
12.9 PROJECTS ⌅ P12.3-1

Project 12.3 Slime mold aggregation

In this project, you will write an agent-based simulation that graphically depicts
the emergent “intelligence” of a fascinating organism known as slime mold (Dic-

tyostelium discoideum). When food is plentiful, the slime mold exists in a unicellular
amoeboid form. But when food becomes scarce, it emits a chemical known as cyclic
AMP (or cAMP) that attracts other amoeboids to it. The congregated cells form a
pseudoplasmodium which then scavenges for food as a single multicellular organ-
ism. We will investigate how the pseudoplasmodium forms. A movie linked from the
book website shows this phenomenon in action.

The following sequence of images illustrates what your simulation may look like.
The red triangles represent slime mold amoeboids and the varying shades of green
represent varying levels of cAMP on the surface. (Darker green represents higher
levels.)

Slime world

In our simulation, the slime mold’s world will consist of a grid of square patches,
each of which contains some non-negative level of the chemical cAMP. The cAMP
will be deposited by the slime mold (explained next). In each time step, the chemical
in each patch should:

1. Di↵use to the eight neighboring patches. In other words, after the chemical in
a patch di↵uses, 1/8 of it will be added to the chemical in each neighboring
patch. (Note: this needs to be done carefully; the resulting levels should be as
if all patches di↵used simultaneously.)

Copyright Taylor and Francis, 2021



P12.3-2 ⌅ Discovering Computer Science, Second Edition

2. Partially evaporate. (Reduce the level in each patch to a constant fraction, say
0.9, of its previous level.)

Slime world will be modeled as an instance of a class (that you will create) called
World. Each patch in slime world will be modeled as an instance of a class called
Patch (that you will also create). The World class should contain a grid of Patch
objects. You will need to design the variables and methods needed in these new
classes.

There is code on the book website to visualize the level of chemical in each patch.
Higher levels are represented with darker shades of green on the turtle’s canvas.
Although it is possible to recolor each patch with a Turtle during each time step,
it is far too slow. The supplied code modifies the underlying canvas used in the
implementation of the turtle module.

Amoeboid behavior

At the outset of the simulation, the world will be populated with some number of
slime mold amoeboids at random locations on the grid. At each time step in the
simulation, a slime mold amoeboid will:

1. “Sni↵” the level of the chemical cAMP at its current position. If that level
is above some threshold, it will next sni↵ for chemical SNIFF_DISTANCE units
ahead and SNIFF_DISTANCE units out at SNIFF_ANGLE degrees to the left and
right of its current position. SNIFF_ANGLE and SNIFF_DISTANCE are parameters
that can be set in the simulation. In the graphic below, the slime mold is
represented by a red triangle pointing at its current heading and SNIFF_ANGLE
is 45 degrees. The X’s represent the positions to sni↵.

x
x

x

x x+1 x+2
y

y+1

y+2

Notice that neither the current coordinates of the slime mold cell nor the



12.9 PROJECTS ⌅ P12.3-3

coordinates to sni↵ may be integers. You will want to write a function that will
round coordinates to find the patch in which they reside. Once it ascertains
the levels in each of these three patches, it will turn toward the highest level.

2. Randomly wiggle its heading to the left or right a maximum of WIGGLE_ANGLE
degrees.

3. Move forward one unit on the current heading.

4. Drop CHEMICAL_ADD units of cAMP at its current position.

A slime mold amoeboid should, of course, also be modeled as a class. At the very
least, the class should contain a Turtle object that will graphically represent the
cell. Set the speed of the Turtle object to 0 and minimize the delay between updates
by calling screen.tracer(200, 0). The remaining design of this class is up to you.

The simulation

The main loop of the simulation will involve iterating over some number of time
steps. In each time step, every slime mold amoeboid and every patch must execute
the steps outlined above.

Download a bare-bones skeleton of the classes needed in the project from the
book website. These files contain only the minimum amount of code necessary to
accomplish the drawing of cAMP levels in the background (as discussed earlier).

Before you write any Python code, think carefully about how you want to design
your project. Draw pictures and map out what each class should contain. Also map
out the main event loop of your simulation. (This will be an additional file.)


