
7.9 PROJECTS ⌅ P7.6-1

Project 7.6 Voting methods

Although most of us are used to simple plurality-based elections in which the
candidate with the most votes wins, there are other voting methods that have been
proven to be fairer according to various criteria. In this project, we will investigate
two other such voting methods. For all of the parts of the project, we will assume that
there are four candidates named Amelia, Beth, Caroline, and David (abbreviated A,
B, C, and D).

Part 1: Get the data

The voting results for an election are stored in a data file containing one ballot per
line. Each ballot consists of one voter’s ranking of the candidates. For example, a
small file might look like:

B A D C
D B A C
B A C D

To begin, write a function

readVotes(fileName)

that returns these voting results as a list containing one list for each ballot. For
example, the file above should be stored in a list that looks like this:

[['B', 'A', 'D', 'C'], ['D', 'B', 'A', 'C'], ['A', 'B', 'C', 'D']]

There are three sample voting result files on the book website. Also feel free to create
your own.

Part 2: Plurality voting

First, we will implement basic plurality voting. Write a function

plurality(ballots)

that prints the winner (or winners if there is a tie) of the election based on a plurality
count. The parameter of the function is a list of ballots like that returned by the
readVotes function. Your function should first iterate over all of the ballots and
count the number of first-place votes won by each candidate. Store these votes in a
dictionary containing one entry for each candidate. To break the problem into more
manageable pieces, write a “helper function”

printWinners(points)

that determines the winner (or winners if there is a tie) based on this dictio-
nary (named points), and then prints the outcome. Call this function from your
plurality function.

Part 3: Borda count

Next, we will implement a vote counting system known as a Borda count, named
after Jean-Charles de Borda, a mathematician and political scientist who lived in
18th century France. For each ballot in a Borda count, a candidate receives a number

Copyright Taylor and Francis, 2021

P7.6-2 ⌅ Discovering Computer Science, Second Edition

of points equal to the number of lower-ranked candidates on the ballot. In other
words, with four candidates, the first place candidate on each ballot is awarded three
points, the second place candidate is awarded two points, the third place candidate is
awarded one point, and the fourth place candidate receives no points. In the example
ballot above, candidate B is the winner because candidate A receives 2 + 1 + 2 = 5
points, candidate B receives 3 + 2 + 3 = 8 points, candidate C receives 0 + 0 + 1 = 1
points, and candidate D receives 1+3+0 = 4 points. Note that, like a plurality count,
it is possible to have a tie with a Borda count.

Write a function

borda(ballots)

that prints the winner (or winners if there is a tie) of the election based on a Borda
count. Like the plurality function, this function should first iterate over all of the
ballots and count the number of points won by each candidate. To make this more
manageable, write another “helper function” to call from within your loop named

processBallot(points, ballot)

that processes each individual ballot and adds the appropriate points to the dictionary
of accumulated points named points. Once all of the points have been accumulated,
call the printWinners above to determine the winner(s) and print the outcome.

Part 4: Condorcet voting

Marie Jean Antoine Nicolas de Caritat, Marquis de Condorcet was another mathe-
matician and political scientist who lived about the same time as Borda. Condorcet
proposed a voting method that he considered to be superior to the Borda count. In
this method, every candidate participates in a virtual head-to-head election between
herself and every other candidate. For each ballot, the candidate who is ranked
higher wins. If a candidate wins every one of these head-to-head contests, she is
determined to be the Condorcet winner. Although this method favors the candidate
who is most highly rated by the majority of voters, it is also possible for there to be
no winner.

Write a function

condorcet(ballots)

that prints the Condorcet winner of the election or indicates that there is none. (If
there is a winner, there can only be one.)

Suppose that the list of candidates is assigned to candidates. (Think about how
you can get this list.) To simulate all head-to-head contests between one candidate
named candidate1 and all of the rest, we can use the following for loop:

for candidate2 in candidates:
if candidate2 != candidate1:

head-to-head between candidate1 and candidate2 here

This loop iterates over all of the candidates and sets up a head-to-head contest
between each one and candidate1, as long as they are not the same candidate.

7.9 PROJECTS ⌅ P7.6-3

Question 7.6.1 How can we now use this loop to generate contests between all pairs of
candidates?

To generate all of the contests with all possible values of candidate1, we can nest
this for loop in the body of another for loop that also iterates over all of the
candidates, but assigns them to candidate1 instead:

for candidate1 in candidates:
for candidate2 in candidates:

if candidate2 != candidate1:
head-to-head between candidate1 and candidate2 here

Question 7.6.2 This nested for loop actually generates too many pairs of candidates. Can
you see why?

To simplify the body of the nested loop (where the comment is currently), write
another “helper function”

head2head(ballots, candidate1, candidate2)

that returns the candidate that wins in a head-to-head vote between candidate1

and candidate2, or None is there is a tie. Your condorcet function should call this
function for every pair of di↵erent candidates. For each candidate, keep track of the
number of head-to-head wins in a dictionary with one entry per candidate.

Question 7.6.3 The most straightforward algorithm to decide whether candidate1 beats
candidate2 on a particular ballot iterates over all of the candidates on the ballot. Can you
think of a way to reorganize the ballot data before calling head2head so that the head2head
function can decide who wins each ballot in only one step instead?

Part 5: Compare the three methods

Execute your three functions on each of the three data files on the book website and
compare the results.

