
*12.3 A FLOCKING SIMULATION � O12.3-1

*12.3 A FLOCKING SIMULATION

It was once assumed that the collective movements of flocks of birds, schools of fish, and
herds of animals arise from many individuals following a designated leader. But we now
know that this is not the case; instead each individual is independently carrying out an
identical algorithm based on local interactions with its neighbors. The adaptive swarming
and V-like patterns that result from these local interactions between individuals are known
as emergent behaviors. This particular type of emergent behavior is, for obvious reasons,
commonly known as swarm intelligence .

The boids model , originally conceived by Craig Reynolds, is a simulation of emergent flocking
behavior. In this model, a “boid” is a representation of a bird, fish or other animal. Each
boid independently follows three rules:

1. Avoid collisions with obstacles and nearby flockmates.

2. Attempt to match the velocity (heading plus speed) of nearby flockmates.

3. Attempt to move toward the center of the flock to avoid predators.

In this section, we will write an object-oriented agent-based simulation to visualize the
flocking behavior that results from the boids model. As in the epidemic simulation from
Section 12.1, we will need two main components: the agents (in our case, boids) and a “world”
in which the agents live. Each of these components can be conceived as an abstract data
type, and implemented as a class.

The World
The simplest kind of world for agents to inhabit is a rectangular two-dimensional plane,
like those we used in Chapter 8 and Section 12.1. However, we will think of the world as
a continuous space rather than a grid. In other words, each boid may reside at any (x,y)
position within its boundaries, not just those where x and y are integers. (In Project 12.4,
you will have the opportunity to extend this to a three-dimensional world.) An abstract
data type for this flat world will contain attributes for its dimensions and a list of agents
inhabiting it, with their positions, as shown below.

Instance Variable Description

agents a list of agents, with their positions

width the number of columns in the grid

height the number of rows in the grid

The operations for a World ADT include getting its dimensions, getting, setting and deleting

Copyright Taylor and Francis, 2021



O12.3-2 � Discovering Computer Science, Second Edition

the agent in a particular position, and querying the neighborhood of any position. We will
represent a position with a (x, y) tuple, where x is a column number and y is a row number.

Method Arguments Description

create width, height create a new World instance with the given size

getWidth — return the width of the world

getHeight — return the height of the world

get position return the agent in the given position
set position, agent place an agent in the given position
delete position delete the agent in the given position
neighbors position, distance return all agents within distance of position
stepAll — advance all agents one step in the simulation

As in the epidemic simulation from Section 12.1, the program that implements this simulation
will repeatedly call stepAll to simulate the progression of time.

A class that implements the constructor, plus the first two accessor operations, is shown
below. (We will use abbreviated docstrings to save space.)

class World:
"""A two-dimensional world class."""

def __init__(self, width, height):
"""Construct a new flat world with the given dimensions."""

self._width = width
self._height = height
self._agents = { }

def getWidth(self):
"""Return the width of self."""

return self._width

def getHeight(self):
"""Return the height of self."""

return self._height

As an alternative to the list-of-lists grid implementation from Chapter 8, we will store the
agents in a dictionary with keys equal to the agents’ positions (tuples). We will start with an
empty dictionary and add entries as agents are added to the world. This way, we only use as
much space as we need to store the agents and assume that the rest of the world is empty. In
contrast, the implementation that we used in Chapter 8 explicitly stores every cell, whether
or not it is occupied. If most cells are always occupied, then this implementation is perfectly
reasonable. However, in situations where most cells are not occupied at any particular time,
as will be the case in our boids simulation, the dictionary implementation is more efficient.
In these situations, we say that the space is sparse or a sparse matrix .



*12.3 A FLOCKING SIMULATION � O12.3-3

Two-dimensional indexing

To get or change the agent in a particular position in the world, we can define indexing for
the World class using the __getitem__ and __setitem__ methods. In our two-dimensional
world, an index needs to be a (x,y) pair. So we can define the __getitem__ and __setitem__

methods to interpret the index parameter as a two-element tuple that we directly use as a
key in our dictionary.

def __getitem__(self, position):
"""Return the agent at the given position."""

if position in self._agents:
return self._agents[position]

return None

def __setitem__(self, position, agent):
"""Set the given position to contain agent."""

if (position not in self._agents) and \
(position[0] >= 0) and (position[0] < self._width) and \
(position[1] >= 0) and (position[1] < self._height):
self._agents[position] = agent

With these methods, we can get and set positions in the world by simply indexing with
tuples. As a simple example, we can place an integer value (in lieu of an agent for now) in
position (2,1) and then print the value at that position like this:

myWorld = World(10, 10)
myWorld[2, 1] = 5
print(myWorld[2, 1])

Notice that we did not need to put parentheses around the tuple values that we used in the
square brackets; Python will automatically wrap the pair in parentheses and interpret it as
a tuple. If we try to get an agent from a position that is empty, the __getitem__ method
returns None. The __setitem__ method does nothing if we try to insert an agent into a
position that is occupied or out of bounds.

When an agent moves, we will need to delete it from its current position in the world. To
delete an item from a Python list or dictionary, we use the del operator. We can enable this
behavior in a World object by defining the __delitem__ method.



O12.3-4 � Discovering Computer Science, Second Edition

def __delitem__(self, position):
"""Delete the agent at the given position."""

if position in self._agents:
del self._agents[position]

With this method defined, we can delete an agent from some position like this:

del myWorld[2, 1]

Meeting the neighbors

In an agent-based simulation in general, and our boids simulation in particular, we commonly
need to query the neighborhood of an agent. In our boids simulation, each boid will repeatedly
adjust its velocity based on the positions and velocities of nearby boids. The following method,
which is very similar to the within method from Section 12.1, returns a list of agents within
some distance of a particular position by iterating over all positions in the dictionary and
checking whether each is within range.

def neighbors(self, position, distance):
"""Return a list of agents within distance of tuple position."""

neighbors = []
for otherPosition in self._agents:

if (position != otherPosition) and \
(_distance(position, otherPosition) <= distance):
neighbors.append(self._agents[otherPosition])

return neighbors

The _distance function (not shown) is a private function defined outside the class that
returns the distance between two positions.

Reflection 1 Why do you think we didn’t include the _distance function as a method
of World instead?

We decided to not make _distance a method because it does not need to access any
attributes of the class. The leading underscore in its name prevents the function from being
imported into other modules.

Simulating one step

Finally, the last method in the World class iterates over every agent in the world, and moves
that agent one step forward in the simulation.

def stepAll(self):
"""All agents advance one step in the simulation."""

agents = list(self._agents.values())
for agent in agents:

agent.step()

This method assumes that an agent’s actions are implemented in a method named step. In
the case of our boid simulation, a boid will look at its neighbors in each step and adjust its



*12.3 A FLOCKING SIMULATION � O12.3-5

velocity accordingly. We will tackle this next. The complete World class is also available on
the book website.

Boids
The design of an agent in an agent-based simulation depends quite a bit on the particular
application, but the relationship between the agent and the world tends to share some
common characteristics. As in the epidemic simulation, because agents can only interact
indirectly with other agents through their shared world, an agent must have access to the
world in which it resides. Also, the agent must “know” where in the world it resides. In
our boid simulation, each boid will also have a velocity, which combines both its speed and
heading.

Instance Variable Description

world the world in which the boid resides

position the boid’s (x,y) position in its world
velocity the boid’s velocity (speed and heading)

In each step of an agent-based simulation, each agent carries out some application-specific
tasks, such as querying its neighbors and moving to a new location. We encapsulate this
activity in a function named step. In our boids simulation, in each step, a boid will look at
its neighbors, adjust its velocity according to the three rules of the boids model, and then
move to its new position. These intermediate steps will be handled by the neighbors and
move operations below.

Method Arguments Description

create the world create a new Boid instance with random position and velocity
in the world

neighbors distance, angle return all boids within distance and viewing angle
move — move to a new position based on current velocity
step — adjust the boid’s velocity following the three rules

Vectors

Velocity is represented by a vector . A vector is simply an ordered pair, like a geometric
point, but it represents a quantity with both magnitude and direction (e.g., velocity, force,
or displacement). A vector ⟨x,y⟩ is often represented by a directed line segment that extends
from the origin (0,0) to the point (x,y), as shown below on the left.

x

y

(x, y)

p x
2 +

y
2

α α
r

r cos α 

r sin α 

The angle α that the vector makes with the horizontal axis is the direction of the vector and
the length of the line segment is the vector’s magnitude. If a vector represents velocity, then
α is the direction of movement and the magnitude is speed. We know from Pythagorean



O12.3-6 � Discovering Computer Science, Second Edition

theorem that the magnitude of the vector is
√
x2 + y2. If you know some trigonometry, you

also know that the angle α = tan−1(y/x). Also, if you only know the magnitude r and angle
α, you can find the vector ⟨x,y⟩ with x = r cosα and y = r sinα, as illustrated above on the
right.

To facilitate some of the computations that will be necessary in our boids simulation, we
have written a new Vector class, based on the Pair class, but with a few additional methods
that apply specifically to vectors. You can download the vector.py module from the book
website.

The Boid class

In the constructor of the Boid class below, a reference to the World object in which the
boid resides is passed as the parameter myWorld, and stored in the instance variable named
self._world. Each boid needs to have access to the World object so that the boid can
change its position in the world and call the World object’s neighbors method.

class Boid:
"""A boid in a agent-based flocking simulation."""

def __init__(self, myWorld):
"""Construct a boid at a random position in the given world."""

self._world = myWorld
(x, y) = (random.randrange(self._world.getWidth()),

random.randrange(self._world.getHeight()))
while self._world[x, y] != None:

(x, y) = (random.randrange(self._world.getWidth()),
random.randrange(self._world.getHeight()))

self._position = Pair(x, y)
self._world[x, y] = self
self._velocity = Vector((random.uniform(-1, 1),

random.uniform(-1, 1))).unit()
self._turtle = turtle.Turtle()
self._turtle.speed(0)
self._turtle.up()
self._turtle.setheading(self._velocity.angle())

The constructor assigns the new Boid object a random, unoccupied position in self._world.
Notice that this involves three steps: finding an unoccupied position using a while loop,
assigning this position (a Pair object) to the instance variable self._position, and placing
the new Boid object (self) in self._world at that position. Next, the instance variable
self._velocity is assigned a Vector object with random value between ⟨−1,−1⟩ and ⟨1,1⟩
(which covers every angle between 0 and 360 degrees). The unit method scales the velocity
vector so that it has magnitude (speed) 1. Finally, we add an instance variable for a Turtle

object to visualize the boid, and set the turtle’s initial heading to the angle of the velocity
vector.

Reflection 2 What angle does the vector ⟨1,1⟩ represent? What about ⟨−1,−1⟩ and
⟨0,−1⟩?



*12.3 A FLOCKING SIMULATION � O12.3-7

Reflection 3 How many instance variables does each Boid object have?

Moving a boid

In each step of the simulation, a boid will move to a new location based on its current
velocity (which will change periodically based on its interaction with neighboring boids).
The move method below moves the Boid object by adding the x and y coordinates of its
velocity to the x and y coordinates of its current position.

def move(self):
"""Move self to a new position in its world."""

self._turtle.setheading(self._velocity.angle())

width = self._world.getWidth()
height = self._world.getHeight()

newX = self._position[0] + self._velocity[0]
newX = min(max(0, newX), width - 1)
newY = self._position[1] + self._velocity[1]
newY = min(max(0, newY), height - 1)

if self._world[newX, newY] == None:
self._world[newX, newY] = self # place in new pos
del self._world[self._position.get()] # and del from old
self._position = Pair(newX, newY) # set new pos
self._turtle.goto(newX, newY) # move turtle

if (self._velocity[0] < 0 and newX < 5) or \
(self._velocity[0] > 0 and newX > width - 5) or \
(self._velocity[1] < 0 and newY < 5) or \
(self._velocity[1] > 0 and newY > height - 5):
self._velocity.turn(TURN_ANGLE)

After the boid’s new position is assigned to newX and newY, if this new position is not
occupied in the boid’s world, the Boid object moves to it. Finally, if the boid is approaching
a boundary, we rotate its velocity by some angle, so that it turns in the next step. The
constant value TURN_ANGLE along with some other named constants will be defined at the
top of the boid module. To avoid unnaturally abrupt turns, we use a small angle like

TURN_ANGLE = 30

Reflection 4 What is the purpose of the min(max(0, newX), width - 1) expression
(and the analogous expression for newY)?

Reflection 5 In the last if statement, why do we check both the new position and the
velocity?

Implementing the boids’ rules

We are finally ready to implement the three rules of the boids model. In each step of the
simulation, we will compute a new velocity based on each of the rules, and then assign the
boid a weighted sum of these and the current velocity, scaled to a magnitude of one so that



O12.3-8 � Discovering Computer Science, Second Edition

all boids maintain the same speed. (A vector with magnitude one is called a unit vector.)
Once the velocity is set, we call move to move the boid to its new position.

def step(self):
"""Advance self one step in the flocking simulation."""

newVelocity = (self._velocity * PREV_WEIGHT +
self._avoid() * AVOID_WEIGHT + # rule 1
self._match() * MATCH_WEIGHT + # rule 2
self._center() * CENTER_WEIGHT) # rule 3

self._velocity = newVelocity.unit()
self.move()

The private _match, _center, and _avoid methods will compute each of the three individual
velocities. The boids model suggests that the weights assigned to the rules decrease in order
of rule number. So avoidance should have the highest weight, velocity matching the next
highest weight, and centering the lowest weight. For example, the following values follow
these guidelines.

PREV_WEIGHT = 0.5
AVOID_WEIGHT = 0.25
MATCH_WEIGHT = 0.15
CENTER_WEIGHT = 0.1

Note that because we always scale the resulting vector to a unit vector, these weights need
not always sum to 1. Once we have the complete simulation, we can modify these weights to
induce different behaviors.

In each of the _match, _center and _avoid methods, we will need to get a list of boids
within some distance and viewing angle. This is accomplished by the Boid method named
neighbors, shown below.

def neighbors(self, distance, angle):
"""Return a list of boids within distance and viewing angle."""

neighbors = self._world.neighbors(self._position.get(), distance)
visibleNeighbors = []
for boid in neighbors:

neighborDir = Vector((boid._position - self._position).get())
if self._velocity.diffAngle(neighborDir) < angle:

visibleNeighbors.append(boid)
return visibleNeighbors

The method begins by calling the neighbors method of the World class to get a list of
boids within the given distance. Then we iterate over these neighbors, and check whether
each one is visible within the given viewing angle. Doing this requires a little vector algebra.
In a nutshell, neighborDir is the vector pointing in the direction of the neighbor named
boid, from the point of view of this boid (i.e., self). The diffAngle method of the Vector

class computes the angle between neighborDir and the velocity of this boid. If this angle is
within the boid’s viewing angle, we add the neighboring boid to the list of visible neighbors
to return.

With this infrastructure in place, methods that follow the three rules are relatively straight-
forward. Let’s review them before continuing:



*12.3 A FLOCKING SIMULATION � O12.3-9

1. Avoid collisions with obstacles and nearby flockmates.

2. Attempt to match the velocity (heading plus speed) of nearby flockmates.

3. Attempt to move toward the center of the flock to avoid predators.

Since rule 2 is slightly easier than the other two, let’s implement that one first.

def _match(self):
"""Return the average velocity of neighboring boids."""

neighbors = self.neighbors(MATCH_DISTANCE, MATCH_ANGLE)
if len(neighbors) == 0:

return Vector()
sumVelocity = Vector()
for boid in neighbors:

sumVelocity = sumVelocity + boid._velocity
return (sumVelocity / len(neighbors)).unit()

The method first gets a list of visible neighbors, according to a distance and viewing angle
that we will define shortly. If there are no such neighbors, the method returns the zero
vector ⟨0,0⟩. Otherwise, it returns the average velocity of the neighbors, normalized to a unit
vector. Since we have overloaded the addition and division operators for Vector objects, as
we did for the Pair class, finding the average of a list of vectors is no harder than finding an
average of a list of numbers!

The method to implement the first rule is similar, but now we want to find the velocity
vector that points away from the average position of close boids.

def _avoid(self):
"""Return a velocity away from close neighbors."""

neighbors = self.neighbors(AVOID_DISTANCE, AVOID_ANGLE)
if len(neighbors) == 0:

return Vector()
sumPosition = Pair()
for boid in neighbors:

sumPosition = sumPosition + boid._position
avgPosition = sumPosition / len(neighbors)

avoidVelocity = Vector((self._position - avgPosition).get())
return avoidVelocity.unit()

The first part of the method finds the average position (rather than velocity) of neighboring
boids. Then it finds the vector that points away from this average position by subtracting it
from the position of the boid. This is illustrated below.

self._position = (x, y)

avgPosition = (a, b) x - a

y - b

(x - a, y - b)

(0, 0)



O12.3-10 � Discovering Computer Science, Second Edition

On the left is an illustration of the vector we want, pointing from avgPosition, which
we will call (a,b), to the boid’s position (x,y). But vectors always start at (0,0), so the
correct vector has horizontal distance x − a and vertical distance y − b, as shown on the
right. This is precisely the vector ⟨x− a,y − b⟩ that we get by subtracting avgPosition from
self._position.

Finally, the method that implements rule 3 is almost identical to the _avoid method, except
that we want a vector that points toward the average position of the flock, which we define
to be a group of neighboring boids within a larger radius of the boid than those it is trying
to avoid.

def _center(self):
"""Return a velocity toward center of neighboring flock."""

neighbors = self.neighbors(CENTER_DISTANCE, CENTER_ANGLE)
if len(neighbors) == 0:

return Vector()
sumPosition = Pair()
for boid in neighbors:

sumPosition = sumPosition + boid._position
avgPosition = sumPosition / len(neighbors)

centerVelocity = Vector((avgPosition - self._position).get())
return centerVelocity.unit()

In the _center method, we perform the subtraction the other way around to produce a vector
in the opposite direction. The distance and viewing angle will also be different from those in
the _avoid method. We want AVOID_DISTANCE to be much smaller than CENTER_DISTANCE

so that boids avoid only other boids that are very close to them. We will use the following
values to start.

AVOID_DISTANCE = 3 # avoid only close neighbors
AVOID_ANGLE = 300

MATCH_DISTANCE = 10 # match velocity of intermediate neighbors
MATCH_ANGLE = 240

CENTER_DISTANCE = 15 # move toward center of farther neighbors
CENTER_ANGLE = 180

The main simulation

We are finally ready to run the flocking simulation! The following program sets up a turtle
graphics window, creates a world named sky, and then creates several Boid objects. The
simulation is set in motion by the last for loop, which repeatedly calls the step method of
the World class.

import turtle
from world import *
from boid import *

WIDTH = 100
HEIGHT = 100
NUM_BIRDS = 30
ITERATIONS = 2000



*12.3 A FLOCKING SIMULATION � O12.3-11

Figure 1 A progression of flocking boids.

def main():
worldScreen = turtle.Screen()
worldScreen.setworldcoordinates(0, 0, WIDTH - 1, HEIGHT - 1)
worldScreen.tracer(NUM_BIRDS)

sky = World(WIDTH, HEIGHT)
for index in range(NUM_BIRDS):

bird = Boid(sky)

for step in range(ITERATIONS):
sky.stepAll()

worldScreen.update()
worldScreen.exitonclick()

main()



O12.3-12 � Discovering Computer Science, Second Edition

The complete program is available on the book website. Figure 1 shows a sequence of four
screenshots of the simulation.

Reflection 6 Run the program a few times to see what happens. Then try changing the
following constant values. What is the effect in each case?

(a) TURN_ANGLE = 90
(b) PREV_WEIGHT = 0
(c) AVOID_DISTANCE = 8
(d) CENTER_WEIGHT = 0.25

Exercises
12.3.1. Remove each of the three rules from the simulation, one at a time, by setting its

corresponding weight to zero. What is the effect of removing each one? What
can you conclude about the importance of each rule to successful flocking?

12.3.2* Implement the __eq__ method for the Vector class. Then modify the step

method so that it slightly alters the boid’s heading with some probability if
the new velocity is the same as the old velocity (which will happen if it has no
neighbors).

12.3.3. Modify the move method so that a boid randomly turns either left or right when
it approaches a boundary. What is the effect?



*12.3 A FLOCKING SIMULATION � O12.3-13

Selected Exercise Solutions
12.3.2 if newVelocity == self._velocity:

if random.random() < 0.2:
newVelocity = self._velocity \

+ Vector((random.uniform(-0.1, 0.1),
random.uniform(-0.1, 0.1)))




