopted the idea and those who
have not. Eventually, people move on to other things and forget about the idea, thereby
“recovering.”

Exercises
Write a function for each of the following problems.

4.4.1* Suppose we have a pair of rabbits, one male and one female. Female rabbits
are mature and can first mate when they are only one month old, and have a
gestation period of one month. Suppose that every mature female rabbit mates
every month and produces exactly one male and one female offspring one month
later. No rabbit ever dies.

(a) Write a difference equation R(m) representing the number of female
rabbits at the end of each month. (Note that this is a discrete model;
there are no ∆t’s.) Start with the first month and compute successive
months until you see a pattern. Don’t forget the initial condition(s). To
get you started:

• R(0) = 1, the original pair

• R(1) = 1, the original pair now one month old

• R(2) = 2, the original pair plus a newborn pair

• R(3) = 3, the original pair plus a newborn pair plus a one-month-old
pair

• R(4) = 5, the pairs from the previous generation plus two newborn
pairs
⋮

• R(m) = ?

(b) Write a function

rabbits(months)

that uses your difference equation from part (a) to compute and return
the number of rabbits after the given number of months. Your function
should also plot the population growth using matplotlib. (The sequence
of numbers generated in this problem is called the Fibonacci sequence.)
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4.4.2. Consider Exercise 4.1.21, but now assume that a bacteria colony grows continu-
ously with a growth rate of 0.1∆t per small fraction ∆t of an hour.

(a) Write a difference equation for B(t), the size of the bacteria colony,
using ∆t’s to approximately model continuous growth.

(b) Write a function

bacteria(population, dt, days)

that uses your difference equation from part (a) to compute and return
the number of bacteria in the colony after the given number of days.
The other parameters, population and dt, are the initial size of the
colony and the step size (∆t), respectively. Your function should also
plot the population growth using matplotlib.

4.4.3* Radioactive elements like carbon-14 are normally described by their half-life,
the time required for a quantity of the element to decay to half its original
quantity. Write a function

halflifeC14(originalAmount, dt)

that returns the half-life of carbon-14. Your function will need to simulate
radioactive decay until the amount is equal to half of originalAmount.

The known half-life of carbon-14 is 5,730± 40 years. How close does this approx-
imation come? Try it with different values of dt.

4.4.4. Finding the half-life of carbon-14 is a special case of radiocarbon dating. When
an organic artifact is dated with radiocarbon dating, the fraction of extant
carbon-14 is found relative to the content in the atmosphere. Let’s say that the
fraction in an ancient piece of parchment is found to be 70%. Then, to find
the age of the artifact, we can use a generalized version of halflifeC14 that
iterates while amount > originalAmount * 0.7. Show how to generalize the
halflifeC14 function in the previous exercise by writing a new function

carbonDate(originalAmount, fractionRemaining, dt)

that returns the age of an artifact with the given fraction of carbon-14 remaining.
Use this function to find the approximate age of the parchment.

4.4.5* Complete the implementation of the SIR simulation. Compare your results to
Figure 3 to check your work.

4.4.6. Run your implementation of the SIR model for longer periods of time than that
shown in Figure 3. Given enough time, will everyone become infected?

4.4.7. Suppose that enough people have been vaccinated that the infection rate is cut
in half. What effect do these vaccinations have?

4.4.8. The SIS model represents an infection that does not result in immunity. In other
words, there is no “recovered” population; people who have recovered re-enter
the “susceptible” population.

(a) Write difference equations for this model.

(b) Copy and then modify the SIR function (renaming it SIS) so that it
implements your difference equations.

(c) Run your function with the same parameters that we used for the SIR
model. What do you notice? Explain the results.
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4.4.9. Suppose there are two predator species that compete for the same prey, but do
not directly harm each other. We might expect that, if the supply of prey was
low and members of one species were more efficient hunters, then this would
have a negative impact on the health of the other species. This can be modeled
through the following pair of difference equations. P (t) and Q(t) represent the
populations of predator species 1 and 2, respectively, at time t.

P (t) = P (t −∆t) + bP ⋅ P (t −∆t) ⋅∆t − dP ⋅ P (t −∆t) ⋅Q(t −∆t) ⋅∆t

Q(t) = Q(t −∆t) + bQ ⋅Q(t −∆t) ⋅∆t − dQ ⋅ P (t −∆t) ⋅Q(t −∆t) ⋅∆t

The initial conditions are P (0) = p and Q(0) = q, where p and q represent the
initial population sizes of the first and second predator species, respectively.
The values bP and dP are the birth rate and death rates (or, more formally,
proportionality constants) of the first predator species, and the values bQ and
dQ are the birth rate and death rate for the second predator species. In the first
equation, the term bP ⋅P (t−∆t) represents the net number of births per month
for the first predator species, and the term dP ⋅ P (t −∆t) ⋅Q(t −∆t) represents
the number of deaths per month. Notice that this term is dependent on the sizes
of both populations: P (t −∆t) ⋅Q(t −∆t) is the number of possible (indirect)
competitions between individuals for food and dP is the rate at which one of
these competitions results in a death (from starvation) in the first predator
species.

This type of model is known as indirect, exploitative competition because the
two predator species do not directly compete with each other (i.e., eat each
other), but they do compete indirectly by exploiting a common food supply.

Write a function

compete(pop1, pop2, birth1, birth2, death1, death2, years, dt)

that implements this model for a generalized indirect competition scenario,
plotting the sizes of the two populations over time. Run your program using

• p = 21 and q = 26

• bP = 1.0 and dP = 0.2; bQ = 1.02 and dQ = 0.25

• dt = 0.001; 6 years

and explain the results. Here is a “skeleton” of the function to get you started.

def compete(pop1, pop2, birth1, birth2, death1, death2, years, dt):
""" YOUR DOCSTRING HERE """

pop1List = [pop1]
pop2List = [pop2]
timeList = [0]
for step in range(1, int(years/dt) + 1):

# YOUR CODE GOES HERE

pyplot.plot(timeList, pop1List, label = 'Population 1')
pyplot.plot(timeList, pop2List, label = 'Population 2')
pyplot.legend()
pyplot.xlabel('Years')
pyplot.ylabel('Individuals')
pyplot.show()
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Selected Exercise Solutions
4.4.1 The difference equation is

R(m) = R(m − 1) +R(m − 2)

where R(m−1) represents the number of rabbits alive the previous month and R(m−2)
represents a new pair for every pair alive two months ago. The initial conditions are
R(1) = R(2) = 1. This famous sequence is known as the Fibonacci numbers.

import matplotlib.pyplot as pyplot

def rabbits(months):

population2 = 0 # R(m-2)

population1 = 1 # R(m-1)

populationList = [1]

for month in range(1, months + 1):

population = population1 + population2 # R(m)

population2 = population1

population1 = population

populationList.append(population)

pyplot.plot(range(months + 1), populationList)

pyplot.xlabel(’Month’)

pyplot.ylabel(’Rabbit Population Size’)

pyplot.show()

return population

4.4.3 def halflifeC14(originalAmount, dt):
amount = originalAmount
k = -0.00012096809434
iterations = 0
while amount > originalAmount / 2:

amount = amount + k * amount * dt
iterations = iterations + 1

return iterations * dt

4.4.5 numIterations = int(days/dt) + 1
for i in range(1, numIterations):

t = i * dt
dR = (recRate * infected) * dt # newly recovered
dS = (infRate * susceptible * infected) * dt # newly infected

recovered = recovered + dR
susceptible = susceptible - dS
infected = infected + dS - dR

timeList.append(t)
SList.append(susceptible)
IList.append(infected)
RList.append(recovered)


