
9.8 PROJECTS ⌅ P9.1-1

9.8 PROJECTS

*Project 9.1 Lindenmayer’s beautiful plants

For this project, we assume you have read Section 9.6.

Aristid Lindenmayer was specifically interested in modeling the branching behavior
of plants. To accomplish this, we need to introduce two more symbols: [and]. For
example, consider the following L-system:

Axiom: X

Productions: X → F[-X]+X

F → FF

Angle: 30 degrees

These two new symbols involve the use of a simple data structure called a stack .
A stack is simply a list in which we only append to and delete from one end. The
append operation is called a push and the delete operation is called a pop (hence
the name of the list pop method). For example, consider the following sequence of
operations on a hypothetical stack object named stack, visualized in Figure 1.

1. stack.push(1)

2. stack.push(2)

3. x = stack.pop()

4. stack.push(3)

5. y = stack.pop()

6. z = stack.pop()

Although we implement a stack as a restricted list, it is usually visualized as a
vertical stack of items in which we always push and pop items from the top. The
result of the first push operation above results in the leftmost picture in Figure 1.
After the second push operation, we have two numbers on the stack, with the second
number on top of the first, as in the second picture in Figure 1. The third operation,
a pop, removes the top item, which is then assigned to the variable name x. The
fourth operation pushes the value 3 on the top of the stack. The fifth operation pops
this value and assigns it to the variable name y. Finally, the bottom value is popped

1
3

1

2

1 1 1

1. 2. 3. 4. 5. 6.

Figure 1 The results of a sequence of stack operations.

Copyright Taylor and Francis, 2021

P9.1-2 ⌅ Discovering Computer Science, Second Edition

and assigned to the variable name z. The final values of x, y, and z are 2, 3, and 1,
respectively.

In Python, we can represent the stack as an initially empty list, implement the
push operation as an append and implement the pop operation as a pop with no
arguments (which defaults to deleting the last item in the list). So the equivalent
sequence of Python statements is:

stack = [] # empty stack; stack is now []
stack.append(1) # push 1; stack is now [1]
stack.append(2) # push 2; stack is now [1, 2]
x = stack.pop() # x is now 2; stack is now [1]
stack.append(3) # push 3; stack is now [1, 3]
y = stack.pop() # y is now 3; stack is now [1]
z = stack.pop() # z is now 1; stack is now []

In a Lindenmayer system, the [symbol represents a push operation and the] symbol
represents a pop operation. More specifically,

• [means “push the turtle’s current position and heading on a stack,” and

•] means “pop a position and heading from the stack and set the turtle’s current
position and heading to these values.”

Let’s now return to the Lindenmayer system above. Applying the productions of
this Lindenmayer system twice results in the following string.

X ⇒ F[-X]+X ⇒ FF[-F[-X]+X]+F[-X]+X

The X symbols are used only in the derivation process and do not have any meaning
for turtle graphics, so we simply skip them when we are drawing. So the string
FF[-F[-X]+X]+F[-X]+X represents the simple “tree” below. On the left is a drawing
of the tree; on the right is a schematic we will use to explain how it was drawn.

a
b

c d

O

The turtle starts at the origin, marked O, with a heading of 90 degrees (north). The
first two F symbols move the turtle forward from the origin to point a and then
point b. The next symbol, [, means that we push the current position and heading(b,90 degrees) on the stack.

(b,90 degrees)
The next two symbols, -F, turn the turtle left 30 degrees (to a heading of 120 degrees)
and move it forward, to point c. The next symbol is another [, which pushes the

9.8 PROJECTS ⌅ P9.1-3

current position and heading, (c, 120 degrees), on the stack. So now the stack contains
two items—(b,90 degrees) and (c,120 degrees)—with the last item on top.

(c,120 degrees)
(b,90 degrees)

The next three symbols, -X], turn the turtle left another 30 degrees (to a heading of
150 degrees), but then restore its heading to 120 degrees by popping (c, 120 degrees)
from the stack.

(b,90 degrees)
The next three symbols, +X], turn the turtle 30 degrees to the right (to a heading
of 90 degrees), but then pop (b,90 degrees) from the stack, moving the turtle back
to point b, heading north.

(So, in e↵ect, the previous six symbols, [-X]+X did nothing.) The next two symbols,
+F, turn the turtle 30 degrees to the right (to a heading of 60 degrees) and move it
forward to point d. Similar to before, the last six symbols, [-X]+X, while pushing
states onto the stack, have no visible e↵ect.

Continued applications of the productions in the L-system above will produce strings
that draw the same sequence of trees that we created in Section 9.1. More involved
L-systems will produce much more interesting trees. For example, the following two
L-systems produce the trees in Figure 2.

Axiom: X
Productions: X → F-[[X]+X]+F[+FX]-X

F → FF
Angle: 25 degrees

Axiom: F
Production: F → FF-[-F+F+F]+[+F-F-F]
Angle: 22.5 degrees

Question 9.1.1 Using an angle of 20 degrees, draw the figure corresponding to the string

FF-[-F+F+F]+[+F-F-F]

(Graph paper might make this easier.)

Question 9.1.2 Using an angle of 30 degrees, draw the figure corresponding to the string

FF-[[FF+F]+FF+F]+FF[+FFFF+F]-FF+F

P9.1-4 ⌅ Discovering Computer Science, Second Edition

Figure 2 Two trees from The Algorithmic Beauty of Plants ([52], p. 25).

Part 1: Draw L-systems with a stack

If you have not completed Exercises 9.6.1 and 9.6.3, do that first. Then incorporate
these functions, with the derive from Section 9.6, into a complete program. Your
main function should call the lsystem function to draw a particular L-system.

Next, augment the drawLSystem function from Exercise 9.6.1 so that it correctly
draws L-system strings containing the [and] characters. Do this by incorporating
a single stack into your function, as we described above. Test your function with the
three tree-like L-systems above.

Part 2: Draw L-systems recursively

The drawLSystem function can be implemented without an explicit stack by using
recursion. Think of the drawLSystem function as drawing the figure corresponding
to a string situated inside matching square brackets. We will pass the index of the
first character after the left square bracket ([) as an additional parameter:

drawLSystem(tortoise, string, startIndex, angle, distance)

The function will return the index of the matching right square bracket (]). (We
can pretend that there are imaginary square brackets around the entire string
for the initial call of the function, so we initially pass in 0 for startIndex.) The
recursive function will iterate over the indices of the characters in string, starting at
startIndex. (Use a while loop, for reasons we will see shortly.) When it encounters
a non-bracket character, it should do the same thing it did earlier. When the function
encounters a left bracket, it will save the turtle’s current position and heading, and
then recursively call the function with startIndex assigned to the index of the

9.8 PROJECTS ⌅ P9.1-5

character after the left bracket. When this recursive call returns, the current index
should be set to the index returned by the recursive call, and the function should
reset the turtle’s position and heading to the saved values. When it encounters a
right bracket, the function will return the index of the right bracket.

For example, the string below would be processed left to right but when the first
left bracket is encountered, the function would be called recursively with index 5
passed in for startIndex.

[

0

FFFF[

5

-FF[-F[-X]+X]+F[-X]+X���
drawLSystem(..., 5, ...)

26

]+FF[-F[-X]+X��]+F[-X�]+X]

This recursive call will return 26, the index of the corresponding right bracket, and
the + symbol at index 27 would be the next character processed in the loop. The
function will later make two more recursive calls, marked with the two additional
braces above.

Using this description, rewrite drawLSystem as a recursive function that does not
use an explicit stack. Test your recursive function with the same tree-like L-systems,
as above.

Question 9.1.3 Why can the stack used in Part 1 be replaced by recursion in Part 2?
Referring back to Figures 9.11 and 9.12, how are recursive function calls similar to pushing
and popping from a stack?

Question 9.1.4 Use your program to draw the following additional Lindenmayer systems.
For each one, set distance = 5, position = (0, − 300), heading = 90, and depth = 6.

Axiom: X
Productions: X → F[+X]F[-X]+X

F → FF
Angle: 30 degrees

Axiom: H
Productions: H → HFX[+H][-H]

X → X[-FFF][+FFF]FX
Angle: 25.7 degrees

