
5.8 PROJECTS ⌅ P5.1-1

5.8 PROJECTS

Project 5.1 The magic of polling

According to the latest poll, the president’s job approval rating is at 45%,
with a margin of error of ±3%, based on interviews with approximately
1,500 adults over the weekend.

We see news headlines like this all the time. But how can a poll of 1,500 randomly
chosen people claim to represent the opinions of millions in the general population?
How can the pollsters be so certain of the margin of error? In this project, we will
investigate how well random sampling can really estimate the characteristics of a
larger population. We will assume that we know the true percentage of the overall
population with some characteristic or belief, and then investigate how accurate a
much smaller poll is likely to get.

Suppose we know that 30% of the national population agrees with the statement,
“Animals should be a↵orded the same rights as human beings.” Intuitively, this means
that, if we randomly sample ten individuals from this population, we should, on
average, find that three of them agree with the statement and seven do not. But does
it follow that every poll of ten randomly chosen people will mirror the percentage of
the larger population? Unlike a Monte Carlo simulation, a poll is taken just once (or
maybe twice) at any particular point in time. To have confidence in the poll results,
we need some assurance that the results would not be drastically di↵erent if the poll
had queried a di↵erent group of randomly chosen individuals. For example, suppose
you polled ten people and found that two agreed with the statement, then polled
ten more people and found that seven agreed, and then polled ten more people and
found that all ten agreed. What would you conclude? There is too much variation
for this poll to be credible. But what if we polled more than ten people? Does the
variation, and hence the trustworthiness, improve?

In this project, you will write a program to investigate questions such as these
and determine empirically how large a sample needs to be to reliably represent the
sentiments of a large population.

1. Simulate a poll

In conducting this poll, the pollster asks each randomly selected individual whether
he or she agrees with the statement. We know that 30% of the population does, so
there is a 30% chance that each individual answers “yes.” To simulate this polling
process, we can iterate over the number of individuals being polled and count them
as a “yes” with probability 0.3. The final count at the end of the loop, divided by
the number of polled individuals, gives us the poll result. Implement this simulation
by writing a function

poll(percentage, pollSize)

that simulates the polling of pollSize individuals from a large population in which
the given percentage (between 0 and 100) will respond “yes.” The function should
return the percentage (between 0 and 100) of the poll that actually responded “yes.”

Copyright Taylor and Francis, 2021



P5.1-2 ⌅ Discovering Computer Science, Second Edition

Remember that the result will be di↵erent every time the function is called. Test
your function with a variety of poll sizes.

2. Find the polling extremes

To investigate how much variation there can be in a poll of a particular size, write a
function

pollExtremes(percentage, pollSize, trials)

that builds a list of trials poll results by calling poll(percentage, pollSize)

trials times. The function should return the minimum and maximum percentages
in this list. For example, if five trials give the percentages [28, 35, 31, 24, 31],
the function should return the minimum 24 and maximum 35. If the list of poll
results is named pollResults, you can return these two values with

return min(pollResults), max(pollResults)

Test your function with a variety of poll sizes and numbers of trials.

3. What is a sufficient poll size?

Next, we want to use your previous functions to investigate how increasing poll sizes
a↵ect the variation of the poll results. Intuitively, the more people you poll, the
more accurate the results should be. Write a function

plotResults(percentage, minPollSize, maxPollSize, step, trials)

that plots the minimum and maximum percentages returned by calling the function
pollExtremes(percentage, pollSize, trials) for values of pollSize ranging
from minPollSize to maxPollSize, in increments of step. For each poll size, call
your pollExtremes function with

low, high = pollExtremes(percentage, pollSize, trials)

and then append the values of low and high each to its own list for the plot. Your
function should return the margin of error for the largest poll, defined to be (high
- low) / 2. The poll size should be on the x-axis of your plot and the percentage
should be on the y-axis. Plot both the low and high values. Be sure to label both
axes.

Question 5.1.1 Assuming that you want to balance a low margin of error with the labor
involved in polling more people, what is a reasonable poll size? What margin of error does
this poll size give?

Write a main function (if you have not already) that calls your plotResults func-
tion to investigate an answer to this question. You might start by calling it with
plotResults(30, 10, 1000, 10, 100).

4. Does the error depend on the actual percentage?

To investigate this question, write another function

plotErrors(pollSize, minPercentage, maxPercentage, step, trials)



5.8 PROJECTS ⌅ P5.1-3

that plots the margin of error in a poll of pollSize individuals, for actual percentages
ranging from minPercentage to maxPercentage, in increments of step. To find the
margin of error for each poll, call the pollExtremes function as above, and compute
(high - low) / 2. In your plot, the percentage should be on the x-axis and the
margin of error should be on the y-axis. Be sure to label both axes.

Question 5.1.2 Does your answer to the previous part change if the actual percentage of
the population is very low or very high?

You might start to investigate this question by calling the function with
plotErrors(1500, 10, 80, 1, 100).


