
7.9 PROJECTS ⌅ P7.7-1

Project 7.7 Heuristics for traveling salespeople

Imagine that you drive a delivery truck for one of the major package delivery
companies. Each day, you are presented with a list of addresses to which packages
must be delivered. Before you can call it a day, you must drive from the distribution
center to each package address, and back to the distribution center. This cycle is
known as a tour . Naturally, you wish to minimize the total distance that you need
to drive to deliver all the packages, i.e., the total length of the tour. For example,
Figures 3 and 4 show two di↵erent tours.

Distribution
center

House A

House C

House G

House E

House B

House D

House F

House H

Figure 3 An ine�cient tour.

Distribution
center

House A

House C

House G

House E

House B

House D

House F

House H

Figure 4 A more e�cient tour.

This is known as the traveling salesperson problem (TSP), and it is notoriously
di�cult. In fact, as far as anyone knows, the only way to come up with a guaranteed
correct solution is to essentially enumerate all possible tours and choose the best one.
But since, for n locations, there are n! (n factorial) di↵erent tours, this is practically
impossible.

Unfortunately, the TSP has many important applications, several of which seem
at first glance to have nothing at all to do with traveling or salespeople, including
circuit board drilling, controlling robots, designing networks, x-ray crystallography,
scheduling computer time, and assembling genomes. In these cases, a heuristic must
be used. A heuristic does not necessarily give the best answer, but it tends to work
well in practice

For this project, you will design your own heuristic, and then work with a genetic
algorithm, a type of heuristic that mimics the process of evolution to iteratively
improve problem solutions.

Part 1: Write some utility functions

Each point on your itinerary will be represented by (x, y) coordinates, and the input
to the problem is a list of these points. A tour will also be represented by a list of
points; the order of the points indicates the order in which they are visited. We will
store a list of points as a list of tuples.

Copyright Taylor and Francis, 2021

P7.7-2 ⌅ Discovering Computer Science, Second Edition

The following function reads in points from a file and returns the points as a list
of tuples. We assume that the file contains one point per line, with the x and y
coordinates separated by a space.

def readPoints(filename):
inputFile = open(filename, 'r')
points = []
for line in inputFile:

values = line.split()
points.append((float(values[0]), float(values[1])))

return points

To begin, write the following three functions. The first two will be needed by your
heuristics, and the third will allow you to visualize the tours that you create. To test
your functions, and the heuristics that you will develop below, use the example file
containing the coordinates of 96 African cities (africa.tsp) on the book website.

1. distance(p, q) returns the distance between points p and q, each of which
is stored as a two-element tuple.

2. tourLength(tour) returns the total length of a tour. The tour is stored as a
list of tuples. Remember to include the distance from the last point back to
the first point.

3. drawTour(tour) draws a tour using turtle graphics. Use the setworldcoordinates
method to make the coordinates in your drawing window more closely match
the coordinates in the data files you use. For example, for the africa.tsp

data file, the following will work well:

screen.setworldcoordinates(-40, -25, 40, 60)

Part 2: Design a heuristic

Now design your own heuristic to find a good TSP tour. There are many possible
ways to go about this. Be creative. Think about what points should be next to
each other. What kinds of situations should be fixed? Use the drawTour function to
visualize your tours and help you design your heuristic.

Part 3: A genetic algorithm

A genetic algorithm attempts to solve a hard problem by emulating the process
of evolution. The basic idea is to start with a population of feasible solutions to the
problem, called individuals, and then iteratively try to improve the fitness of this
population through the evolutionary operations of recombination and mutation. In
genetics, recombination is when chromosomes in a pair exchange portions of their
DNA during meiosis. The illustration below shows how a crossover would a↵ect the
bases in a particular pair of (single stranded) DNA molecules.

7.9 PROJECTS ⌅ P7.7-3

Mutation occurs when a base in a DNA molecule is replaced with a di↵erent base or
when bases are inserted into or deleted from a sequence. Most mutation is the result
of DNA replication errors but environmental factors can also lead to mutations in
DNA.

To apply this technique to the traveling salesperson problem, we first need to
define what we mean by an individual in a population. In genetics, an individual is
represented by its DNA, and an individual’s fitness, for the purposes of evolution, is
some measure of how well it will thrive in its environment. In the TSP, we will have
a population of tours, so an individual is one particular tour — a list of cities. The
most natural fitness function for an individual is the length of the tour; a shorter
tour is more fit than a longer tour.

Recombination and mutation on tours are a bit trickier conceptually than they are
for DNA. Unlike with DNA, swapping two subsequences of cities between two tours
is not likely to produce two new valid tours. For example, suppose we have two tours
[a, b, c, d] and [b, a, d, c], where each letter represents a point. Swapping
the two middle items between the tours will produce the o↵spring [a, a, d, d]

and [b, b, c, c], neither of which are permutations of the cities. One way around
this is to delete from the first tour the cities in the portion to be swapped from
the second tour, and then insert this portion from the second tour. In the above
example, we would delete points a and d from the first tour, leaving [b, c], before
inserting [a, d] in the middle. Doing likewise for the second tour gives us children
[b, a, d, c] and [a, b, c, d]. But we are not limited in genetic programming
to recombination that more or less mimics that found in nature. A recombination
operation can be anything that creates new o↵spring by somehow combining two
parents. A large part of this project involves brainstorming about and experimenting
with di↵erent techniques.

We must also rethink mutation since we cannot simply replace an arbitrary city with
another city and end up with a valid tour. One idea might be to swap the positions
of two randomly selected cities instead. But there are other possibilities as well.

Your mission is to improve upon a baseline genetic algorithm for TSP. Be creative!
You may change anything you wish as long as the result can still be considered a
genetic algorithm. To get started, download the baseline program from the book
website. Try running it with the 96-point instance on the book website. Take some
time to understand how the program works. Ask questions. You may want to refer

P7.7-4 ⌅ Discovering Computer Science, Second Edition

to the Python documentation if you don’t recall how a particular function works.
Most of the work is performed by the following four functions:

• makePopulation(cities): creates an initial population (of random tours)

• crossover(mom, pop): performs a recombination operation on two tours and
returns the two o↵spring

• mutate(individual): mutates an individual tour

• newGeneration(population): update the population by performing a
crossover and mutating the o↵spring

Write the function

histogram(population)

that is called from the report function. (Use a Python dictionary.) This function
should print a frequency chart (based on tour length) that gives you a snapshot of
the diversity in your population. Your histogram function should print something
like this:

Population diversity
1993.2714596455853 : ****
2013.1798076309087 : **
2015.1395212505120 : ****
2017.1005248468230 : ********************************
2020.6881282400334 : *
2022.9044855489917 : *
2030.9623523675089 : *
2031.4773010231959 : *
2038.0257926528227 : *
2040.7438913120230 : *
2042.8148398732630 : *
2050.1916058477627 : *

This will be very helpful as you strive to improve the algorithm: recombination in a
homogeneous population is not likely to get you very far.

Brainstorm ways to improve the algorithm. Try lots of di↵erent things, ranging
from tweaking parameters to completely rewriting any of the four functions described
above. You are free to change anything, as long as the result still resembles a genetic
algorithm. Keep careful records of what works and what doesn’t to include in your
submission.

On the book website is a link to a very good reference [51] that will help you think
of new things to try. Take some time to skim the introductory sections, as they will
give you a broader sense of the work that has been done on this problem. Sections 2
and 3 contain information on genetic algorithms; Section 5 contains information on
various recombination/crossover operations; and Section 7 contains information on
possible mutation operations. As you will see, this problem has been well studied
by researchers over the past few decades! (To learn more about this history, we
recommend In Pursuit of the Traveling Salesman by William Cook [10].)

