
⌅ O3.4-1

*3.4 BINARY ARITHMETIC

Because numbers are stored in a computer’s memory in binary, computers must
also perform arithmetic in binary. Binary addition is actually much easier than
decimal addition since there are only three basic binary addition facts: 0 + 0 = 0,
0 + 1 = 1 + 0 = 1, and 1 + 1 = 10. (This is 10 in binary, which has the value 2 in
decimal.) With these basic facts, we can add any two arbitrarily long binary numbers
using the same right-to-left algorithm that we all learned in elementary school.

For example, let’s add the binary numbers 1110 and 0111. Starting on the right, we
add the last column: 0 + 1 = 1.

1 1 1 0

+ 0 1 1 1

1

In the next column, we have 1 + 1 = 10. Since the answer contains more than one
bit, we carry the 1.

1

1 1 1 0

+ 0 1 1 1

0 1

In the next column, we have 1 + 1 = 10 again, but with a carry bit as well. Adding
in the carry, we have 10 + 1 = 11 (or 2 + 1 = 3 in decimal). So the answer for the
column is 1, with a carry of 1.

1 1

1 1 1 0

+ 0 1 1 1

1 0 1

Finally, in the leftmost column, with the carry, we have 1 + 0 + 1 = 10. We write the
0 and carry the 1, and we are done.

1 1 1

1 1 1 0

+ 0 1 1 1

1 0 1 0 1

We can easily check our work by converting everything to decimal. The top number
in decimal is 8 + 4 + 2 + 0 = 14 and the bottom number in decimal is 0 + 4 + 2 + 1 = 7.
Our answer in decimal is 16 + 4 + 1 = 21. Sure enough, 14 + 7 = 21.

Copyright Taylor and Francis, 2021



O3.4-2 ⌅ Discovering Computer Science, Second Edition

More limited precision

Although Python integers can store arbitrarily large values, this is not true at the
machine language level. Python integers are another abstraction built atop the
native capabilities of the computer. At the machine language level (and in most
other programming languages), every integer is stored in a fixed amount of memory,
usually four bytes (32 bits). This is another example of limited precision.

We can illustrate this by revisiting the previous problem, but assuming that we only
have four bits in which to store each integer. When we add the four-bit integers
1110 and 0111, we arrived at a sum, 10101, that requires five bits to be represented.
When a computer encounters this situation, it simply discards the leftmost bit. In
our example, this would result in an incorrect answer of 0101, which is 5 in decimal.
Fortunately, there are ways to detect when this happens, which we leave to you to
discover as an exercise.

Negative integers

We assumed above that the integers we were adding were positive, or, in programming
terminology, unsigned. But of course computers must also be able to handle arithmetic
with signed integers, both positive and negative.

Everything, even a negative sign, must be stored in a computer in binary. One
option for representing negative integers is to simply reserve one bit in a number to
represent the sign, say 0 for positive and 1 for negative. For example, if we store
every number with eight bits and reserve the first (leftmost) bit for the sign, then
00110011 would represent 51 and 10110011 would represent −51. This approach is
known as sign and magnitude notation. The problem with this approach is that the
computer then has to detect whether a number is negative and handle it specially
when doing arithmetic.

For example, suppose we wanted to add −51 and 102 in sign and magnitude notation.
In this notation, −51 is 10110011 and 102 is 01100110. First, we notice that 10110011
is negative because it has 1 as its leftmost bit and 01100110 is positive because it
has 0 as its leftmost bit. So we need to subtract positive 51 from 102:

0 10 10 0 10 10

0 �1 �1 �0 0 �1 �1 �0 ←� 102
− 0 0 1 1 0 0 1 1 ←� 51

0 0 1 1 0 0 1 1 ←� 51

Borrowing in binary works the same way as in decimal, except that we borrow a
2 (10 in binary) instead of a 10. Finally, we leave the sign of the result as positive
because the largest operand was positive.

To avoid these complications, computers use a clever representation called two’s
complement notation. Integers stored in two’s complement notation can be added
directly, regardless of their sign. The leftmost bit is also the sign bit in two’s
complement notation, and positive numbers are stored in the normal way, with
leading zeros if necessary to fill out the number of bits allocated to an integer. To



*3.4 BINARY ARITHMETIC ⌅ O3.4-3

convert a positive number to its negative equivalent, we invert every bit to the left
of the rightmost 1. For example, since 51 is represented in eight bits as 00110011,
−51 is represented as 11001101.

To illustrate how addition works in two’s complement notation, let’s once again add
−51 and 102:

1 1 1 1

1 1 0 0 1 1 0 1 ←� −51
+ 0 1 1 0 0 1 1 0 ←� 102
�1 0 0 1 1 0 0 1 1 ←� 51

As a final step in the addition algorithm, we always disregard an extra carry bit. So,
indeed, in two’s complement, −51 + 102 = 51.

Note that it is still possible to get an incorrect answer in two’s complement if the
answer does not fit in the given number of bits. Some exercises below prompt you to
investigate this further.

Designing an adder

Let’s look at how binary addition is actually performed using only and, or, and
not operations.

An adder takes two single bit inputs and outputs a two bit answer. We will name
the rightmost bit in the answer the “sum” and the leftmost bit the “carry.” So we
want our abstract adder to look this:

+b
a sum

carry

The two single bit inputs enter on the left side, and the two outputs exit on the
right side. Our goal is to replace the inside of this “black box” with an actual logic
circuit that computes the two outputs from the two inputs.

The first step is to design a truth table that represents what the values of sum and
carry should be for all of the possible input values:

a b carry sum
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Notice that the value of carry is 0, except for when a and b are both 1, i.e., when
we are computing 1 + 1. Also, notice that, listed in this order (carry, sum), the two
output bits can also be interpreted as a two bit sum: 0 + 0 = 00, 0 + 1 = 1, 1 + 0 = 1,
and 1 + 1 = 10. (As in decimal, a leading 0 contributes nothing to the value of a
number.)

Next, we need to create an equivalent Boolean expression for each of the two outputs
in this truth table. We will start with the sum column. To convert this column to a



O3.4-4 ⌅ Discovering Computer Science, Second Edition

Boolean expression, we look at the rows in which the output is 1. In this case, these
are the second and third rows. The second row says that we want sum to be 1 when
a is 0 and b is 1. The and in this sentence is important; for an and expression to be
1, both inputs must be 1. But, in this case, a is 0 so we need to flip it with not a.
The b input is already 1, so we can leave it alone. Putting these two halves together,
we have not a and b. Now the third row says that we want sum to be 1 when a is 1
and b is 0. Similarly, we can convert this to the Boolean expression a and not b.

a b carry sum
0 0 0 0

0 1 0 1 ←� not a and b

1 0 0 1 ←� a and not b

1 1 1 0

Finally, let’s combine these two expressions into one expression for the sum column:
taken together, these two rows are saying that sum is 1 if a is 0 and b is 1, or if a is
1 and b is 0. In other words, we need at least one of these two cases to be 1 for the
sum column to be 1. This is just equivalent to (not a and b) or (a and not b). So
this is the final Boolean expression for the sum column.

Now look at the carry column. The only row in which the carry bit is 1 says that
we want carry to be 1 if a is 1 and b is 1. In other words, this is simply a and b. In
fact, if you look at the entire carry column, you will notice that this column is the
same as in the truth table for a and b. So, to compute the carry, we just compute a

and b.

a b carry sum
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

↑ ↑

a and b (not a and b) or (a and not b)

Implementing an adder

To implement our adder, we need physical devices that implement each of the binary
operators. Figure 1(a) shows a simple electrical implementation of an and operator.
Imagine that electricity is trying to flow from the positive terminal on the left to
the negative terminal on the right and, if successful, light up the bulb. The binary
inputs, a and b, are each implemented with a simple switch. When the switch is
open, it represents a 0, and when the switch is closed, it represents a 1. The light
bulb represents the output (o↵ = 0 and on = 1). Notice that the bulb will only light
up if both of the switches are closed (i.e., both of the inputs are 1). An or operator
can be implemented in a similar way, represented in Figure 1(b). In this case, the
bulb will light up if at least one of the switches is closed (i.e., if at least one of the
inputs is 1).



*3.4 BINARY ARITHMETIC ⌅ O3.4-5

+ –a b a and b

(a)

+ –
a

b a or b

(b)

Figure 1 Simple electrical implementations of an (a) and and (b) or gate.

a and bb
a a or bb

a not aa

Figure 2 Schematic representations of logic gates.

Physical implementations of binary operators are called logic gates . It is interesting
to note that, although modern gates are implemented electronically, they can be
implemented in other ways as well. Enterprising inventors have implemented hydraulic
and pneumatic gates, mechanical gates out of building blocks and sticks, optical
gates, and recently, gates made from molecules of DNA.

Logic gates have standard, implementation-independent schematic representations,
shown in Figure 2. Using these symbols, it is a straightforward matter to compose
gates to create a logic circuit that is equivalent to any Boolean expression. For
example, the expression not a and b would look like the following:

a not a and b
b

Both inputs a and b enter on the left. Input a enters a not gate before the and gate,
so the top input to the and gate is not a and the bottom input is simply b. The
single output of the circuit on the right leaves the and gate with value not a and b.
In this way, logic circuits can be built to an arbitrary level of complexity to perform
useful functions.

The circuit for the carry output of our adder is simply an and gate:

carryb
a

The circuit for the sum output is a bit more complicated:



O3.4-6 ⌅ Discovering Computer Science, Second Edition

b
a

sum

By convention, the solid black circles represent connections between “wires”; if there
is no solid black circle at a crossing, this means that one wire is “floating” above
the other and they do not touch. In this case, by virtue of the connections, the a

input is flowing into both the top and gate and the bottom not gate, while the b

input is flowing into both the top not gate and the bottom and gate. The top and

gate outputs the value of a and not b and the bottom and gate outputs the value
of not a and b. The or gate then outputs the result of oring these two values.

Finally, we can combine these two circuits into one grand adder circuit with two
inputs and two outputs, to replace the “black box” adder we began with. The shaded
box represents the “black box” that we are replacing.

carryb
a

sum

Notice that the values of both a and b are each now flowing into three di↵erent
gates initially, and the two outputs are conceptually being computed in parallel. For
example, suppose a is 0 and b is 1. The figure below shows how this information
flows through the adder to arrive at the final output values.

carryb
a

sum

0
1

0
1

0
1

0

1

0

1

1

0

In this way, the adder computes 0 + 1 = 1, with a carry of 0.



*3.4 BINARY ARITHMETIC ⌅ O3.4-7

Exercises
3.4.1* Show how to add the unsigned binary numbers 001001 and 001101.

3.4.2. Show how to add the unsigned binary numbers 0001010 and 0101101.

3.4.3* Show how to add the unsigned binary numbers 1001 and 1101, assuming that
all integers must be stored in four bits. Convert the binary values to decimal to
determine if you arrived at the correct answer.

3.4.4. Show how to add the unsigned binary numbers 001010 and 101101, assuming
that all integers must be stored in six bits. Convert the binary values to decimal
to determine if you arrived at the correct answer.

3.4.5. Suppose you have a computer that stores unsigned integers in a fixed number
of bits. If you have the computer add two unsigned integers, how can you tell if
the answer is correct (without having access to the correct answer from some
other source)? (Refer back to the unsigned addition example in the text.)

3.4.6* Show how to add the two’s complement binary numbers 0101 and 1101, assuming
that all integers must be stored in four bits. Convert the binary values to decimal
to determine if you arrived at the correct answer.

3.4.7. What is the largest positive integer that can be represented in four bits in two’s
complement notation? What is the smallest negative number? (Think especially
carefully about the second question.)

3.4.8. Show how to add the two’s complement binary numbers 1001 and 1101, assuming
that all integers must be stored in four bits. Convert the binary values to decimal
to determine if you arrived at the correct answer.

3.4.9. Show how to add the two’s complement binary numbers 001010 and 101101,
assuming that all integers must be stored in six bits. Convert the binary values
to decimal to determine if you arrived at the correct answer.

3.4.10. Suppose you have a computer that stores two’s complement integers in a fixed
number of bits. If you have the computer add two two’s complement integers,
how can you tell if the answer is correct (without having access to the correct
answer from some other source)?

3.4.11. Subtraction can be implemented by adding the first operand to the two’s
complement of the second operand. Using this algorithm, show how to subtract
the two’s complement binary number 0101 from 1101. Convert the binary values
to decimal to determine if you arrived at the correct answer.

3.4.12. Show how to subtract the two’s complement binary number 0011 from 0110.
Convert the binary values to decimal to determine if you arrived at the correct
answer.

3.4.13. Copy the completed adder circuit, and show, as we did above, how the two
outputs (carry and sum) obtain their final values when the input a is 1 and the
input b is 0.

3.4.14* Convert the Boolean expression not (a and b) to a logic circuit.

3.4.15. Convert the Boolean expression not a and not b to a logic circuit.

3.4.16. The single Boolean operator nand (short for “not and”) can replace all three
traditional Boolean operators. The truth table and logic gate symbol for nand

are shown below.



O3.4-8 ⌅ Discovering Computer Science, Second Edition

a b a nand b

0 0 1
0 1 1
1 0 1
1 1 0

a nand bb
a

Show how you can create three logic circuits, using only nand gates, each of
which is equivalent to one of the and, or, and not gates. (Hints: you can use
constant inputs, e.g., inputs that are always 0 or 1, or have both inputs of a
single gate be the same.)



*3.4 BINARY ARITHMETIC ⌅ O3.4-9

Selected Exercise Solutions
3.4.1 0 0 1 0 0 1

+ 0 0 1 1 0 1

0 1 0 1 1 0

3.4.3 1 0 0 1
+ 1 1 0 1

0 1 1 0

This answer is incorrect since we had to discard the leftmost 1 from the answer.

3.4.6 0 1 0 1
+ 1 1 0 1

0 0 1 0

This answer is correct: 5 + −3 = 2.

3.4.14
not (a and b)b

a


