
10.7 PROJECTS ⌅ P10.2-1

Project 10.2 Binary search trees

In this project, you will write a program that allows for the interactive search of a
data set using an alternative data structure called a binary search tree (BST). Each
key in a binary search tree resides in a node. Each node also contains references to a
left child node and a right child node. The nodes are arranged so that the key of
the left child of a node is less than or equal to the key of the node and the key of
the right child is greater than the key of the node. For example, Figure 1 shows a
binary search tree containing the numbers that we sorted in previous sections. The
node at the top of the tree is called the tree’s root.

To insert a new item into a binary search tree, we start at the root. If the new item
is less than or equal to the root, we next look at the left child. On the other hand,
if the new item is greater than the root, we next look at the right child. Then we
repeat this step on the next node, and continue until we arrive at a position without
a node. Figure 2 illustrates how the value 35 would be inserted into the binary search
tree in Figure 1. Starting at the root, since 35 < 50, we move to the left. Next, since
35 > 30, we next move to the right. Then, since 35 < 40, we move to the left. Since
there is no node in this position, we create a new node with 35 and insert it there,
as the left child of the node containing 40.

Question 10.2.1 How would the values 5, 25, 65, and 75 be inserted into the binary search
tree in Figure 1?

Question 10.2.2 Does the order in which items are inserted a↵ect what the tree looks like?

50

10

4020

30

60

70

Figure 1 A binary search tree.

50

10

4020

30

60

70

35

Figure 2 Insertion into a binary search tree.

Copyright Taylor and Francis, 2021

P10.2-2 ⌅ Discovering Computer Science, Second Edition

After the four values in the previous question are inserted into the binary search tree, insert
the value 67. Would the binary search tree be di↵erent if 67 were inserted before 65?

Searching a binary search tree follows the same process, except that we check whether
the target value is equal to the key in each node that we visit. If it is, we return
success. Otherwise, we move to the left or right, as we did above. If we eventually
end up in a position without a node, we know that the target value was not found.
For example, if we want to search for 20 in the binary search tree in Figure 1, we
would start at the root and first move left because 20 < 50. Then we move left again
because 20 < 30. Finally, we return success because we found our target. If we were
searching for 25 instead, would have moved right when we arrived at node 20, but
finding no node there, we would have returned failure.

Question 10.2.3 What nodes would be visited in searches for 10, 25, 55, and 60 in the
binary search tree in Figure 1?

In Python, we can represent a node in a binary search tree with a three-item list.
As illustrated below, the first item in the list is the key, the second item is a list
representing the left child node, and the third item is a list representing the right
child node.

[50, [], []]

key
right child

left child

The list above represents a single node with no left or right child. Or, equivalently,
we can think of the two empty lists as representing “empty” left and right children.
To insert a child, we simply insert into one of the empty lists the items representing
the desired node. For example, to make 70 the right child of the node above, we
would insert a new node containing 70 into the second list:

[50, [], [70, [], []]]

To insert 60 as the left child of 70, we would insert a new node containing 60 into
the first list in 70:

[50, [], [70, [60, [], []], []]]

The list above now represents the root and the two nodes to the right of the root
in Figure 1. Notice that an entire binary search tree can be represented by its root
node. The complete binary search tree in Figure 1 looks like this:

bst = [50, [30, [20, [10, [], []], []], [40, [], []]],
[70, [60, [], []], []]]

Question 10.2.4 Parse the list above to understand how it represents the binary search
tree in Figure 1.

This representation quickly becomes di�cult to read. But, luckily, we will rely on
our functions to read them instead of us.

Let’s now implement the insert and search algorithms we discussed earlier, using this

10.7 PROJECTS ⌅ P10.2-3

list implementation. To make our code easier to read, we will define three constant
values representing the indices of the key, left child, and right child in a node:

KEY = 0
LEFT = 1
RIGHT = 2

So if node is the name of a binary search tree node, then node[KEY] is the node’s
key, node[LEFT] is the node’s left child, and node[RIGHT] is the node’s right child.

The following function inserts a new node into a binary search tree:

def insert(root, key):
"""Insert a new key into the BST with the given root.

Parameters:
root: the list representing the BST
key: the key to insert

Return value: None
"""

current = root
while current != []:

if key <= current[KEY]:
current = current[LEFT]

else:
current = current[RIGHT]

current.extend([key, [], []])

The variable named current keeps track of where we are in the tree during the
insertion process. The while loop proceeds to “move” current left or right until
current reaches an empty node. At that point, the loop ends, and the algorithm
inserts a new node containing key by inserting key and two empty lists into the
empty list assigned to current. (Recall that the extend method e↵ectively appends
each item in its list argument to the end of the list.) To use this function to insert
the value 35 into our binary search tree named bst above, as in Figure 2, we would
call insert(bst, 35).

The function to search a binary search tree is very similar:

P10.2-4 ⌅ Discovering Computer Science, Second Edition

def search(root, key):
"""Search for a target key in the BST with the given root.

Parameters:
root: the list representing the BST
key: the key to search for

Return value: a Boolean indicating whether key was found
"""

current = root
while current != [] and current[KEY] != key:

if key < current[KEY]:
current = current[LEFT]

else:
current = current[RIGHT]

return current != []

The only di↵erences in the search function are (a) the loop now also ends if we
find the desired key value in the node assigned to current, and (b) at the end of
the loop, we return False (failure) if current ends at an empty node and True

otherwise.

In this project, you will work with a data set of your choice, downloaded from the
web or the book website. It may be data that we have worked with elsewhere in this
book or it may be a new data set. Your data must contain two or more attributes
per entry, one of which will be an appropriate key. The remaining attributes will
constitute the satellite data associated with the entry.

Part 1: Extend the BST implementation

Extend the list representation of a node so that each node can store both a key and
associated satellite data. Think about how your new design will a↵ect the insert

and search functions. Then modify these functions so that they work with your
new representation.

With this extension, you are actually creating a new data structure that implements
a dictionary abstract data type. The dictionary abstract data type in Python defines
a way to insert (key, value) pairs and retrieve the value associated with a key using
indexing. As explained in Tangent 7.2, Python dictionaries are usually implemented
using a data structure called a hash table. In your extended binary search tree data
structure, the insert function will insert a new (key, value) pair into the dictionary
and the search function will return the value associated with key, if it is found, or
None if it is not. We will revisit a dictionary implementation in Section 12.5.

Part 2: Read the data

Write a function that creates an empty binary search tree, reads your data from the
web or a file, and then inserts each entry into the binary search tree.

10.7 PROJECTS ⌅ P10.2-5

Part 3: Allow queries

Write a function, like the queryQuakes function from Section 10.2, that allows
someone to interactively query your data. The function should prompt for a key,
and then print the associated satellite data. To locate this data, search for the key
in your binary search tree.

Question 10.2.5 Is searching a binary search tree as e�cient as using the binary search
algorithm to search in a sorted list? In what situations might a binary search tree not be as
e�cient? Explain your answers.

Write a main function that puts all of the pieces together to create a program that
reads your data set and allows repeated queries of the data.

Part 4: Recursion

Every node in a binary search tree is the root of a subtree. In this way, binary
search trees exhibit self-similarity. The subtrees rooted by a node’s left and right
children are called the node’s left subtree and right subtree, respectively. Exploiting
this self-similarity, we can think about inserting into (or searching) a binary search
tree with root r as recursively solving one of two subproblems: inserting into the left
subtree of r or inserting into the right subtree of r. Write recursive versions of the
insert and search functions that use this self-similarity.

Part 5: Sorting

Once data is in a binary search tree, we have a lot of information about how it is
ordered. We can use this structure to create a sorted list of the data. Notice that a
sorted list of the keys in a binary search tree consists of a sorted list of the keys in
the left subtree, followed by the root of the tree, followed by a sorted list of the keys
in the right subtree. Using this insight, write a recursive function bstSort(root)

that returns a sorted list of the keys in a binary search tree. Then use this function
to add an option to your query function from Part 3 that prints the list of keys when
requested.

Question 10.2.6 How e�cient do you think this sorting algorithm is? How do you think it
compares to the sorting algorithms we discussed in this chapter? (Remember to take into
account the time it takes to insert the keys into the binary search tree.)

