
5.8 PROJECTS ⌅ P5.2-1

Project 5.2 Escape!

In some scenarios, movement of the “particle” in a random walk is restricted to a
bounded region. But what if there is a small opening through which the particle
might escape or disappear? How many steps on average does it take the particle to
randomly come across this opening and escape? This model, which has become known
as the narrow escape problem, could represent a forager running across a predator
on the edge its territory, an animal finding an unsecured gate in a quarantined area,
a molecule finding its way through a pore in the cell membrane, or air molecules in
a hot room escaping through an open door.

1. Simulate the narrow escape

Write a function

escape(openingDegrees, tortoise, draw)

that simulates the narrow escape problem in a circle with radius 1 and an
opening of openingDegrees degrees. In the circle, the opening will be between
360 − openingDegrees and 360 degrees, as illustrated below.

360 - openingDegrees degrees

0 = 360 degrees

The particle should follow a normally distributed random walk, as described in
Exercise 5.3.1. The standard deviation of the normal distribution needs to be quite
small for the particle to be able to find small openings. A value of ⇡�128 is suggested
in [9]. Since we are interested in the number of steps taken by the particle (instead
of the distance traveled, as before), the number of steps will need to be incremented
in each iteration of the loop. When the particle hits a wall, it should “bounce” back
to its previous position. Since the particle is moving within a circle, we can tell if
it hits a wall by comparing its distance from the origin to the radius of the circle.
If the particle moves out to the distance of the wall, but is within the angle of the
opening, the loop should end, signaling the particle’s escape.

Finding the current angle of the particle with respect to the origin requires some
trigonometry. Since we know the x and y coordinates of the particle, the angle
can be found by computing the arctangent of y�x: tan−1(y�x). However, this will
cause a problem with x = 0, so we need to check for that possibility and fudge the
value of x a bit. Also, the Python arctangent (tan−1) function, math.atan, always
returns an angle between −⇡�2 and ⇡�2 radians (between −90 and 90 degrees), so the

Copyright Taylor and Francis, 2021



P5.2-2 ⌅ Discovering Computer Science, Second Edition

result needs to be adjusted to be between 0 and 360 degrees. The following function
handles this for you.

def angle(x, y):
if x == 0: # avoid dividing by zero

x = 0.001
angle = math.degrees(math.atan(y / x))
if angle < 0:

if y < 0:
angle = angle + 360 # quadrant IV

else:
angle = angle + 180 # quadrant II

elif y < 0:
angle = angle + 180 # quadrant III

return angle

Below you will find a “skeleton” of the escape function with the loop and draw-
ing code already written. Drawing the partial circle is handled by the function
setupWalls below that. Notice that the function uses a while loop with a Boolean
flag variable named escaped controlling the iteration. The value of escaped is
initially False, and your algorithm should set it to True when the particle escapes.
Most, but not all, of the remaining code is needed in the while loop.

def escape(openingDegrees, tortoise, draw):
x = y = 0 # initialize (x, y) = (0, 0)
radius = 1 # moving in unit radius circle
stepLength = math.pi / 128 # std dev of each step

if draw:
scale = 300 # scale up drawing
setupWalls(tortoise, openingDegrees, scale, radius)

steps = 0 # count of steps taken
escaped = False # has particle escaped yet?
while not escaped:

# one step of a random walk here
# if the particle reaches the wall:
# if it is in the opening, then exit;
# otherwise, "bounce" back to previous saved position

if draw:
tortoise.goto(x * scale, y * scale) # move particle

if draw:
screen = tortoise.getscreen() # update screen to compensate
screen.update() # for high tracer value

return steps



5.8 PROJECTS ⌅ P5.2-3

def setupWalls(tortoise, openingDegrees, scale, radius):
screen = tortoise.getscreen()
screen.mode('logo') # east is 0 degrees
screen.tracer(5) # speed up drawing

tortoise.up() # draw boundary with
tortoise.width(0.015 * scale) # shaded background
tortoise.goto(radius * scale, 0)
tortoise.down()
tortoise.pencolor('lightyellow')
tortoise.fillcolor('lightyellow')
tortoise.begin_fill()
tortoise.circle(radius * scale)
tortoise.end_fill()
tortoise.pencolor('black')
tortoise.circle(radius * scale, 360 - openingDegrees)
tortoise.up()
tortoise.home()

tortoise.pencolor('blue') # particle is a blue circle
tortoise.fillcolor('blue')
tortoise.shape('circle')
tortoise.shapesize(0.75, 0.75)

tortoise.width(1) # set up for walk
tortoise.pencolor('green')
tortoise.speed(0)
tortoise.down() # comment this out to hide trail

2. Write a Monte Carlo simulation

Write a function

escapeMonteCarlo(openingDegrees, trials)

that returns the average number of steps required, over the given number of trials,
to escape with an opening of openingDegrees degrees. This is very similar to the
rwMonteCarlo function from Section 5.1.

3. Empirically derive the function

Write a function

plotEscapeSteps(minOpening, maxOpening, openingStep, trials)

that plots the average number of steps required, over the given number of trials, to
escape openings with widths ranging from minOpening to maxOpening degrees, in
increments of openingStep. (The x-axis values in your plot are the opening widths
and y-axis values are the average number of steps required to escape.) This is very
similar to the plotDistances function from Section 5.1.

Plot the average numbers of steps for openings ranging from 10 to 180 degrees, in



P5.2-4 ⌅ Discovering Computer Science, Second Edition

10-degree steps, using at least 1,000 trials to get a smooth curve. As this number of
trials will take a few minutes to complete, start with fewer trials to make sure your
simulation is working properly.

In his undergraduate thesis at the University of Pittsburgh, Carey Caginalp [9]
mathematically derived a function that describes these results. In particular, he
proved that the expected time required by a particle to escape an opening width of
↵ degrees is

T (↵) = 1

2
− 2 ln�sin ↵

4
� .

Plot this function in the same graph as your empirical results. You will notice that the
T (↵) curve is considerably below the results from your simulation, which has to do
with the step size that we used (i.e., the value of stepLength in the escape function).
To adjust for this step size, multiply each value returned by the escapeMonteCarlo
function by the square of the step size ((⇡�128)2) before you plot it. Once you do
this, the results from your Monte Carlo simulation will be in the same time units
used by Caginalp, and should line up closely with the mathematically derived result.


