
DISCOVERING
COMPUTER SCIENCE
I N T E R D I S C I P L I N A R Y P R O B L E M S ,
P R I N C I P L E S , A N D P Y T H O N
P R O G R A M M I N G

JESSEN HAVILL

A C H A P M A N & H A L L B O O K

CHAPMAN & HALL/CRC PRESS TEXTBOOKS IN COMPUTING

ISBN: 978-0-367-47249-8

9 780367 472498

Discovering Computer Science: Interdisciplinary Problems, Principles, and Python
Programming is a problem-oriented introduction to computational problem solving and programming in
Python, appropriate for a first course for computer science majors, a more targeted disciplinary computing
course or, at a slower pace, any introductory computer science course for a general audience.

Realizing that an organization around language features only resonates with a narrow audience, this
textbook instead connects programming to students’ prior interests using a range of authentic problems
from the natural and social sciences and the digital humanities. The presentation begins with an
introduction to the problem-solving process, contextualizing programming as an essential component. Then,
as the book progresses, each chapter guides students through solutions to increasingly complex problems,
using a spiral approach to introduce Python language features.

The text also places programming in the context of fundamental computer science principles, such as
abstraction, efficiency, testing, and algorithmic techniques, offering glimpses of topics that are traditionally
put off until later courses.

This book contains 30 well-developed independent projects that encourage students to explore questions
across disciplinary boundaries, over 750 homework exercises, and 300 integrated reflection questions
engage students in problem solving and active reading.

The accompanying website — https://www.discoveringcs.net — includes more advanced content,
solutions to selected exercises, sample code and data files, and pointers for further exploration.

COMPUTER SC I ENCE

“Havill’s problem-driven approach introduces algorithmic concepts in context and motivates students with a
wide range of interests and backgrounds.”

—Janet Davis, Associate Professor and Microsoft Chair of Computer Science, Whitman College

“This book looks really great and takes exactly the approach I think should be used for a CS 1 course. I think it
really fills a need in the textbook landscape.”

—Marie desJardins, Dean of the College of Organizational, Computational, and Information Sciences,
Simmons University

“Discovering Computer Science is a refreshing departure from introductory programming texts, offering students
a much more sincere introduction to the breadth and complexity of this ever-growing field.”

—James Deverick, Senior Lecturer, The College of William and Mary

“This unique introduction to the science of computing guides students through broad and universal approaches
to problem solving in a variety of contexts and their ultimate implementation as computer programs.”

—Daniel Kaplan, DeWitt Wallace Professor, Macalester College

HAVILLDISCOVERING COMPUTER SCIENCE

S E C O N D E D I T I O N

S E C O N D
E D I T I O N

Contents

Preface xv

Acknowledgments xxiii

About the author xxv

Chapter 1 � How to Solve It 1
1.1 UNDERSTAND THE PROBLEM 3

A first problem: computing reading level 4

Functional abstraction 5

1.2 DESIGN AN ALGORITHM 6
Take it from the top 7

Pseudocode 10

Implement from the bottom 14

1.3 WRITE A PROGRAM 23
Welcome to the circus 23

What’s in a name? 28

Interactive computing 31

Looking ahead 32

1.4 LOOK BACK 36
Testing 37

Algorithm e�ciency 39

1.5 SUMMARY AND FURTHER DISCOVERY 45

Chapter 2 � Visualizing Abstraction 49
2.1 DATA ABSTRACTION 51

Turtle graphics 53

2.2 DRAWING FLOWERS AND PLOTTING EARTHQUAKES 55
Iteration 57

Tangent 2.1 Defining colors 60

v

vi ⌅ Contents

Data visualization 62

2.3 FUNCTIONAL ABSTRACTION 66
Function parameters 69

2.4 PROGRAMMING IN STYLE 77
Program structure 78

Documentation 79

Tangent 2.2 Global variables 80

Self-documenting code 83

2.5 A RETURN TO FUNCTIONS 87
The math module 88

Writing functions with return values 89

Return vs. print 92

2.6 SCOPE AND NAMESPACES 97
Local namespaces 98

The global namespace 101

2.7 SUMMARY AND FURTHER DISCOVERY 105

Chapter 3 � Inside a Computer 107
3.1 COMPUTERS ARE DUMB 108

Tangent 3.1 High performance computing 109

Machine language 111

Tangent 3.2 Byte code 112

3.2 EVERYTHING IS BITS 112
Bits are switches 112

Bits can represent anything 113

Tangent 3.3 Hexadecimal notation 114

Computing with bits 114

3.3 COMPUTER ARITHMETIC 118
Limited precision 118

Tangent 3.4 Floating point notation 120

Error propagation 120

Division 121

Complex numbers 122

*3.4 BINARY ARITHMETIC ***
More limited precision

∗
Sections with *** in lieu of a page number are available on the book website.

Contents ⌅ vii

Negative integers

Designing an adder

Implementing an adder

3.5 THE UNIVERSAL MACHINE 124
3.6 SUMMARY AND FURTHER DISCOVERY 126

Chapter 4 � Growth and Decay 129
4.1 ACCUMULATORS 130

Managing a fishing pond 130

Measuring network value 136

Organizing a concert 139

4.2 DATA VISUALIZATION 150
4.3 CONDITIONAL ITERATION 155

When will the fish disappear? 155

When will your nest egg double? 157

*4.4 CONTINUOUS MODELS ***
Di↵erence equations

Radiocarbon dating

Tradeo↵s between accuracy and time

Simulating an epidemic

*4.5 NUMERICAL ANALYSIS ***
The harmonic series

Approximating ⇡

Approximating square roots

4.6 SUMMING UP 161
Tangent 4.1 Triangular numbers 163

4.7 FURTHER DISCOVERY 164
*4.8 PROJECTS ***

4.1 Parasitic relationships

4.2 Financial calculators

4.3 Market penetration

4.4 Wolves and moose

Chapter 5 � Forks in the Road 165
5.1 RANDOM WALKS 166

Tangent 5.1 Interval notation 167

One small step 167

viii ⌅ Contents

Monte Carlo simulation 171

*5.2 PSEUDORANDOM NUMBER GENERATORS ***
Implementation

Testing randomness

*5.3 SIMULATING PROBABILITY DISTRIBUTIONS ***
The central limit theorem

5.4 BACK TO BOOLEANS 180
Predicate functions 182

Short circuit evaluation 183

DeMorgan’s laws 184

Thinking inside the box 187

Many happy returns 192

5.5 DEFENSIVE PROGRAMMING 199
Checking parameters 199

Assertions 202

Unit testing 204

Tangent 5.2 Unit testing frameworks 205

Testing floats 207

Catching exceptions 207

5.6 GUESS MY NUMBER 210
Ending the game nicely 212

Friendly hints 213

A proper win/lose message 214

5.7 SUMMARY AND FURTHER DISCOVERY 219
*5.8 PROJECTS ***

5.1 The magic of polling

5.2 Escape!

Chapter 6 � Text, Documents, and DNA 221
6.1 FIRST STEPS 222

Normalization 223

Tangent 6.1 Natural language processing 224

Tokenization 228

Creating your own module 232

Testing your module 233

6.2 TEXT DOCUMENTS 238

Contents ⌅ ix

Reading from text files 239

Writing to text files 242

Reading from the web 243

6.3 ENCODING STRINGS 246
Computing checksums 246

Unicode 247

Tangent 6.2 Compressing text files 250

Indexing and slicing 251

6.4 A CONCORDANCE 256
Finding a word 257

A concordance entry 262

A complete concordance 263

6.5 WORD FREQUENCY TRENDS 266
Finding the frequency of a word 268

Getting the frequencies in slices 269

Plotting the frequencies 270

6.6 COMPARING TEXTS 272
Dot plots 274

*6.7 TIME COMPLEXITY ***
Best case vs. worst case

Asymptotic time complexity

*6.8 COMPUTATIONAL GENOMICS ***
A genomics primer

Basic DNA analysis

Transforming sequences

Comparing sequences

Reading sequence files

6.9 SUMMARY AND FURTHER DISCOVERY 281
*6.10 PROJECTS ***

6.1 Polarized politics

6.2 Finding genes

Chapter 7 � Data Analysis 285
7.1 SUMMARY STATISTICS 286

Mean and variance 286

Minimum and maximum 288

x ⌅ Contents

7.2 WRANGLING DATA 293
Smoothing data 294

A more e�cient algorithm 295

Modifying lists in place 297

List operators and methods 302

*List comprehensions 305

Tangent 7.1 NumPy arrays 306

7.3 TALLYING FREQUENCIES 310
Word frequencies 310

Dictionaries 311

Tangent 7.2 Hash tables 315

Finding the most frequent word 315

Bigram frequencies 317

Tangent 7.3 Sentiment analysis 318

7.4 READING TABULAR DATA 325
Earthquakes 326

*7.5 DESIGNING EFFICIENT ALGORITHMS ***
Removing duplicates

A first algorithm

A more elegant algorithm

A more e�cient algorithm

*7.6 LINEAR REGRESSION ***
*7.7 DATA CLUSTERING ***

Defining similarity

A simple example

Implementing k-means clustering

Locating bicycle safety programs

7.8 SUMMARY AND FURTHER DISCOVERY 333
Tangent 7.4 Privacy in the age of big data 334

*7.9 PROJECTS ***
7.1 Climate change

7.2 Does education influence unemployment?

7.3 Maximizing profit

7.4 Admissions

7.5 Preparing for a 100-year flood

7.6 Voting methods

Contents ⌅ xi

7.7 Heuristics for traveling salespeople

Chapter 8 � Flatland 335
8.1 TABULAR DATA 335

Reading a table of temperatures 336

Tangent 8.1 Pandas 339

8.2 THE GAME OF LIFE 342
Creating a grid 344

Initial configurations 345

Surveying the neighborhood 346

Performing one pass 347

Tangent 8.2 NumPy arrays in two dimensions 349

Updating the grid 349

8.3 DIGITAL IMAGES 353
Colors 353

Tangent 8.3 Additive vs. subtractive color models 354

Image filters 355

Tangent 8.4 Image storage and compression 356

Transforming images 358

8.4 SUMMARY AND FURTHER DISCOVERY 363
*8.5 PROJECTS ***

8.1 Modeling segregation

8.2 Modeling ferromagnetism

8.3 Growing dendrites

8.4 Simulating an epidemic

Chapter 9 � Self-similarity and Recursion 365
9.1 FRACTALS 365

Trees 367

Snowflakes 369

9.2 RECURSION AND ITERATION 375
Solving a problem recursively 379

Palindromes 380

Guessing passwords 382

9.3 THE MYTHICAL TOWER OF HANOI 388
*Is the end of the world nigh? 390

9.4 RECURSIVE LINEAR SEARCH 392

xii ⌅ Contents

*E�ciency of recursive linear search 393

9.5 DIVIDE AND CONQUER 396
Buy low, sell high 397

Navigating a maze 400

*9.6 LINDENMAYER SYSTEMS ***
Formal grammars

L-systems

Implementing L-systems

9.7 SUMMARY AND FURTHER DISCOVERY 405
*9.8 PROJECTS ***

9.1 Lindenmayer’s beautiful plants

9.2 Gerrymandering

9.3 Percolation

Chapter 10 � Organizing Data 407
10.1 BINARY SEARCH 408

Tangent 10.1 Databases 409

E�ciency of iterative binary search 412

A spelling checker 414

Recursive binary search 415

*E�ciency of recursive binary search 416

10.2 SELECTION SORT 418
Implementing selection sort 419

E�ciency of selection sort 422

Querying data 423

10.3 INSERTION SORT 427
Implementing insertion sort 428

E�ciency of insertion sort 430

10.4 EFFICIENT SORTING 433
Merge sort 433

Internal vs. external sorting 437

E�ciency of merge sort 437

*10.5 TRACTABLE AND INTRACTABLE ALGORITHMS ***
Hard problems

10.6 SUMMARY AND FURTHER DISCOVERY 441
*10.7 PROJECTS ***

Contents ⌅ xiii

10.1 Creating a searchable database

10.2 Binary search trees

Chapter 11 � Networks 443
11.1 MODELING WITH GRAPHS 444

Making friends 446

11.2 SHORTEST PATHS 451
Breadth-first search 451

Finding the actual paths 455

11.3 IT’S A SMALL WORLD. . . 458
Small world networks 458

Clustering coe�cients 459

Scale-free networks 461

11.4 RANDOM GRAPHS 464
11.5 SUMMARY AND FURTHER DISCOVERY 467

*11.6 PROJECTS ***
11.1 Di↵usion of ideas and influence

11.2 Slowing an epidemic

11.3 The Oracle of Bacon

Chapter 12 � Object-oriented Design 469
12.1 SIMULATING AN EPIDEMIC 470

Object design 471

Person class 472

Augmenting the Person class 477

World class 479

The simulation 481

12.2 OPERATORS AND POLYMORPHISM 486
Designing a Pair ADT 487

Pair class 488

Arithmetic methods 489

Special methods 491

Comparison operators 493

Indexing 494

*12.3 A FLOCKING SIMULATION ***
The World

Boids

xiv ⌅ Contents

*12.4 A STACK ADT ***
Stack class

Reversing a string

Converting numbers to other bases

*12.5 A DICTIONARY ADT ***
Hash tables

Implementing a hash table

Indexing

ADTs vs. data structures

12.6 SUMMARY AND FURTHER DISCOVERY 499
*12.7 PROJECTS ***

12.1 Tracking GPS coordinates

12.2 Economic mobility

12.3 Slime mold aggregation

12.4 Boids in space

Bibliography 501

Appendix A � Python Library Reference ***

Appendix B � Selected Exercise Solutions ***

Index 505

Preface

I n my view, an introductory computer science course should strive to accomplish
three things. First, it should demonstrate to students how computing has become

a powerful mode of inquiry, and a vehicle of discovery, in a wide variety of disciplines.
This orientation is also inviting to students of the natural and social sciences, and the
humanities, who increasingly benefit from an introduction to computational thinking,
beyond the limited “black box” recipes often found in manuals and “Computing
for X” books. Second, the course should engage students in computational problem
solving, and lead them to discover the power of abstraction, e�ciency, and data
organization in the design of their solutions. Third, the course should teach students
how to implement their solutions as computer programs. In learning how to program,
students more deeply learn the core principles, and experience the thrill of seeing
their solutions come to life.

Unlike most introductory computer science textbooks, which are organized around
programming language constructs, I deliberately lead with interdisciplinary problems
and techniques. This orientation is more interesting to a more diverse audience, and
more accurately reflects the role of programming in problem solving and discovery.
A computational discovery does not, of course, originate in a programming language
feature in search of an application. Rather, it starts with a compelling problem which
is modeled and solved algorithmically, by leveraging abstraction and prior experience
with similar problems. Only then is the solution implemented as a program.

Like most introductory computer science textbooks, I introduce programming skills
in an incremental fashion, and include many opportunities for students to practice
them. The topics in this book are arranged to ease students into computational
thinking, and encourage them to incrementally build on prior knowledge. Each
chapter focuses on a general class of problems that is tackled by new algorithmic
techniques and programming language features. My hope is that students will leave
the course, not only with strong programming skills, but with a set of problem
solving strategies and simulation techniques that they can apply in their future work,
whether or not they take another computer science course.

I use Python to introduce computer programming for two reasons. First, Python’s
intuitive syntax allows students to focus on interesting problems and powerful
principles, without unnecessary distractions. Learning how to think algorithmically
is hard enough without also having to struggle with a non-intuitive syntax. Second,
the expressiveness of Python (in particular, low-overhead lists and dictionaries)
expands tremendously the range of accessible problems in the introductory course.

xv

xvi ⌅ Preface

Teaching with Python over the last fifteen years has been a revelation; introductory
computer science has become fun again.

Changes in the second edition
In this comprehensive, cover-to-cover update, some sections were entirely rewritten
while others saw only minor revisions. Here are the highlights:

Problem solving The new first chapter, How to Solve It, sets the stage by focusing on
Polya’s elegant four-step problem solving process, adapted to a computational frame-
work. I introduce informal pseudocode, functional decomposition, hand-execution
with informal trace tables, and testing, practices that are now carried on throughout
the book. The introduction to Python (formally Chapter 2) is integrated into this
framework. Chapter 7, Designing Programs, from the first edition has been elimi-
nated, with that material spread out more naturally among Chapters 1, 5, and 6 in
the second edition.

Chapter 2, Visualizing Abstraction (based on the previous Chapter 3), elaborates on
the themes in Chapter 1, and their implementations in Python, introducing turtle
graphics, functions, and loops. The new Chapter 3, Inside a Computer (based on
the previous Sections 1.4 and 2.5), takes students on a brief excursion into the simple
principles underlying how computers work.

Online materials To reduce the size of the printed book, we have moved some
sections and all of the projects online. These sections are marked in the table of
contents with ***. Online materials are still indexed in the main book for convenience.

Exercises I’ve added exercises to most sections, bringing the total to about 750.
Solutions to exercises marked with an asterisk are available online for both students
and self-learners.

Digital humanities The interdisciplinary problems in the first edition were focused
primarily in the natural and social sciences. In this edition, especially in Chapters 1,
6, and 7, we have added new material on text analysis techniques commonly used in
the “digital humanities.”

Object-oriented design Chapter 12 begins with a new section to introduce object-
oriented design in a more concrete way through the development of an agent-based
simulation of a viral epidemic. The following sections flesh out more details on how
to implement polymorphic operators and collection classes.

Preface ⌅ xvii

Book website
Online materials for this book are available at

https://www.discoveringCS.net.

Here you will find

• additional “optional” sections, marked with an asterisk in the main text,

• over thirty interdisciplinary programming projects,

• solutions to selected exercises,

• programs and data files referenced in the text, exercises, and projects, and

• pointers for further exploration and links to additional documentation.

To students
Active learning Learning how to solve computational problems and implement
them as computer programs requires daily practice. Like an athlete, you will get
out of shape and fall behind quickly if you skip it. There are no shortcuts. Your
instructor is there to help, but he or she cannot do the work for you.

With this in mind, it is important that you type in and try the examples throughout
the text, and then go beyond them. Be curious! There are numbered “Reflection”
questions throughout the book that ask you to stop and think about, or apply,
something that you just read. Often, the question is answered in the book immediately
thereafter, so that you can check your understanding, but peeking ahead will rob
you of an important opportunity.

Further discovery There are many opportunities to delve into topics more deeply.
“Tangent” boxes scattered throughout the text briefly introduce related, but more
technical or applied, topics. For the most part, these are not strictly required to
understand what comes next, but I encourage you to read them anyway. In the
“Summary and Further Discovery” section of each chapter, you can find both a
high-level summary of the chapter and additional pointers to explore chapter topics
in more depth.

Exercises and projects At the end of most sections are several programming exercises
that ask you to further apply concepts from that section. Often, the exercises assume
that you have already worked through all of the examples in that section. Solutions
to the starred exercises are available on the book website. There are also more
involved projects available on the book website that challenge you to solve a variety
of interdisciplinary problems.

No prerequisites The book assumes no prior knowledge of computer science. How-
ever, it does assume a modest comfort with high school algebra. In optional sections,

https://www.discoveringCS.net

xviii ⌅ Preface

trigonometry is occasionally mentioned, as is the idea of convergence to a limit, but
these are not relevant to understanding the main topics in the book.

Have fun! Programming and problem solving should be a fun, creative activity. I
hope that this book sparks your curiosity and love of learning, and that you enjoy
the journey as much as I have enjoyed writing this book.

To instructors
This book is appropriate for a traditional CS1 course for majors, a CS0 course for
non-majors (at a slower pace and omitting more material), or a targeted introductory
computing course for students in the natural sciences, social sciences, or humanities.

The approach is gentle and holistic, introducing programming concepts in the context
of interdisciplinary problems. We start with problem-solving, featuring pseudocode
and hand-execution with trace tables, and carry these techniques forward, especially
in the first half of the book.

Problem focus Most chapters begin with an interesting problem, and new concepts
and programming techniques are introduced in the context of solving it. As new
techniques are introduced, students are frequently challenged to re-solve old problems
in di↵erent ways. They are also encouraged to reuse their previous functions as
components in later programs.

Reflection questions, exercises, and projects “Reflection” questions are embedded
in every section to encourage active reading. These may also be assigned as “reading
questions” before class. The end-of-section exercises are appropriate for regular home-
work, and some more complex ones may form the basis of longer-term assignments.
The book website also hosts a few dozen interdisciplinary projects that students may
work on independently or in pairs over a longer time frame. I believe that projects
like these are crucial for students to develop both problem solving skills and an
appreciation for the many fascinating applications of computer science.

Additional instructor resources All of the reflection questions and exercises are
available to instructors as Jupyter notebooks. Solutions to all exercises and projects
are also available. Please visit the publisher’s website to request access.

Python coverage This book is not intended to be a Python manual. Some features
of the language were intentionally omitted because they would have muddled the core
problem solving focus or are not commonly found in other languages that students
may see in future CS courses (e.g., simultaneous swap, chained comparisons, zip,
enumerate in for loops).

Topic coverage There is more in this book than can be covered in a single semester,
giving instructors the opportunity to tailor the content to their particular situation

Preface ⌅ xix

Chapter 1
How to Solve It

Chapter 2
Visualizing
Abstraction

Chapter 3
Inside a

Computer

Chapter 4
Growth and

Decay

Chapter 5
Forks in the Road

Chapter 6
Text, Documents,

and DNA
Chapter 7

Data Analysis

Chapter 8
Flatland

Chapter 9
Self-similarity and

Recursion
Chapter 10

Organizing Data

Chapter 11
Networks

Chapter 12
Object-oriented

Design

Figure 1 An overview of chapter dependencies.

and interests. As illustrated in Figure 1, Chapters 1–7 form the core of the book, and
should be covered sequentially. The remaining chapters can be covered, partially or
entirely, at your discretion, although I would expect that most instructors will cover
at least parts of Chapters 8–10, and 12 if the course covers object-oriented design.
Chapter 11 introduces social network graphs and small-world and scale-free networks
as additional powerful applications of dictionaries, and may come any time after
Chapter 7. Sections marked with an asterisk are optional, in the sense that they are
not assumed for future sections in that chapter. When exercises and projects depend
on optional sections, they are also marked with an asterisk, and the dependency is
stated at the beginning of the project.

Chapter outlines The following tables provide brief overviews of what is available
in each chapter. Each table’s three columns, reflecting the three parts of the book’s
subtitle, provide three lenses through which to view the chapter.

1 How to Solve It

Sample problems Principles Programming

● reading level
● counting syllables, words
● sphere volume
● digital music
● search engines
● GPS devices
● phone trees
● wind chill
● compounding interest
● Mad Libs

● problems, input/output
● functional abstraction
● functional decomposition
● top-down design
● bottom-up implementation
● algorithms and programs
● pseudocode
● names as references
● trace tables
● constant- vs. linear-time

● int, float, str types
● arithmetic
● assignment
● variable names
● calling built-in functions
● using strings
● string operators
● print and input

xx ⌅ Preface

2 Visualizing Abstraction

Sample problems Principles Programming

● visualizing earthquakes
● drawing flowers
● random walks
● ideal gas
● groundwater flow
● demand functions
● reading level

● using abstract data types
● creating functional
abstractions

● functional decomposition
● bottom-up implementation
● turtle graphics
● trace tables with loops

● using classes and objects
● turtle module
● for loops (range and lists)
● using and writing functions
● return vs. print
● namespaces and scope
● docstrings and comments
● self-documenting code
● program structure

3 Inside a Computer

Principles Programming

● computer organization
● machine language
● binary representations
● computer arithmetic
● finite precision, error propagation
● Boolean logic, truth tables, logic gates
● Turing machines, finite state machines

● int and float types
● arithmetic errors
● true vs. floor division

4 Growth and Decay

Sample problems Principles Programming

● population models
● network value
● demand and profit
● loans and investing
● bacterial growth
● radiocarbon dating
● epidemics (SIR, SIS)
● di↵usion models

● accumulators
● list accumulators
● data visualization
● conditional iteration
● classes of growth
● continuous models
● accuracy vs. time
● numerical approximation

● for loops, range
● format strings
● matplotlib.pyplot
● appending to lists
● while loops

5 Forks in the Road

Sample problems Principles Programming

● random walks
● Monte Carlo simulation
● guessing games
● polling and
sampling

● particle escape

● random number generators
● simulating probabilities
● flag variables
● using distributions
● DeMorgan’s laws
● defensive programming
● pre- and post-conditions
● unit testing

● random module
● if/elif/else
● comparison operators
● Boolean operators
● short circuit evaluation
● predicate functions
● assert, isinstance
● catching exceptions
● histograms
● while loops

Preface ⌅ xxi

6 Text, Documents, and DNA

Sample problems Principles Programming

● text analysis
● word frequency trends
● checksums
● concordances
● dot plots, plagiarism
● congressional votes
● genomics

● functional decomposition
● unit testing
● ASCII, Unicode
● linear-time algorithms
● time complexity
● linear search
● string accumulators

● str class and methods
● iterating over strings, lists
● indexing and slicing
● iterating over indices
● creating a module
● text files and the web
● break
● nested loops

7 Data Analysis

Sample problems Principles Programming

● word, bigram frequencies
● smoothing data
● 100-year floods
● traveling salesman
● meteorite sites
● zebra migration
● tumor diagnosis
● supply and demand
● voting methods

● histograms
● hash tables
● tabular data files
● e�cient algorithm design
● linear regression
● k-means clustering
● heuristics

● list class
● indexing and slicing
● list operators and methods
● reading CSV files
● modifying lists in place
● list parameters
● tuples
● list comprehensions
● dictionaries

8 Flatland

Sample problems Principles Programming

● earthquake data
● Game of Life
● image filters
● racial segregation
● ferromagnetism
● dendrites
● epidemics
● tumor growth

● 2-D data
● cellular automata
● digital images
● color models

● lists of lists
● nested loops
● 2-D data in a dictionary

9 Self-similarity and Recursion

Sample problems Principles Programming

● fractals
● cracking passwords
● Tower of Hanoi
● maximizing profit
● navigating a maze
● Lindenmayer systems
● gerrymandering
● percolation

● self-similarity
● recursion
● linear search
● recurrence relations
● divide and conquer
● depth-first search
● grammars

● writing recursive functions
● divide and conquer
● backtracking

xxii ⌅ Preface

10 Organizing Data

Sample problems Principles Programming

● spell check
● querying data sets

● binary search
● quadratic-time sorting
● parallel lists
● merge sort
● recurrence relations
● intractability, P=NP?

● nested loops
● writing recursive functions

11 Networks

Sample problems Principles Programming

● social media, web graphs
● di↵usion of ideas
● epidemics
● Oracle of Bacon

● graphs
● adjacency list, matrix
● breadth-first search
● queues
● shortest paths
● depth-first search
● small-world networks
● scale-free networks
● uniform random graphs

● dictionaries

12 Object-oriented Design

Sample problems Principles Programming

● epidemic simulation
● data sets
● genomic sequences
● rational numbers
● flocking behavior
● slime mold aggregation

● abstract data types
● encapsulation
● polymorphism
● data structures
● stacks
● hash tables
● agent-based simulation
● swarm intelligence

● object-oriented design
● writing classes
● special methods
● overriding operators
● modules

Software assumptions
To follow along in this book and complete the exercises, you will need to have
installed Python 3.6 or later on your computer, and have access to IDLE or another
programming environment. The book also assumes that you have installed the
matplotlib.pyplot and numpy modules. The easiest way to get this software is to
install the free open source Anaconda distribution from http://www.anaconda.com.

Errata
While I (and my students) have ferreted out many errors, readers will inevitably find
more. You can find an up-to-date list of errata on the book website. If you find an error
in the text or have another suggestion, please let me know at havill@denison.edu.

http://www.anaconda.com
havill@denison.edu

