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*Project 4.4 Wolves and moose

For this project, we assume that you have read Section 4.4.

Predator-prey models are commonly used in biology because they can model a
wide range of ecological relationships, e.g., wolves and moose, koala and eucalyptus,
or humans and tuna. In the simplest incarnation, the livelihood of a population
of predators is dependent solely on the availability of a population of prey. The
population of prey, in turn, is kept in check by the predators.

In the 1920’s, Alfred Lotka and Vito Volterra independently introduced the now-
famous Lotka-Volterra equations to model predator-prey relationships. The model
consists of a pair of related di↵erential equations that describe the sizes of the two
populations over time. We will approximate the di↵erential equations with discrete
di↵erence equations. Let’s assume that the predators are wolves and the prey are
moose. We will represent the sizes of the moose and wolf populations at the end of
month t with M(t) and W (t), respectively. The di↵erence equations describing the
populations of wolves and moose are:

M(t) =M(t −�t) + bM M(t −�t)�t − dM W (t −�t)M(t −�t)�t

W (t) =W (t −�t) + bW W (t −�t)M(t −�t)�t − dW W (t −�t)�t

where

• bM is the moose birth rate (per month)

• dM is the moose death rate, or the rate at which a wolf kills a moose that it
encounters (per month)

• bW is the wolf birth rate, or the moose death rate × how e�ciently an eaten
moose produces a new wolf (per month)

• dW is the wolf death rate (per month)

Let’s look at these equations more closely. In the first equation, the term bM M(t −
�t)�t represents the net number of moose births in the last time step, in the absence
of wolves, and the term dM W (t−�t)M(t −�t)�t represents the number of moose
deaths in the last time step. Notice that this term is dependent on both the number
of wolves and the number of moose: W (t −�t)M(t −�t) is the number of possible
wolf-moose encounters and dM�t is the rate at which a wolf kills a moose that it
encounters in a time step of length �t.

In the second equation, the term bW W (t −�t)M(t −�t)�t represents the number
of wolf births per month. Notice that this number is also proportional to both the
number of wolves and the number of moose, the idea being that wolves will give
birth to more o↵spring when food is plentiful. As described above, bW is actually
based on two quantities, the moose death rate (since wolves have to eat moose to
thrive and have o↵spring) and how e�ciently a wolf can use the energy gained by
eating a moose to give birth to a new wolf. The term dW W (t −�t)�t represents
the net number of wolf deaths per month in the absence of moose.

Copyright Taylor and Francis, 2021



P4.4-2 ⌅ Discovering Computer Science, Second Edition

In this project, you will write a program that uses these di↵erence equations to model
the dynamic sizes of a population of wolves and a population of moose over time.
There are three parts to the project. In the first part, you will use the Lotka-Volterra
model to simulate a baseline scenario. In the second part, you will model the e↵ects
that hunting the wolves have on the populations. And, in the third part, you will
create a more realistic simulation in which the sizes of the populations are limited
by the natural resources available in the area.

Part 1: Implement the Lotka-Volterra model

Write a function in Python

PP(preyPop, predPop, dt, months)

that simulates this predator prey model using the di↵erence equations above. The
parameters preyPop and predPop are the initial sizes of the prey and predator
populations (M(0) and W (0)), respectively, dt (�t) is the time interval used in the
simulation, and months is the number of months (maximum value of t) for which
to run the simulation. To cut back on the number of parameters, you can assign
constant birth and death rates to local variables inside your function. Start by trying

birthRateMoose = 0.5 # bM
deathRateMoose = 0.02 # dM
birthRateWolves = 0.005 # bW = dM × e�ciency 0.25
deathRateWolves = 0.75 # dW

Your function should plot, using matplotlib, the sizes of the wolf and moose
populations over time, as the simulation progresses. Write a program that calls your
PP function to simulate 500 moose and 25 wolves for 5 years with dt = 0.01.

Question 4.4.1 What happens to the sizes of the populations over time? Why do these
changes occur?

Part 2: Here come the hunters!

Now suppose the wolves begin to threaten local ranchers’ livestock (in Wyoming, for
example) and the ranchers begin killing the wolves. Simulate this e↵ect by increasing
the wolf death rate dW .

Question 4.4.2 What is the e↵ect on the moose population?

Question 4.4.3 What would the wolf death rate need to be for the wolf population to die
out within five years? Note that the death rate can exceed 1. Try increasing the value of dW
slowly and watch what happens. If it seems like you can never kill all the wolves, read on.

Killing o↵ the wolves appears to be impossible because the equations you are
using will never let the value reach zero. (Why?) To compensate, we can set either
population to zero when it falls below some threshold, say 1.0. (After all, you can’t
really have a fraction of a wolf.) To do this, insert the following statements into the
body of your for loop after you increment the predator and prey populations, and
try answering the previous question again.
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if preyPop < 1.0:
preyPop = 0.0

if predPop < 1.0:
predPop = 0.0

(Replace preyPop and predPop with the names you use for the current sizes of the
populations.) As we will see shortly, the first two statements will assign 0 to preyPop
if it is less than 1. The second two statements do the same for predPop.

Part 3: Modeling constrained growth

In the simulation so far, we have assumed that a population can grow without bound.
For example, if the wolf population died out, the moose population would grow
exponentially. In reality, an ecosystem can only support a limited size population due
to constraints on space, food, etc. This limit is known as a carrying capacity . We can
model the moose carrying capacity in a simple way by decreasing the moose birth rate
proportionally to the size of the moose population. Specifically, let MCC represent
the moose population carrying capacity, which is the maximum number of moose
the ecosystem can support. Then change the moose birth term bM M(t −�t)�t to

bM (1 −M(t −�t)�MCC )M(t −�t)�t.

Notice that now, as the moose population size approaches the carrying capacity, the
birth rate slows.

Question 4.4.4 Why does this change cause the moose birth rate to slow as the size of the
moose population approaches the carrying capacity?

Implement this change to your simulation, setting the moose carrying capacity to
750, and run it again with the original birth and death rates, with 500 moose and
25 wolves, for 10 years.

Question 4.4.5 How does the result di↵er from your previous run? What does the result
demonstrate? Does the moose population reach its carrying capacity of 750? If not, what
birth and/or death rate parameters would need to change to allow this to happen?

Question 4.4.6 Reinstate the original birth and death rates, and introduce hunting again;
now what would the wolf death rate need to be for the wolf population to die out within five
years?


