
*12.4 A STACK ADT � O12.4-1

*12.4 A STACK ADT

An abstract data type is called abstract because its description is independent of its imple-
mentation. In the epigraph opening this chapter, Barbara Liskov, the pioneering researcher
and Turing Award winner who first developed the idea of an abstract data type, explained
that “the use which may be made of an abstraction is relevant; the way in which the
abstraction is implemented is irrelevant.” For example, our understanding of a list as a
sequence of objects that may be appended, modified, and searched is independent of whether
those objects are stored in sequential blocks of computer memory, archived on a hard drive
or written on paper by a barrel of monkeys. The hidden implementation of an ADT is
called a data structure . Separating the ADT from the underlying data structure allows us
to ignore the implementation details and use abstract data types at a high level to solve
problems that would otherwise be out of reach.

An abstract data type that stores a group or sequence of data is known as a collection .
We have used several of Python’s collection abstract data types—strings, lists, tuples, and
dictionaries—and built new types based on these ADTs (e.g., ordered pairs, boids, graphs)
to solve specific problems. In this section, we will demonstrate how to define and implement
a new collection type by fleshing out the design and implementation of a stack.

A stack is a restricted list in which items are inserted and deleted only from one end, called
the top. When an item is added to a stack, it pushed onto the top of the stack. When an
item is deleted from a stack, it is popped from the same end. Therefore, when an item is
popped, it is always the last item that was pushed. For this reason, a stack is known as a
“last in, first out” (LIFO) structure.

Stacks have many uses, many of which have to do with reversing some process. (If you
completed Project 9.1, you used a stack to draw figures from the strings produced by
Lindenmayer systems.) As a simple example, suppose we want to reverse a string. (We used
other approaches to do this in Exercises 6.1.14 and 9.2.7.) Using a stack, we can iterate
over the characters of the string, pushing them onto the stack one at a time, as illustrated
in steps 1–4 in Figure 1. Then, as illustrated in steps 5–8, we can pop the characters and
concatenate them to the end of a new string as we do. Because the characters are popped in
the reverse order in which they were pushed, the final string is the reverse of the original.

Based on this discussion, the main attribute of the stack ADT is an ordered collection of

c c
o

c
o
d

c
o
d
e

1. 2. 3. 4. 5. 6.

c
o
d

c
o

c

7. 8.

push
code

push
ode

pop
e

pop
ed

pop
edo

pop
edoc

push
de

push
e

Figure 1 Reversing the string 'code' with a stack.

Copyright Taylor and Francis, 2021

O12.4-2 � Discovering Computer Science, Second Edition

items in the stack. We also need to know when the stack is empty, so we will also maintain
the length of the stack as an attribute.

Instance Variable Description

items the items on the stack
length the number of items on the stack

In addition to the push and pop functions, it is useful to have a function that allows us to
peek at the item on the top of the stack without deleting it, and a function that tells us
when the stack is empty.

Method Arguments Description

create — create a new empty Stack instance
top — return the item on the top of the stack
pop — return and delete the item on the top of the stack
push an item insert a new item on the top of the stack
is empty — return true if the stack is empty, false otherwise

Stack class
Based on this specification, an implementation of a Stack class is fairly straightforward. (To
save space, we are using short docstrings based on the ADT specification.)

class Stack:
"""A stack class."""

def __init__(self):
self._stack = [] # the items in the stack

def top(self):
"""Return the item on the top of the stack."""

if len(self._stack) > 0:
return self._stack[-1]

raise IndexError('stack is empty')

def pop(self):
"""Return and delete the item on the top of the stack."""

if len(self._stack) > 0:
return self._stack.pop()

raise IndexError('stack is empty')

def push(self, item):
"""Insert a new item on the top of the stack."""

self._stack.append(item)

def isEmpty(self):
"""Return true if the stack is empty, false otherwise."""

return len(self._stack) == 0

*12.4 A STACK ADT � O12.4-3

We implement the stack with a list named self._stack, and define the end of the list to be
the top of the stack. We then use the append and pop list methods to push and pop items
to and from the top of the stack, respectively. (This is the origin of the name for the pop

method; without an argument, the pop method deletes the item from the end of the list.)

Reflection 1 The stack ADT contained a length attribute. Why do we not need to include
this in the class?

We do not include the length attribute because the list that we use to store the stack items
maintains its length for us; to determine the length of the stack internally, we can just refer to
len(self._stack). For example, in the top method, we need to make sure the stack is not
empty before attempting to access the top element. If we tried to return self._stack[-1]

when self._stack is empty, the following error will result:

IndexError: list index out of range

Likewise, in the pop method of Stack, if we tried to return self._stack.pop() when
self._stack is empty, we would get this error:

IndexError: pop from empty list

These are not very helpful error messages, both because they refer to a list instead of the
stack and because the first refers to an index, which is not a concept that is relevant to
a stack. In the top and pop methods, we remedy this by using the raise statement. You
may recall that familiar errors like IndexError, ValueError, and SyntaxError are called
exceptions . The raise statement “raises” an exception which, by default, causes the program
to end with an error message. The raise statements in the top and pop methods raise an
IndexError exception and print a more helpful message after it:

IndexError: stack is empty

Reflection 2 If you have not already done so, type the Stack class into a module named
stack.py. Then run the following program.

import stack

def main():
myStack = stack.Stack()
myStack.push('one')
print(myStack.pop()) # prints "one"
print(myStack.pop()) # exception

main()

Reversing a string
Now let’s explore a few ways we can use our new Stack class. First, the following function
uses a stack to reverse a string, using the algorithm we described above.

O12.4-4 � Discovering Computer Science, Second Edition

import stack

def reverse(text):
""" (docstring omitted) """

characterStack = stack.Stack()
for character in text:

characterStack.push(character)

reverseText = ''
while not characterStack.isEmpty():

character = characterStack.pop()
reverseText = reverseText + character

return reverseText

Reflection 3 If the string 'class' is passed in for text, what is assigned to
characterStack after the for loop? What string is assigned to reverseText at the
end of the function?

Converting numbers to other bases
For another example, let’s write a function that converts an integer value to its corresponding
representation in any other base. In Section 3.2 and Tangent 3.3, we saw that we can represent
integers in other bases by simply using a number other than 10 as the base of each positional
value in the number. For example, the numbers 234 in base 10, 11101010 in base 2, EA in
base 16, and 1414 in base 5 all represent the same value, as shown below. To avoid ambiguity,
we use a subscript with the base after any number not in base 10.

111010102 = 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

= 128 + 64 + 32 + 0 + 8 + 0 + 2 + 0

= 234.

EA16 = 14 × 161 + 10 × 160

= 224 + 10

= 234.

14145 = 1 × 53 + 4 × 52 + 1 × 51 + 4 × 50

= 125 + 100 + 5 + 4

= 234.

To represent an integer value in another base, we can repeatedly divide by the base and
add the digit representing the remainder to the front of a growing string. For example, to
convert 234 to its base 5 representation:

1. 234 ÷ 5 = 46 remainder 4

2. 46 ÷ 5 = 9 remainder 1

3. 9 ÷ 5 = 1 remainder 4

4. 1 ÷ 5 = 0 remainder 1

*12.4 A STACK ADT � O12.4-5

In each step, we divide the quotient obtained in the previous step (in red) by the base. At
the end, the remainders (underlined), in reverse order, comprise the final representation.
Since we obtain the digits in the opposite order that they appear in the number, we can
push each one onto a stack as we get it. Then, after all of the digits are found, we can pop
them off the stack and append them to the end of a string representing the number in the
desired base.

import stack

def convert(number, base):
"""Represent a non-negative integer value in any base.

Parameters:
number: a non-negative integer
base: the base in which to represent the value

Return value: a string representing the number in the given base
"""

digitStack = stack.Stack()
while number > 0:

digit = number % base
digitStack.push(digit)
number = number // base

numberString = ''
while not digitStack.isEmpty():

digit = digitStack.pop()
if digit < 10:

numberString = numberString + str(digit)
else:

numberString = numberString + chr(ord('A') + digit - 10)
return numberString

Exercises
12.4.1* Add a __str__ method to the Stack class. Your representation should indicate

which end of the stack is the top, and whether the stack is empty.

12.4.2. Enhance the convert function so that it also works correctly for negative
integers.

12.4.3* Write a function that uses a stack to determine whether a string is a palindrome.

12.4.4. Write a function that uses a stack to determine whether the parentheses in
an arithmetic expression (represented as a string) are balanced. For exam-
ple, the parentheses in the string '(1+(2+3)*(4 - 5))' are balanced but the
parentheses in the strings '(1+2+3)*(4-5))' and '(1+(2+3)*(4-5)' are not.

12.4.5. When a function is called recursively, a representation (which includes the values
of its local variables) is pushed onto the top of a stack. The use of a stack can
be seen in Figures 9.11, 9.12, and 9.15. When a function returns, it is popped

O12.4-6 � Discovering Computer Science, Second Edition

from the top of the stack and execution continues with the function instance
that is on the stack below it.

So recursive algorithms can be rewritten iteratively by replacing the recursive
calls with an explicit stack. Rewrite the recursive depth-first search function
from Section 9.5 iteratively using a stack. Start by creating a stack and pushing
the source position onto it. Then, inside a while loop that iterates while the
stack is not empty, pop a position and check whether it can be visited. If it can,
mark it as visited and push the four neighbors of the position onto the stack.
The function should return True if the destination can be reached, or False

otherwise.

12.4.6. A queue abstract data type is like a stack except items are inserted and removed
from opposite ends. The insert operation, called enqueue, inserts a new item
at the rear of the queue, and the deletion operation, called dequeue, deletes
an item from the front of the queue. You may remember using a queue in the
breadth-first search algorithm in Section 11.2. Write a class that implements a
queue ADT, as defined below.

Instance Variable Description

items the items in the queue

length the number of items in the queue

Method Arguments Description

front — return the item at the front of the queue

dequeue — return and delete the item at the front of the queue

enqueue an item insert a new item at the rear of the queue

is empty — return true if the queue is empty, false otherwise

12.4.7. Write a class named Pointset that contains a collection of points. Inside the
class, the points should be stored in a list of Pair objects (from Section 12.2).
Your class should implement the following methods:

• insert(self, x, y) adds a point (x,y) to the point set

• __len__(self) returns the number of points (implements the len function
for a PointSet)

• _distance(self, index1, index2) returns the distance between the
two points with the given indices in the list of points (a private method)

• centroid(self) returns the centroid as a Pair object (see Section 12.2)

• closestPoints(self) returns the two closest points as Pair objects (see
Exercise 12.2.7)

• farthestPoints(self) returns the two farthest points as Pair objects

• diameter(self) returns the distance between the two farthest points

• draw(self, tortoise, color) draws the points with the given turtle
and color

Use your class to implement a program that is equivalent to that in Exer-
cise 12.2.7. Your program should initialize a new PairSet object (instead of a
list), insert each new point into the PairSet object, call your closestPairs,

*12.4 A STACK ADT � O12.4-7

farthestPairs, and centroid methods, draw all of the points with the draw

method of your PairSet class, and draw the closest pair, farthest pair and
centroid in different colors using the draw method of the Pair class (as assigned
in that exercise).

O12.4-8 � Discovering Computer Science, Second Edition

Selected Exercise Solutions
12.4.1 def __str__(self):

if len(self) == 0:
stackString = '| (empty) | '

else:
stackString = '| '
for item in self._stack:

stackString = stackString + repr(item) + ' | '
return stackString + '<- top'

12.4.3 def palindrome(text):
palStack = stack.Stack()
for character in text[:len(text) // 2]:

palStack.push(character)
for character in text[(len(text) + 1) // 2:]:

if character != palStack.pop():
return False

return True

