129 PROJECTS m P12.2-1

Project 12.2 Economic mobility

In Section 12.5, we designed a Dictionary class that assumes that no collisions
occur. In this project, you will complete the design of the class so that it properly
(and transparently) handles collisions. Then you will use your finished class to write
a program that allows one to query data on upward income mobility in the United
States.

To deal with collisions, we will use a technique called chaining in which each slot
consists of a list of (key, value) pairs instead of a single pair. In this way, we can
place as many items in a slot as we need.

Question 12.2.1 How do the implementations of the insert, delete, and lookup functions
need to change to implement chaining?

Question 12.2.2 With your answer to the previous question in mind, what is the worst
case time complexity of each of these operations if there are n items in the hash table?

Part 1: Implement chaining

First, modify the Dictionary class from Section 12.5 so that the underlying hash
table uses chaining. The constructor should initialize the hash table to be a list of
empty lists. Each __getitem__, __setitem__, and __delitem__ method will need
to be modified. Be sure to raise an appropriate exception when warranted. You
should notice that these three methods share some common code that you might
want to place in a private method that the three methods can call.

In addition, implement the methods named _printTable, __str__, __contains__,
items, keys, and values described in Exercises 12.5.1-12.5.4.

Test your implementation by writing a short program that inserts, deletes, and looks
up several entries with integer keys. Also test your class with different values of
self._size.

Part 2: Hash functions

In the next part of the project, you will implement a searchable database of income
mobility data for each of 741 commuting zones that cover the United States. A
commuting zone is an area in which the residents tend to commute to the same city
for work, and is named for the largest city in the zone. This city name will be the key
for your database, so you will need a hash function that maps strings to hash table
indices. Exercise 12.5.8 suggested one simple way to do this. Do some independent
research to discover at least one additional hash function that is effective for general
strings. Implement this new hash function.

Question 12.2.3 According to your research, why is the hash function you discovered
better than the one from Exercise 12.5.87

Copyright Taylor and Francis, 2021



P12.2-2 ® Discovering Computer Science, Second Edition

Part 3: A searchable database

On the book website is a tab-separated data file named mobility_by_cz.txt that
contains information about the expected upward income mobility of children in
each of the 741 commuting zones. This file is based on data from The Equality of
Opportunity Project (http://www.equality-of-opportunity.org), based at Har-
vard and the University of California, Berkeley. The researchers measured potential
income mobility in several ways, but the one we will use is the probability that a
child raised by parents in the bottom 20% (or “bottom quintile”) of income level
will rise to the top 20% (or “top quintile”) as an adult. This value is contained in
the seventh column of the data file (labeled "P(Child in Q5 | Parent in Q1),
80-85 Cohort").

Write a program that reads this data file and returns a Dictionary object in which
the keys are names of commuting zones and the values are the probabilities described
above. Because some of the commuting zone names are identical, you will need
to concatenate the commuting zone name and state abbreviation to make unique
keys. For example, there are five commuting zones named “Columbus,” but your
keys should designate Columbus, GA, Columbus, OH, etc. Once the data is in
a Dictionary object, your program should repeatedly prompt for the name of a
commuting zone and print the associated probability. For example, your output
might look like this:

Enter the name of a commuting zone to find the chance that the

income of a child raised in that commuting zone will rise to

the top quintile if his or her parents are in the bottom quintile.

Commuting zone names have the form "Columbus, OH".

Commuting zone (or q to quit): Columbus, OH
Percentage is 4.9%.

Commuting zone (or q to quit): Columbus
Commuting zone was not found.

Commuting zone (or q to quit): Los Angeles, CA
Percentage is 9.6%.

Commuting zone (or q to quit): q

Part 4: State analyses

Finally, enhance your program so that it produces the following output, organized
by state. You should create additional Dictionary objects to produce these results.
(Do not use any built-in Python dictionary objects!)

1. Print a table like the following of all commuting zone data, alphabetized by
state then by commuting zone name. (Hints: (a) create another Dictionary
object as you read the data file; (b) the sort method sorts a list of tuples by
the first element in the tuple.)


http://www.equality-of-opportunity.org

12.9 PROJECTS m P12.2-3

AK
Anchorage: 13.4Y%
Barrow: 10.0%
Bethel: 5.2}
Dillingham: 11.8%
Fairbanks: 16.0%
Juneau: 12.6Y%
Ketchikan: 12.0%
Kodiak: 14.79%
Kotzebue: 6.5%
Nome: 4.7%
Sitka: 7.1%
Unalaska: 13.0%
Valdez: 15.4Y%

AL
Atmore: 4.8
Auburn: 3.5%

2. Print a table, like the following, alphabetized by state, of the average probability
for each state. (Hint: use another Dictionary object.)

State Percent

AK 11.0%
AL 5.4%
AR 7.2%

3. Print a table, formatted like that above, of the states with the five lowest and
five highest average probabilities. To do this, it may be helpful to know about
the following trick with the built-in sort method. When the sort method
sorts a list of tuples or lists, it compares the first elements in the tuples or lists.
For example, if values = [(0, 2), (2, 1), (1, 0)], then values.sort()
will reorder the list to be [((0, 2), (1, 0), (2, 1)]. To have the sort
method use another element as the key on which to sort, you can define a
simple function like this:

def getSecond(item):
return item[1]

values.sort(key = getSecond)

When the list named values is sorted above, the function named
getSecond is called for each item in the list and the return value is
used as the key to use when sorting the item. For example, suppose
values = [(0, 2), (2, 1), (1, 0)]. Then the keys used to sort the three
items will be 2, 1, and 0, respectively, and the final sorted list will be
(1, 0), (2, 1), (0, 2)].



