
9.8 PROJECTS ⌅ P9.2-1

Project 9.2 Gerrymandering

This project assumes that you have read Section 8.3 and the part of Section 9.5 on

depth-first search.

U.S. states are divided into electoral districts that each elect one person to the U.S.
House of Representatives. Each district is supposed to occupy a contiguous area and
represent an approximately equal number of residents. Ideally, it is also compact,
i.e., not spread out unnecessarily. More precisely, it should have a relatively small
perimeter relative to the area that it covers or, equivalently, enclose a relatively
large area for a shape with its perimeter length. A perfect circle is the most compact
shape, while an elongated shape, like the one on the right below, is not compact.

These two shapes actually have the same perimeter, but the shape on the right
contains only about seven percent of the area of the circle on the left.

In some states, the majority political party has control over periodic redistricting.
Often, the majority exploits this power by drawing district lines that favor their
chances for re-election, a practice that has come to be known as gerrymandering .
These districts often take on bizarre, non-compact shapes.

Several researchers have developed algorithms that redistrict states objectively to
optimize various measures of compactness. For example, the image below on the left
shows a recent district map for the state of Ohio. The image on the right shows a
more compact district map.6

Ohio congressional districts More compact Ohio districts

The districts on the right certainly appear to be more compact (less gerrymandered),

6
These figures were produced by an algorithm developed by Brian Olson and retrieved from

http://bdistricting.com

Copyright Taylor and Francis, 2021

http://bdistricting.com


P9.2-2 ⌅ Discovering Computer Science, Second Edition

but how much better are they? In this project, we will write a program that answers
this question by determining the compactness of the districts in images like these.

Part 1: Measuring compactness

The compactness of a region can be measured in several ways. We will consider three
possibilities:

1. First, we can measure the mean of the distance between each voter and the
centroid of the district. The centroid is the “average point,” computed by
averaging all of the x and y values inside the district. We might expect a
gerrymandered district to have a higher mean distance than a more compact
district. Since we will not actually have information fine enough to compute
this value for individual voters, we will compute the average distance between
the centroid and each pixel in the image of the district.

2. Second, we can measure the standard deviation of the distance between each
pixel and the centroid of the district. The standard deviation measures the
degree of variability from the average. Similar to above, we might expect a
gerrymandered district to have higher variability in this distance. The standard
deviation of a list of values (in this case, distances) is the square root of the
variance. (See Exercise 7.1.10.)

3. Third, we can compare the area of the district to the area of a (perfectly
compact) circle with the same perimeter. In other words, we can define

compactness = area of district with perimeter p

area of circle with perimeter p
.

Intuitively, a circle with a given perimeter encloses the maximum area possible
for that perimeter and hence has compactness 1. A gerrymandered shape with
the same perimeter encloses far less area, as we saw in the illustration above,
and hence has compactness less than 1.

Suppose that we measure a particular district and find that it has area A and
perimeter p. To find the value for the denominator of our formula, we need to
express the area of a circle, which is normally expressed in terms of the radius
r (i.e., ⇡r2), in terms of p instead. To do this, recall that the formula for the
perimeter of a circle is p = 2⇡r. Therefore, r = p�(2⇡). Substituting this into
the standard formula, we find that the area of a circle with perimeter p is

⇡r2 = ⇡ � p

2⇡
�2 = ⇡p2

4⇡2
= p2

4⇡
.

Finally, incorporating this into the formula above, we have

compactness = A
p2

4⇡

= 4⇡A

p2
.

To compute values for the first and second compactness measures, we need a list of



9.8 PROJECTS ⌅ P9.2-3

0 0 1 0 1 2
3

0 1 2

34
0 1 2

35 4
0 1 2

3
6
5 4

0 1 2
3

6
5 4

0 1 2
7

3
6
5 4

0 1 2
7 8

3
6
5 4

0 1 2
7 8

9
3

6
5 4

0 1 2
7 8

9 10

3
6
5 4

0 1 2
7 8

9 10

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3 An example of the recursive flood fill algorithm.

the coordinates of all of the pixels in each district. With this list, we can find the
centroid of the district, and then compute the mean and standard deviation of the
distances from this centroid to the list of coordinates. To compute the third metric,
we need to be able to determine the perimeter and area of each district.

Part 2: Measure the districts

We can accomplish all of this by using a variant of depth-first search called a flood

fill algorithm. The idea is to start somewhere inside a district and then use DFS to
explore the pixels in that district until a pixel with a di↵erent color is reached. This
is illustrated in Figure 3. In this small example, the red and blue squares represent
two di↵erent districts on a very small map. To explore the red district, we start at
some square inside the district, in this case the square marked 0. We then explore
outward using a depth-first search. As we did in Section 9.5, we will explore in
clockwise order: east, south, west, north. In Figure 3(b), we mark the first square as
visited by coloring it white and then recursively visit the square to the east, marked
1. After marking square 1 as visited (colored white), the algorithm explores square 2
to the east recursively, as shown in Figure 3(c). After marking square 2 as visited,
the algorithm backtracks to square 1 because all four neighbors of square 2 are either
a di↵erent color or have already been visited. From square 1, the algorithm next
explores square 3 to the north, as shown in Figure 3(d). This process continues until



P9.2-4 ⌅ Discovering Computer Science, Second Edition

the entire red area has been visited. The numbers indicate the order in which the
squares are first visited. As each square is visited for the first time, the algorithm
also appends its coordinates to a list (as discussed at the end of Section 9.5). When
the algorithm finishes, this list contains the coordinates of all of the squares in the
red region.

Based on the dfs function from Section 9.5, implement this flood fill algorithm in
the function

measureDistrict(map, x, y, color, points)

The five parameters have the following meanings:

• map is the name of an Image object (see Section 8.3) containing the district
map. The flood fill algorithm will be performed on the pixels in this object
rather than on a separate two-dimensional grid. There are several state maps
available on the book website, all of which look similar to the maps of Ohio
above.

• x and y are the coordinates of the pixel from which to begin the depth-first
search.

• color is the color of the district being measured. This is used to tell whether
the current pixel is in the desired region. You may notice that the colors of the
pixels in each district are not entirely uniform across the district. (The di↵erent
shades represent di↵erent population densities.) Therefore, the algorithm
cannot simply check whether the color of the current pixel is equal to color.
Rather, it needs to check whether the color of the current pixel is close to

color. Since colors are represented as three-element tuples, we can treat them
as three-dimensional points and use the traditional Euclidean distance formula
to determine “closeness:”

distance((x1, y1, z1), (x2, y2, z2)) =�(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
Start with a distance threshold for closeness of 100, and adjust as needed.

• points will be a list of coordinates of the pixels that the algorithm visited.
When you call the function, initially pass in an empty list. When the function
returns, this list should be populated with the coordinates in the district.

Your function should return a tuple containing the total perimeter and total area
obtained from a DFS starting at (x,y). The perimeter can be obtained by counting
the number of times the algorithm reaches a pixel that is outside of the region (think
base case), and the area is the total number of pixels that are visited inside the
region. For example, as shown below, the region from Figure 3 has perimeter 18 and
area 11. The red numbers indicate the order in which the flood fill algorithm will
count each border.



9.8 PROJECTS ⌅ P9.2-5

1
2

3
5

6
7

4

8
9

10

11
12 13

14
15

16
17
18

Given these measurements, the compactness of this region is

4⇡ ⋅ 11
182

≈ 0.4266.
The value of points after calling the function on this example would be

[(3, 1), (3, 2), (3, 3), (2, 2), (2, 1), (2, 0), (3, 0),
(4, 0), (4, 1), (1, 2), (1, 3)]

The centroid of these points, derived by the averaging the x and y coordinates, is(28�11, 15�11) ≈ (2.54, 1.36). Then the mean distance to the centroid is approximately
1.35 and the standard deviation is approximately 0.54.

Part 3: Compare district maps

To compute the average compactness metrics for a particular map, write a function

compactness(imageName, districts)

that computes the three compactness measurements that we discussed above for
the district map with file name imageName. You can find maps for several states on
the book website. The second parameter districts will contain a list of starting
coordinates (two-element tuples) for the districts on the map. These are also available
on the book website. Your function should iterate over this list of tuples, and call
your measureDistrict function with x and y set to the coordinates in each one.
The function should return a three-element tuple containing the average value, over
all of the districts, for each of the three metrics. To make sure your flood fill is
working properly, it will also be helpful to display the map (using the show method
of the Image class) and update it (using the update method of the Image class) in
each iteration. You should see the districts colored white, one by one.

For at least three states, compare the existing district map and the more compact
district map, using the three compactness measures. What do you notice?

To drive your program, write a main function that calls the compactness function
with a particular map, and then reports the results. As always, think carefully about
the design of your program and what additional functions might be helpful.

Technical notes

1. The images supplied on the book website have low resolution to keep the depth
of the recursive calls in check. As a result, your compactness results will only



P9.2-6 ⌅ Discovering Computer Science, Second Edition

be a rough approximation. Also, shrinking the image sizes caused some of
the boundaries between districts to become “fuzzy.” As a result, you will see
some unvisited pixels along these boundaries when the flood fill algorithm is
complete.

2. Depending on your particular Python installation, the depth of recursion
necessary to analyze some of these maps may exceed the maximum allowed. To
increase the allowed recursion depth, you can call the sys.setrecursionlimit
function at the top of your program. For example,

import sys
sys.setrecursionlimit(10000)

However, set this value carefully. Use the smallest value that works. Setting

the maximum recursion depth too high may crash Python on your computer!

If you cannot find a value that works on your computer, try shrinking the
image file instead (and scaling the starting coordinates appropriately).


